Tetrahedron 66 (2010) 1236-1243

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Preparation of 2,2-disubstituted 1,2-dihydro-3*H*-indol-3-ones via oxidation of 2-substituted indoles and Mannich-type reaction

Kazuhiro Higuchi, Yukihiro Sato, Shigeru Kojima, Mei Tsuchimochi, Kenta Sugiura, Masatoshi Hatori, Tomomi Kawasaki*

ABSTRACT

Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan

ARTICLE INFO

Article history: Received 28 October 2009 Received in revised form 26 November 2009 Accepted 9 December 2009 Available online 16 December 2009

Keywords: Oxidation of indole Mannich-type reaction 2,2-Disubstituted 1,2-dihydro-3H-indol-3-one C-Acyliminium intermediate

1. Introduction

2,2-Disubstituted 1,2-dihydro-3H-indol-3-ones are useful synthetic intermediates for natural products, such as austamide,¹ brevianamides,² aristotelone,³ and duocarmycin A.⁴ Therefore, the preparation of 2,2-disubstituted 1,2-dihydro-3H-indol-3-ones in a concise manner is highly desirable. Several reported methods for the preparation of 2,2-disubstituted 1,2-dihydro-3H-indol-3-ones have utilized acid-, base-, or thermal-induced rearrangements of 2,3-dihydroxyindolines⁵ and 3*H*-indol-3-ols,⁶ oxidative rearrangement of 2,3-disubstituted indoles,⁷ alkylation of 2-substituted 3Hindol-3-ones,⁸ cyclization of o-nitrogenated acetophenones,⁹ and so on.¹⁰ Recently, the acid-mediated substitution of 2-alkoxy-1,2dihydro-3H-indol-3-one with aromatic, organosilicon, and organoboron compounds as carbon nucleophiles has been disclosed.¹¹ Here, we report the details of a new methodology for the preparation of 2,2-disubstituted 1,2-dihydro-3*H*-indol-3-ones **3** through the successive oxidation of indoles 1 and Mannich-type reaction of 2-hydroxy-1,2-dihydro-3*H*-indol-3-ones 2 with various carbon nucleophiles (Fig. 1).¹²

* Corresponding author. Tel./fax: +81 42 495 8763. E-mail address: kawasaki@my-pharm.ac.jp (T. Kawasaki).

© 2009 Elsevier Ltd. All rights reserved.

Tetrahedror

Figure 1. Preparation of 2,2-substituted 1,2-dihydro-3H-indol-3-ones.

2. Results and discussion

2.1. Oxidation of 2-substituted indoles

A novel preparative method for 2,2-disubstituted 1,2-dihydro-3H-indol-3-ones through the oxidation of

2-arylindoles followed by a Mannich-type reaction with carbon nucleophiles is described.

In order to prepare 2-hydoroxy-1,2-dihydro-3*H*-indol-3-ones, the precursor of the subsequent Mannich-type reaction, we investigated the oxidation of 2-substituted indoles. Many oxidations of 2-substituted indoles have been reported;^{13–21} however, there are few examples of the production of 2-hydoroxy-1,2-dihydro-3*H*-indol-3-ones from 2-arylindoles.^{17b} Previously, we performed MoO₅ oxidation of *N*-acetyl-2-phenylindole to provide 2,3-dioxigenated indolines.^{14b} Based on this result, the oxidation of 2-(2-nitrophenyl)indoles **1** was examined (Table 1). However, oxidation of the *N*-acetyl derivative **1a** did not proceed at all (entry 1). Treatment of the *N*-unsubstituted indole **1b** produced the oxidative dimer **5** in 72% yield (entry 2).^{14b} In order to accelerate the oxidation, we used the electron-donating methoxymethyl (MOM) substituent on the indole nitrogen and found that the desired reaction occurred to produce **4c** in 21% yield (entry 3).

^{0040-4020/\$ -} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.12.028

Table 1Oxidation of 2-substituted indole

Entry	1	R ¹	Oxidants (equiv)	Solvents	Time	Results
1	a	Ac	$MoO_5 \cdot HMPA \cdot H_2O(1.0)$	MeOH	2 weeks	No reaction
2	b	Н	$MoO_5 \cdot HMPA \cdot H_2O(1.0)$	MeOH	5 days	5 (72%)
3	с	MOM	$MoO_5 \cdot HMPA \cdot H_2O(1.0)$	MeOH	4 weeks	4c (R ² =Me, 21%)
4	с	MOM	<i>m</i> -CPBA (2.5)	THF	2 h	2c (R ² =H, 76%)

A plausible mechanism for the generation of **4c** is as follows (Scheme 1). The 2,3-bond on the indole nucleus of **1c** is oxidized and generates an oxirane ring that opens to furnish iminium **7**. After deprotonation at the 3-position, secondary oxidation occurs at the 2,3-position of **8**. Finally, the oxirane ring in **9** opens to form **2c** and substitution by methanol at the 2-position affords **4c**.

Scheme 1. Plausible mechanism.

Secondary oxidation is faster than primary oxidation as shown in Scheme 1, and Greci et al.^{15d} has reported that treatment of *N*-ethyl-2-phenylindole with 1.2 equiv of *m*-CPBA furnished a dimer like **5** in 52% yield. Therefore, we envisioned that treatment of **1c** with 2.5 equiv of *m*-CPBA would effectively furnish aminal **2c** or **4c**. We examined the oxidation of **1c** with 2.5 equiv of *m*-CPBA in THF instead of MoO₅ reagent (Table 1, entry 4).²² To our delight, 2hydroxy-1,2-dihydro-3*H*-indol-3-one **2c** was obtained in 76% yield without formation of dimer **5**.

We also found that *p*-methoxybenzyl (PMB) and benzyl (Bn) substituents were best suited for this oxidation in terms of yield and reaction time (Table 2, entries 1,2). *p*-Nitrobenzyl (PNB) derivative **1f** (entry 3) resulted in slightly lower yield than the PMB and Bn derivatives. In entries 4–6, the effects of the substituent at the C2-position of **1** were studied. Phenyl and *o*-methoxyphenyl derivatives **1g,h** required shorter reaction times compared with

o-nitrophenyl **1d** to give **2g,h** in 88% and 90% yields, respectively (entries 1 vs 4,5). Oxidation of *p*-methoxyphenyl derivative **1i**, due to the decrease in the bulkiness around the 2,3-position of the indole nucleus, proceeded more smoothly than *o*-methoxy derivative **1h** (entry 5 vs 6). 2-Ethoxycarbonyl indole **1j** bearing a much stronger electron-withdrawing substituent was successfully reacted to afford **2j** (63%), although a prolonged reaction time was required (entry 7). The results listed in Tables 1 and 2 indicate that the electron density on the indole nucleus controlled by the properties of the 1- and 2-substituents affects the reactivity of this oxidation. With compounds **2** readily available, we proceeded to investigate the Mannich-type reaction to assemble the quaternary carbon center.

Table 2

Oxidation of 2-substituted indoles

Entry	1	R ¹	R ²	Time	Yield (%)
1	d	PMB	0-02NC6H4	1 h	94
2	e	Bn	0-02NC6H4	50 min	96
3	f	PNB	0-02NC6H4	1 h	76
4	g	PMB	C ₆ H ₅	50 min	88
5	h	PMB	o-MeOC ₆ H ₄	40 min	90
6	i	PMB	p-MeOC ₆ H ₄	25 min	90
7	j	PMB	EtO ₂ C	5 h	63

PMB: p-MeOC₆H₄CH₂-, PNB: p-O₂NC₆H₄CH₂-.

2.2. Mannich-type reaction of 2-hydroxy-1,2-dihydro-3*H*-indol-3-one

As shown in Table 3, when a solution of **2d** and allyltrimethylsilane in CH_2Cl_2 was treated with $TiCl_4$ at 0 °C, the desired reaction proceeded smoothly to afford 2,2-substituted 1,2-dihydro-3*H*-indol-3-one **3d** in 98% yield (entry 1). This result indicates that 2-hydroxy-1,2-dihydro-3*H*-indol-3-one **2** under acidic conditions generates *C*-acyliminium intermediate **10**, which reacts efficiently with allyltrimethylsilane. Although there are many known examples of *N*-acyliminium species in Mannich-type reactions,²³ **10** is a rare type of *C*-acyliminium species.²⁴ The reaction of benzyl derivative **2e** provided **3e** in high yield (entry 2). In the case of *p*-nitrobenzyl derivative **2f**, the desired product **3f** was obtained in 80% yield together with *N*-dealkylated product **3k** (19%) (entry 3). Next, the effect of the substituent (R^2) at the 2-position was studied. The reaction of 2-aryl derivatives **2g-i** proceeded smoothly to

Table 3

7

Mannich-type reaction of 2-hydroxy-1,2-dihydro-3H-indol-3-one

PMB ^a **3k** (R^1 =H, R^2 =o-O₂NC₆H₄) was obtained in 19% yield.

produce the corresponding **3g-i** in excellent yields (entries 4–6); however, ester 2j required a prolonged reaction time and gave 3j in low yield (entry 7).

EtO₂C

24 h

35

We subsequently explored the scope and the limitations of the Mannich-type reaction of 2-hydroxy-1,2-dihydro-3H-indol-3-one 2d with various carbon nucleophiles (Table 4). A modified Petasisboronic acid–Mannich reaction with allylboronic ester²⁵ produced 3d in 98% yield (entry 1). Alkylations with silylketenacetal and silvlenolate also furnished the corresponding carbonyl compounds **31** and **3m** in high yields, respectively (entries 2,3). When using labile vinyloxytrimethylsilane as a nucleophile under acidic conditions, 3n was given in low yield (entry 4). The use of camphor sulfonic acid (CSA) instead of TiCl₄ improved the yield of **3n** to 56% with recovery of 41% of the starting material **2d** (entry 5). Furan and *N*-methyl indole also worked efficiently in the reaction of 2d with CSA to provide **30** and **3p** in excellent yields, respectively (entries 6,7).

Table 4

Mannich-type reaction with various nucleophiles

^a 2d was recovered in 41% yield.

3. Conclusions

We have developed a general preparative method for 2,2-disubstituted 1,2-dihydro-3H-indol-3-ones via m-CPBA oxidation of 2-arylindoles followed by a Mannich-type reaction with various carbon nucleophiles. This method is effective for the construction of the quaternary carbon center of indoline derivatives. Using this methodology, we have also completed the total synthesis of (\pm) -hinckdentine A.¹² Further application of this methodology to other alkaloid syntheses and the enantioselective preparation for 2,2-disubstituted 1,2-dihydro-3H-indol-3-ones are now under investigation in our laboratory.

4. Experimental section

4.1. General

All melting points were measured on a Yanagimoto micro melting point apparatus and were uncorrected. IR spectra were recorded on a Shimadzu IRPrestige-21 spectrophotometer. ¹H and ¹³C NMR spectra were measured on a JEOL JNM-AL300 (300 MHz), JEOL JMN-AL400 (400 MHz) or JEOL JNM-LA500 (500 MHz) spectrometer with tetramethylsilane as an internal standard. J-Values are given in Hertz. Mass spectra were recorded on a IEOL IMS-DX302 or JEOL JMS 700 instrument with a direct inlet system. Elemental analyses were obtained using a Yanaco MT-6 elemental analyzer. Column chromatography was carried out on a silica gel [Kanto Chemical Co. Inc. (Silica Gel 60 N. Spherical, neutral 40-50 um) and Merck Ltd. (Silica Gel 60, 230–400 mesh)l.

4.2. Preparation of 2-aryindoles 1a-j

4.2.1. 1-Acetyl-2-(2-nitrophenyl)-1H-indole (1a). To a solution of 2-(2-nitrophenyl)indole (**1b**)²⁶ (5.5 g, 23 mmol), Bu₄NHSO₄ (81 mg, 2.3 mmol), and NaOH (powder 5.4 g, 133 mmol) in CH₂Cl₂ (54 mL) was slowly dropped a solution AcCl (3.7 mL, 52 mmol) in CH₂Cl₂ (28 mL) via pressure equalizing dropping funnel at 0 °C. After stirring 30 min at the same temperature, the reaction mixture was filtered and the filtrate was washed with brine. The organic layer was dried over anhydrous MgSO₄ and the filtrate was concentrated. The residue was purified by column chromatography (*n*-hexane– AcOEt=5:1) to give **1a** (3.5 g, 54%) as yellow amorphous: IR (CHCl₃) v 1705, 1530, 1371, 1348, 1311 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.41 (3H, s), 6.54 (1H, s), 7.28 (1H, t, *J*=7.2 Hz), 7.35 (1H, d, J=8.4 Hz), 7.48 (1H, d, J=7.6 Hz), 7.50-7.58 (2H, m), 7.64 (1H, d, J=7.2 Hz), 8.05 (1H, d, J=8.4 Hz), 8.10 (1H, d, J=8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 26.7, 111.4, 115.3, 120.9, 123.3, 124.3, 125.0, 129.3, 129.4, 129.9, 132.2, 132.8, 135.1, 136.2, 148.0, 169.3; HRMS (EI) calcd for C₁₆H₁₂N₂O₃ 280.0848, found 280.0842.

4.2.2. General Procedure for Synthesis of 1c-j. A solution of 2-substituted indole in DMF was added NaH at 0 °C. After 10 min stirring, to the mixture was added tetrabutylammonium iodide (TBAI) and alkyl halide (R¹-X) and the mixture was stirred at room temperature until starting material consumption monitored by TLC. The mixture was added satd aqueous NH₄Cl and extracted with Et₂O. The organic layer was washed with brine and dried over anhydrous MgSO₄. The concentrated residue was purified by column chromatography with *n*-hexane–AcOEt as an eluent to give **1**.

4.2.2.1. 1-Methoxymethyl-2-(2-nitrophenyl)-1H-indole (1c). 2-(2-Nitrophenyl)indole (1.0 g, 4.2 mmol); MOMCl (474 μL, 6.3 mmol); NaH (252 mg, 60%, 6.3 mmol); TBAI (155 mg, 0.42 mmol); DMF (42 mL); 10 min; *n*-hexane-AcOEt=5:1; 1c (1.1 g, 93%); orange oil: IR (CHCl₃) v 1531, 1456, 1348 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.16 (3H, s), 5.24 (2H, s), 6.53 (1H, s), 7.15–7.20 (1H, m), 7.27 (1H, t, J=7.2 Hz), 7.49–7.65 (5H, m), 7.98 (1H, d, J=8.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 55.8, 74.9, 104.3, 109.9, 120.6, 120.7, 122.6, 124.0, 126.8, 127.9, 129.6, 132.1, 133.4, 135.2, 137.6, 149.6; HRMS (EI) calcd for C₁₆H₁₄N₂O₃ 282.1004, found 282.1000.

4.2.2.2. 1-(4-Methoxybenzyl)-2-(2-nitrophenyl)-1H-indole(**1d**). 2-(2-Nitrophenyl)indole (10.0 g, 42 mmol); PMBCI (6.9 mL, 50 mmol); NaH (2.5 g, 60%, 63 mmol); DMF (0.42 L); TBAI (1.6 g, 4.2 mmol); 2.5 h; *n*-hexane–AcOEt=10:1; **1d** (13.5 g, 90%); yellow crystals: mp 131–133 °C; IR (CHCl₃) ν 1530, 1512, 1348 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.72 (3H, s), 5.13 (2H, s), 6.52 (1H, s), 6.71 (2H, d, *J*=8.4 Hz), 6.83 (2H, d, *J*=8.4 Hz), 7.12 (1H, tt, *J*=6.8, 1.6 Hz), 7.17 (1H, tt, *J*=6.8, 1.6 Hz), 7.23 (1H, d, *J*=7.6 Hz), 7.31–7.37 (1H, m), 7.48–7.54 (2H, m), 7.63 (1H, d, *J*=7.6 Hz), 7.95 (1H, dt, *J*=9.6, 4.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 47.5, 55.2, 103.1, 110.4, 113.8, 120.0, 120.7, 122.2, 123.9, 127.2, 127.4, 127.9, 129.4, 132.0, 133.3, 135.1, 137.2, 149.7, 158.6. Anal. Calcd for C₂₂H₁₈N₂O₃: C, 73.73; H, 5.06; N, 7.82. Found: C, 73.95; H, 5.19; N, 7.83; HRMS (EI) calcd for C₂₂H₁₈N₂O₃ 358.1317, found 358.1312.

4.2.2.3. 1-Benzyl-2-(2-nitrophenyl)-1H-indole (1e). 2-(2-Nitrophenyl)indole (1.0 g, 4.2 mmol); BnBr (0.55 mL, 5.0 mmol); NaH (252 mg, 60%, 6.3 mmol); DMF (42 mL); TBAI (155 mg, 0.42 mmol); 45 min; *n*-hexane–AcOEt=5:1; **1e** (1.2 g, 89%); orange solids: IR (CHCl₃) ν 1529, 1460, 1348 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.18 (2H, s), 6.53 (1H, s), 6.86–6.93 (2H, m), 7.09–7.23 (6H, m), 7.30–7.33 (1H, m), 7.44–7.48 (2H, m), 7.63 (1H, d, J=6.8 Hz), 7.89–7.94 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ 47.9, 103.2, 110.3, 120.0, 120.7, 122.2, 123.9, 126.1, 127.0, 127.1, 127.8, 128.4, 129.4, 132.0, 133.2, 135.1, 137.2, 137.3, 149.7; HRMS (EI) calcd for C₂₁H₁₆N₂O₂ 328.1212, found 328.1217.

4.2.2.4. 1-(4-Nitrobenzyl)-2-(2-nitrophenyl)-1H-indole (**1f**). 2-(2-Nitrophenyl)indole (300 mg, 1.3 mmol); PNBBr (300 mg, 1.4 mmol); NaH (76 mg, 60%, 1.9 mmol); DMF (13 mL); 3 h; *n*-hexane-AcOEt=4:1; **1f** (240 mg, 51%); orange amorphous: IR (CHCl₃) ν 1529, 1458, 1348 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.29 (2H, s), 6.59 (1H, s), 7.07 (2H, d, *J*=8.8 Hz), 7.13 (1H, dd, *J*=1.2, 7.6 Hz), 7.15–7.23 (2H, m), 7.33–7.38 (1H, m), 7.54–7.60 (2H, m), 7.64–7.68 (1H, m), 7.95–8.00 (1H, m), 8.06 (2H, d, *J*=8.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 47.4, 104.0, 109.9, 120.5, 121.1, 122.7, 123.8, 124.2, 126.6, 126.9, 128.0, 129.9, 132.2, 133.1, 134.9, 137.0, 144.6, 147.1, 149.8; HRMS (EI) calcd for C₂₁H₁₅N₃O₄ 373.1063, found 373.1058.

4.2.2.5. 1-(4-Methoxybenzyl)-2-phenyl-1H-indole (**1g**). 2-Phenylindole (1.0 g, 5.2 mmol); PMBCl (0.7 mL, 5.2 mmol); NaH (250 mg, 60%, 5.2 mmol); TBAI (192 mg, 0.52 mmol); DMF (52 mL); 3 h; *n*-hexane-CH₂Cl₂=1:2; **1g** (960 mg, 60%); colorless crystals: mp 161–164 °C; IR (CHCl₃) ν 1612, 1512, 1462, 1346, 1248 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.74 (3H, s), 5.30 (2H, s), 6.63 (1H, s), 6.78 (2H, d, *J*=8.4 Hz), 6.93 (2H, d, *J*=8.4 Hz), 7.09–7.22 (3H, m), 7.33–7.45 (5H, m), 7.63–7.68 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ 47.2, 55.3, 102.2, 110.5, 114.0, 120.0, 120.4, 121.7, 127.0, 127.8, 128.2, 128.4, 129.1, 130.1, 132.6, 137.8, 141.6, 158.5; HRMS (EI) calcd for C₂₂H₁₉NO 313.1467, found 313.1468.

4.2.2.6. 1-(4-Methoxybenzyl)-2-(2-methoxyphenyl)-1H-indole (**1h**). 2-(2-Methoxyphenyl)indole²⁷ (2.5 g, 11 mmol); PMBCl (1.8 mL, 13 mmol); NaH (672 mg, 60%, 17 mmol); TBAI (406 mg, 0.11 mmol); DMF (0.11 L); 30 min; *n*-hexane–AcOEt=10:1; **1h** (2.7 g, 71%); colorless oil: IR (CHCl₃) ν 1512, 1460, 1248 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.53 (3H, s), 3.60 (3H, s), 5.07 (2H, s), 6.53 (1H, s), 6.66 (2H, d, *J*=8.7 Hz), 6.83 (2H, d, *J*=8.7), 6.85 (1H, d, *J*=8.7 Hz), 6.93 (1H, td, *J*=7.2, 0.9 Hz), 7.00–7.11 (2H, m), 7.12–7.19 (1H, m), 7.26–7.34 (2H, m), 7.57–7.65 (1H, m); ¹³C NMR (75 MHz, CDCl₃) δ 47.2, 54.96, 55.00, 102.4, 110.4, 110.6, 113.6, 119.4, 120.3,

120.5, 121.3, 121.8, 127.5, 128.3, 130.0, 130.2, 132.6, 137.0, 138.4, 157.3, 158.3; HRMS (EI) calcd for $C_{23}H_{21}NO_2$ 343.1572, found 343.1569.

4.2.2.7. 1-(4-Methoxybenzyl)-2-(4-methoxyphenyl)-1H-indole (**1i**). 2-(4-Methoxyphenyl)indole²⁸ (66 mg, 0.30 mmol); PMBCI (44 μ L, 0.33 mmol); NaH (18 mg, 60%, 0.44 mmol); TBAI (11 mg, 30 μ mol); DMF (3.0 mL); 2.5 h; *n*-hexane–CH₂Cl₂=1:1; **1i** (46 mg, 46%); white solids: IR (CHCl₃) ν 1612, 1512, 1499, 1460, 1248 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.75 (3H, s), 3.82 (3H, s), 5.27 (2H, s), 6.57 (1H, s), 6.79 (2H, d, *J*=9.0 Hz), 6.87–6.96 (4H, m), 7.00–7.21 (3H, m), 7.35 (2H, d, *J*=9.0 Hz), 7.60–7.67 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ 47.1, 55.3, 55.4, 101.6, 110.4, 113.9, 114.0, 119.9, 120.2, 121.4, 125.0, 127.0, 128.2, 130.2, 130.3, 137.6, 141.4, 158.5, 159.3; HRMS (EI) calcd for C₂₃H₂₁NO₂ 343.1572, found 343.1578.

4.2.2.8. Ethyl 1-(4-methoxybenzyl)-1H-indole-2-carboxylate (**1***j*). Ethyl indole-2-carboxyrate (1.0 g, 5.3 mmol); PMBCl (0.79 mL, 5.8 mmol); NaH (316 mg, 60%, 63 mmol); TBAI (196 mg, 0.53 mmol); DMF (52 mL); 1.5 h; *n*-hexane-AcOEt=10:1; **1***j* (1.5 g, 91%); colorless oil: IR (CHCl₃) ν 1703, 1612, 1514, 1458, 1248 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.33 (3H, t, *J*=7.2 Hz), 3.68 (3H, s), 4.31 (2H, q, *J*=7.2 Hz), 5.74 (2H, s), 6.74 (2H, d, *J*=8.8 Hz), 7.00 (2H, d, *J*=8.4 Hz), 7.12 (1H, t, *J*=7.2 Hz), 7.27 (1H, ddd, *J*=1.2, 6.8, 8.0 Hz), 7.34 (1H, d, *J*=9.2 Hz), 7.36 (1H, s), 7.67 (1H, d, *J*=8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 14.4, 47.3, 55.1, 60.5, 110.7, 110.8, 113.8, 120.6, 122.4, 125.0, 126.0, 127.5, 130.2, 139.2, 158.4, 161.7; HRMS (EI) calcd for C₁₉H₁₉NO₃ 309.1365, found 309.1366.

4.3. Oxidation of 2-substituted indoles

4.3.1. Representative procedure for MoO_5 HMPA H_2O oxidation of 2-arylindoles.

4.3.1.1. 2-(2-Nitrophenyl)-2-[2-(2-nitrophenyl)-1H-indol-3yl]1,2-dihydro-3H-indol-3-one (**5**). A solution of **1b** (23.8 mg, 0.1 mmol) in MeOH (1.0 mL) was added MoO₅ HMPA H₂O (36.6 mg, 0.1 mmol) and the mixture was stirred at room temperature for five days. The mixture was quenched with satd aqueous Na₂SO₃ and concentrated under reduced pressure. The residue was extracted with AcOEt and the organic layer was washed by brine and dried over anhydrous MgSO₄. The concentrated residue was purified by column chromatography (*n*-hexane–AcOEt=5:1) to give **5** (17.7 mg, 72%) as yellow crystals: mp 248–250 °C; IR (CHCl₃) ν 3456, 1714, 1616, 1530, 1358 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 6.40–7.70 (16H, m), 8.10 (1H, m), 11.29 (1H, s). Anal. Calcd for C₂₈H₁₈N₄O₅: C, 68.57; H, 3.70; N, 11.42. Found: C, 68.37; H, 3.95; N, 11.31; HRMS (FAB) calcd for C₂₈H₁₈N₄O₅ 490.1277, found 490.1360.

4.3.1.2. 2-Methoxy-1-methoxymethyl-2-(2-nitrophenyl)-1,2-dihydro-3H-indol-3-one (**4c**). Compound **1c** (36.3 mg, 0.13 mmol); MoO₅ HMPA H₂O (36.6 mg, 0.1 mmol); MeOH (1.3 mL); four weeks; *n*-hexane-AcOEt=5:1; **4c** (8.9 mg, 21%); orange oil: IR (CHCl₃) ν 1722, 1614, 1531, 1362 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.22 (3H, s), 3.25 (3H, s), 4.39 (1H, d, *J*=11.1 Hz), 4.64 (1H, d, *J*=10.8 Hz), 6.90– 6.99 (2H, m), 7.40–7.69 (5H, m), 8.12 (1H, d, *J*=7.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 51.7, 56.0, 74.7, 91.2, 108.7, 119.2, 120.4, 123.4, 124.2, 129.3, 129.8, 130.7, 131.8, 137.9, 148.5, 158.9, 196.7; HRMS (EI) calcd for C₁₇H₁₆N₂O₅ 328.1059, found 328.1057.

4.3.2. General procedure for m-CPBA oxidation of 2-arylindole. m-CPBA was added to a solution of indole **1** in THF. After stirring at room temperature, the mixture was cooled with ice bath, quenched with satd aqueous Na₂SO₃, and neutralized with satd aqueous NaHCO₃. The resulting precipitate was filtered off and rinsed with AcOEt. The filtrate was washed with brine, dried over anhydrous MgSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography with *n*-hexane–AcOEt as an eluent to afford **2c**–**j**.

4.3.2.1. 2-Hydroxy-1-methoxymethyl-2-(2-nitrophenyl)-1,2-dihydro-3H-indol-3-one (**2c**). Compound **1c** (951 mg, 3.4 mmol); m-CPBA (1.9 g, 77%, 8.5 mmol); THF (34 mL); 2 h; n-hexane-AcOEt=5:1-1:1; **2c** (807 mg, 76%); orange oil: IR (CHCl₃) ν 1724, 1614, 1531 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.25 (3H, s), 4.16 (1H, s), 4.42 (1H, d, *J*=10.8 Hz), 4.82 (1H, d, *J*=10.8 Hz), 6.96 (1H, d, *J*=8.4 Hz), 7.03 (1H, td, *J*=7.2, 0.8 Hz), 7.51–7.58 (2H, m), 7.67–7.77 (3H, m), 8.24 (1H, dd, *J*=1.6, 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 56.1, 75.3, 87.9, 109.6, 118.6, 121.1, 123.8, 125.5, 129.8, 130.1, 130.8, 132.2, 136.9, 148.0, 157.0, 195.0; HRMS (EI) calcd for C₁₆H₁₄N₂O₅ 314.0903, found 314.0898.

4.3.2.2. 2-Hydroxy-1-(4-methoxybenzyl)-2-(2-nitrophenyl)-1,2-dihydro-3H-indol-3-one (**2d**). Compound **1d** (11.5 g, 31 mmol); m-CPBA (21.1 g, 77%, 94 mmol); THF (0.31 L); 2 h; n-hexane-AcOEt=5:1-3:1; **2d** (11.8 g, 94%); yellow crystals: mp 143–145 °C; IR (CHCl₃) ν 1703, 1612, 1529, 1512, 1483 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.16 (1H, s), 3.75 (3H, s), 4.25 (1H, d, *J*=16.4 Hz), 4.35 (1H, d, *J*=16.4 Hz), 6.65 (1H, d, *J*=8.0 Hz), 6.74 (2H, d, *J*=8.8 Hz), 6.92 (1H, t, *J*=7.2 Hz), 7.05 (2H, d, *J*=8.4 Hz), 7.44 (1H, t, *J*=8.0 Hz), 7.49 (1H, t, *J*=7.2 Hz), 7.64 (1H, t, *J*=7.6 Hz), 7.72 (2H, t, *J*=7.6 Hz), 8.11 (1H, d, *J*=8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 46.5, 55.3, 88.4, 110.1, 113.8, 118.5, 119.8, 124.4, 125.5, 128.4, 128.8, 129.7, 130.5, 131.0, 132.5, 137.5, 148.0, 158.5, 159.8, 196.8. Anal. Calcd for C₂₂H₁₈N₂O₅: C, 67.69; H, 4.65; N, 7.18. Found: C, 67.90; H, 4.72; N, 7.17; HRMS (EI) calcd for C₂₂H₁₈N₂O₅ 390.1216, found 390.1212.

4.3.2.3. 1-Benzyl-2-hydroxy-2-(2-nitrophenyl)-1,2-dihydro-3Hindol-3-one (**2e**). Compound **1e** (1.0 g, 3.1 mmol); *m*-CPBA (2.3 g, 77%, 9.2 mmol); THF (30 mL); 50 min; *n*-hexane–AcOEt=3:1; **2e** (1.1 g, 96%); orange crystals: mp 141–143 °C; IR (CHCl₃) ν 1703, 1612, 1530, 1483 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.17 (1H, s), 4.32 (1H, d, *J*=16.0 Hz), 4.42 (1H, d, *J*=16.4 Hz), 6.62 (1H, d, *J*=8.0 Hz), 6.93 (1H, t, *J*=7.6 Hz), 7.10–7.22 (5H, m), 7.44 (1H, ddd, *J*=1.2, 7.2, 8.4 Hz), 7.48 (1H, dt, *J*=1.2, 7.6 Hz), 7.64 (1H, dt, *J*=1.2, 7.6 Hz), 7.72 (2H, dt, *J*=1.2, 7.6 Hz), 8.13 (1H, dd, *J*=1.2, 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 47.0, 88.4, 110.1, 118.5, 119.9, 124.5, 125.5, 127.0, 127.1, 128.4, 129.8, 130.5, 131.0, 132.5, 136.9, 137.6, 147.9, 159.7, 196.7. Anal. Calcd for C₂₁H₁₆N₂O₄: C, 69.99; H, 4.48; N, 7.77. Found: C, 69.83; H, 4.72; N, 7.77; HRMS (EI) calcd for C₂₁H₁₆N₂O₄ 360.1110, found 360.1106.

4.3.2.4. 2-Hydroxy-1-(4-nitrobenzyl)-2-(2-nitrophenyl)-1,2-dihydro-3H-indol-3-one (**2f**). Compound **1f** (500 mg, 1.3 mmol); m-CPBA (925 mg, 77%, 4.0 mmol); THF (13 mL); 1 h; n-hexane-AcOEt=3:1; **2f** (414 mg, 76%); yellow crystals: mp 137–138 °C; IR (CHCl₃) ν 1722, 1612, 1528, 1477, 1348, 1261 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.84 (1H, s), 4.46 (1H, d, *J*=16.8 Hz), 4.51 (1H, d, *J*=17.2 Hz), 6.54 (1H, d, *J*=8.0 Hz), 6.98 (1H, t, *J*=7.6 Hz), 7.31 (2H, d, *J*=8.0 Hz), 7.45–7.74 (5H, m), 8.05 (2H, d, *J*=8.8 Hz), 8.10 (1H, d, *J*=8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 46.6, 88.2, 109.8, 118.7, 120.5, 123.6, 124.6, 125.8, 127.8, 130.1, 130.3, 130.7, 132.7, 137.8, 144.5, 147.0, 147.9, 159.1, 196.3. Anal. Calcd for C₂₁H₁₅N₃O₆: C, 62.22; H, 3.73; N, 10.37. Found: C, 62.37; H, 3.72; N, 10.28; HRMS (EI) calcd for C₂₁H₁₅N₃O₆ 405.0961, found 405.0964.

4.3.2.5. 2-Hydroxy-1-(4-methoxybenzyl)-2-phenyl-1,2-dihydro-3H-indol-3-one (**2g**). Compound **1g** (300 mg, 0.93 mmol); *m*-CPBA (526 mg, 77%, 2.4 mmol); THF (9.3 mL); 50 min; *n*-hexane-AcOEt=4:1; **2g** (292 mg, 88%); yellow crystals: mp 136–138 °C; IR (CHCl₃) ν 3564, 1713, 1614, 1512, 1485 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.34 (1H, s), 3.77 (3H, s), 4.31 (1H, d, *J*=16.0 Hz), 4.36 (1H, d, *J*=16.4 Hz), 6.59 (1H, d, *J*=8.4 Hz), 6.75 (1H, t, *J*=7.6 Hz), 6.81 (2H, d, *J*=8.8 Hz), 7.22 (2H, d, *J*=8.4 Hz), 7.28–7.46 (6H, m), 7.55 (1H, d, *J*=7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 38.3, 48.1, 55.6, 76.7, 109.4, 114.1, 117.9, 119.7, 120.2, 125.4, 126.8, 128.2, 128.7, 129.1, 129.7, 131.8, 137.7, 158.9, 161.8, 201.3. Anal. Calcd for C₂₂H₁₉NO₃: C, 76.50; H, 5.54; N, 4.06. Found: C, 76.55; H, 5.64; N, 4.11; HRMS (EI) calcd for C₂₂H₁₉NO₃ 345.1365, found 345.1361.

4.3.2.6. 2-Hydroxy-1-(4-methoxybenzyl)-2-(2-methoxyphenyl)-1,2-dihydro-3H-indol-3-one (**2h**). Compound **1h** (1.5 g, 4.4 mmol); *m*-CPBA (2.4 g, 77%, 10.9 mmol); THF (44 mL); 40 min; *n*-hexane-AcOEt=5:1; **2h** (1.5 g, 90%); yellow crystals: mp: 139–141 °C; IR (CHCl₃) *v* 3543, 1715, 1614, 1489 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.48 (1H, s), 3.56 (3H, s), 3.75 (3H, s), 4.28 (1H, d, *J*=16.0 Hz), 4.33 (1H, d, *J*=16.0 Hz), 6.51 (1H, d, *J*=8.4 Hz), 6.73–6.80 (1H, m), 6.75 (2H, d, *J*=8.8 Hz), 6.83 (1H, d, *J*=8.4 Hz), 7.00 (1H, t, *J*=7.2 Hz), 7.10 (2H, d, *J*=6.4 Hz), 7.71 (1H, d, *J*=7.6 Hz); 7.36 (1H, t, *J*=7.6 Hz), 7.63 (1H, d, *J*=7.6 Hz), 7.71 (1H, d, *J*=7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 46.0, 55.3, 55.7, 89.1, 108.9, 111.5, 113.7, 117.8, 118.6, 120.9, 124.8, 126.1, 128.0, 128.4, 130.0, 130.1, 137.3, 156.6, 158.4, 159.3, 200.0. Anal. Calcd for C₂₃H₂₁NO₄: C, 73.58; H, 5.64; N, 3.73. Found: C, 73.74; H, 5.85; N, 3.74; HRMS (EI) calcd for C₂₃H₂₁NO₄ 375.1471, found 375.1467.

4.3.2.7. 2-Hydroxy-1-(4-methoxybenzyl)-2-(4-methoxyphenyl)-1,2-dihydro-3H-indol-3-one (**2i**). Compound **1i** (1.0 g, 2.9 mmol); *m*-CPBA (1.6 g, 77%, 7.3 mmol); THF (29 mL); 25 min; *n*-hexane-AcOEt=3:1; **2i** (1.1 g, 90%); yellow oil: IR (CHCl₃) *v* 3564, 1710, 1614, 1512, 1249 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.40 (1H, s), 3.76 (3H, s), 3.79 (3H, s), 4.33 (2H, s), 6.57 (1H, d, *J*=8.0 Hz), 6.74 (1H, t, *J*=7.2 Hz), 6.81 (2H, d, *J*=8.4 Hz), 6.87 (2H, d, *J*=8.8 Hz), 7.22 (2H, d, *J*=8.4 Hz), 7.35 (2H, d, *J*=8.8 Hz), 7.40 (1H, d, *J*=8.0 Hz), 7.54 (1H, d, *J*=7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 46.6, 55.29, 55.34, 91.4, 108.8, 113.9, 114.1, 117.5, 118.2, 125.8, 127.3, 128.2, 129.6, 132.2, 138.3, 158.5, 159.8, 160.3, 199.5; HRMS (EI) calcd for C₂₃H₂₁NO₄ 375.1471, found 375.1467.

4.3.2.8. Ethyl 2-hydroxy-1-(4-methoxybenzyl)-3-oxo-1,2-dihydro-3H-indol-2-carboxylate (**2***j*). Compound **1***j* (500 mg, 1.6 mmol); m-CPBA (907 mg, 77%, 4.1 mmol); THF (16 mL); 5 h; n-hexane:AcOEt=5:1; **2***j* (350 mg, 63%); yellow crystals: mp 79–82 °C; IR (CHCl₃) v 3497, 1740, 1722, 1614, 1512, 1483 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.13 (3H, t, *J*=7.2 Hz), 3.78 (3H, s), 4.01 (1H, ddd, *J*=6.8, 10.4, 14.4 Hz), 4.11 (1H, ddd, *J*=7.2, 10.4, 14.4 Hz), 4.40 (1H, d, *J*=16.0 Hz), 6.65 (1H, d, *J*=8.0 Hz), 6.79 (1H, t, *J*=7.2 Hz), 6.85 (2H, d, *J*=8.8 Hz), 7.27 (2H, d, *J*=7.6 Hz), 7.41 (1H, ddd, *J*=1.6, 7.6, 8.8 Hz), 7.57 (1H, d, *J*=7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 46.0, 55.3, 63.4, 87.6, 109.3, 113.8, 117.8, 118.8, 125.4, 128.4, 128.6, 138.2, 158.8, 161.0, 168.9, 195.3. Anal. Calcd for C₁₉H₁₉NO₅: C, 66.85; H, 5.61; N, 4.10. Found: C, 66.73; H, 5.72; N, 4.19; HRMS (EI) calcd for C₁₉H₁₉NO₅ 341.1263, found 341.1266.

4.4. General procedure for Mannich-type reaction of 2-hydroxy-1,2-dihydro-3*H*-indol-3-ones 2

To a solution of **2** in CH_2Cl_2 was added nucleophile and acids at 0 °C. After starting material consumption monitored by TLC, the resulting mixture was neutralized with satd aqueous NaHCO₃ at 0 °C and extracted with CH_2Cl_2 . Combined organic layer was washed with brine, dried over anhydrous MgSO₄, and then concentrated under reduced pressure. The residue was purified by column chromatography with *n*-hexane–AcOEt as an eluent to afford **3d–p**.

4.4.1. 2-Allyl-1-(4-methoxybenzyl)-2-(2-nitrophenyl)-1,2-dihydro-3H-indol-3-one (**3d**). Compound **2d** (100 mg, 0.26 mmol); allyltrimethylsilane (81 µL, 0.51 mmol); TiCl₄ (0.28 mL, 1.0 M in CH₂Cl₂, 0.28 mmol); CH₂Cl₂ (2.6 mL); *n*-hexane–AcOEt=4:1; **3d** (104 mg, 98%); yellow crystals: mp 110–112 °C; IR (CHCl₃) *v* 1703, 1612, 1530, 1512 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.90 (1H, dd, *J*=6.8, 13.6 Hz), 3.09 (1H, dd, *J*=7.2, 13.6 Hz), 3.75 (3H, s), 4.22 (1H, d, *J*=16.0 Hz), 4.44 (1H, d, *J*=16.0 Hz), 4.86 (1H, dd, *J*=1.6, 10.0 Hz), 5.00 (1H, dd, *J*=1.6, 16.8 Hz), 5.33, (1H, tdd, *J*=6.8, 10.0, 16.8 Hz), 6.73 (2H, d, *J*=8.8 Hz), 6.76 (1H, d, *J*=8.0 Hz), 6.87 (1H, t, *J*=7.6 Hz), 7.03 (2H, d, *J*=8.8 Hz), 7.40–7.48 (2H, m), 7.52–7.59 (2H, m), 7.64–7.68 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 40.6, 47.3, 55.3, 73.0, 108.9, 113.7, 118.8, 119.7, 120.8, 124.3, 124.6, 128.7, 129.0, 129.8, 130.2, 130.3, 130.5, 131.7, 136.8, 149.3, 158.8, 159.6, 199.5. Anal. Calcd for C₂₅H₂₂N₂O₄: C, 72.45; H, 5.35; N, 6.76. Found: C, 72.40; H, 5.47; N, 6.73; HRMS (EI) calcd for C₂₅H₂₂N₂O₄ 414.1580, found 414.1579.

4.4.2. 2-Allyl-1-benzyl-2-(2-nitrophenyl)-1,2-dihydro-3H-indol-3one (3e). Compound 2e (100 mg, 0.28 mmol); allyltrimethylsilane (88 µL, 0.56 mmol); TiCl₄ (0.31 mL, 1.0 M in CH₂Cl₂, 0.31 mmol); CH₂Cl₂ (2.8 mL); *n*-hexane-AcOEt=4:1; 3e (107 mg, 95%); orange crystals: mp 102–104 °C; IR (CHCl₃) v 1703, 1612, 1530, 1483, 1358, 1323 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.91 (1H, dd, J=6.4, 14.0 Hz), 3.09 (1H, dd, J=7.2, 14.0 Hz), 4.28 (1H, d, J=16.0 Hz), 4.50 (1H, d, J=16.4 Hz), 4.87 (1H, dd, J=1.2, 10.4 Hz), 4.98 (1H, dd, J=1.2, 16.8 Hz), 5.35 (1H, tdd, J=6.8, 10.0, 16.8 Hz), 6.74 (1H, d, J=8.4 Hz), 6.87 (1H, t, J=7.2 Hz), 7.12 (2H, dd, J=3.6, 7.2 Hz), 7.17-7.22 (3H, m), 7.39-7.48 (2H, m), 7.54 (1H, dd, J=1.2, 6.8 Hz), 7.56 (1H, dd, J=1.2, 7.6 Hz), 7.67 (2H, d, I=7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 40.5, 47.9, 73.1, 109.0, 118.9, 119.7, 120.9, 124.3, 124.7, 127.4, 127.6, 128.3, 129.1, 130.28, 130.34, 131.8, 136.77, 136.80, 149.3, 159.5, 199.3. Anal. Calcd for C₂₄H₂₀N₂O₃: C, 74.98; H, 5.24; N, 7.29. Found: C, 75.27; H, 5.43; N, 7.32; HRMS (EI) calcd for C₂₄H₂₀N₂O₃ 384.1474, found 384.1477.

4.4.3. 2-Allyl-1-(4-nitrobenzyl)-2-(2-nitrophenyl)-1,2-dihydro-3Hindol-3-one (**3f**) and 2-allyl-2-(2-nitrophenyl)-1,2-dihydro-3H-indol-3-one (**3k**). Compound **2f** (30 mg, 74 μmol); allyltrimethylsilane (23 μL, 0.15 mmol); TiCl₄ (81 μL, 1.0 M in CH₂Cl₂, 81 μmol); CH₂Cl₂ (0.74 mL); *n*-hexane–AcOEt=5:1–2:1; **3f** (26 mg, 80%); **3k** (5 mg, 19%).

Compound **3f**: yellow crystals: mp 151–153 °C; IR (CHCl₃) ν 1709, 1612, 1530, 1348 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.99 (1H, dd, *J*=7.2, 14.4 Hz), 3.14 (1H, dd, *J*=7.2, 14.4 Hz) 4.49 (1H, d, *J*=16.8 Hz), 4.57 (1H, d, *J*=16.8 Hz), 4.93 (1H, dd, *J*=1.2, 10.4 Hz), 5.06 (1H, dd, *J*=1.2, 16.8 Hz), 5.40 (1H, tdd, *J*=6.8, 10.0, 16.8 Hz), 6.61 (1H, d, *J*=8.4 Hz), 6.95 (1H, t, *J*=7.6 Hz), 7.29 (2H, d, *J*=8.4 Hz), 7.42–7.51 (2H, m), 7.57 (2H, d, *J*=7.6 Hz), 7.71 (2H, t, *J*=6.8 Hz), 8.06 (2H, d, *J*=8.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 40.4, 47.4, 73.0, 108.9, 119.6, 120.2, 121.3, 123.6, 124.6, 125.0, 128.0, 129.5, 130.1, 130.4, 132.1, 137.0, 144.3, 147.1, 149.2, 158.9, 198.4. Anal. Calcd for C₂₄H₁₉N₃O₅: C, 67.38; H, 4.59; N, 9.76. Found: C, 67.13; H, 4.46; N, 9.79; HRMS (EI) calcd for C₂₄H₁₉N₃O₅ 429.1325, found 429.1328.

Compound **3k**: yellow oil: ¹H NMR (300 MHz, CDCl₃) δ 2.75 (1H, dd, *J*=7.5, 14.1 Hz), 3.17 (1H, dd, *J*=6.6, 14.1 Hz) 4.99 (1H, s), 4.57 (1H, d, *J*=16.8 Hz), 5.11 (1H, dt, *J*=0.9, 10.2 Hz), 5.19 (1H, dd, *J*=1.5, 16.8 Hz), 5.59 (1H, tdd, *J*=7.5, 10.2, 16.8 Hz), 6.88–6.95 (2H, m), 7.39 (1H, td, *J*=1.2, 7.2 Hz), 7.44–7.53 (2H, m), 7.56 (1H, td, *J*=1.5, 7.2 Hz), 7.63 (1H, d, *J*=7.5 Hz), 8.07 (1H, dd, *J*=0.9, 7.8 Hz).

4.4.4. 2-Allyl-1-(4-methoxybenzyl)-2-phenyl-1,2-dihydro-3H-indol-3-one (**3g**). Compound **2g** (100 mg, 0.29 mmol); allyltrimethylsilane (92 μ L, 0.58 mmol); TiCl₄ (0.32 mL, 1.0 M in CH₂Cl₂, 0.32 mmol); CH₂Cl₂ (2.9 mL); n-hexane-AcOEt=4:1; **3g** (97 mg, 90%); yellow crystals: mp 133–134 °C; IR (CHCl₃) ν 1695, 1612, 1512, 1487, 1321, 1246 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.94 (1H, dd, *J*=7.2, 14.0 Hz), 3.17 (1H, dd, *J*=6.8, 14.0 Hz), 3.77 (3H, s), 4.23 (1H, d, *J*=16.4 Hz), 4.50 (1H, d, *J*=16.4 Hz), 4.91 (1H, dd, *J*=10.0 Hz), 5.02 (1H, dd, *J*=1.2, 16.8 Hz), 5.50 (1H, tdd, *J*=7.2, 10.4, 17.2 Hz), 6.70 (1H, d, *J*=8.4 Hz), 6.75 (1H, d, *J*=7.2 Hz), 6.79 (2H, d, *J*=8.4 Hz), 7.09 (2H, d, *J*=8.8 Hz), 7.19–7.34 (5H, m), 7.41 (1H, ddd, *J*=1.2, 7.2, 8.4 Hz), 7.61 (1H, d, *J*=8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 38.3, 48.1, 55.6, 76.7, 109.4, 114.1, 117.9, 119.7, 120.2, 125.4, 126.8, 128.2, 128.7, 129.1, 129.7, 131.8, 137.7 (2C), 158.9, 161.8, 201.3. Anal. Calcd for C₂₅H₂₃NO₂: C, 81.27; H, 6.27; N, 3.79. Found: C, 81.53; H, 6.46; N, 3.77; HRMS (EI) calcd for C₂₅H₂₃NO₂ 369.1729, found 369.1731.

4.4.5. 2-Allyl-1-(4-methoxybenzyl)-2-(2-methoxyphenyl)-1,2-dihydro-3H-indol-3-one (3h). Compound 2h (30 mg, 80 µmol); allyltrimethylsilane (88 μ L, 0.16 mmol); TiCl₄ (88 μ L, 1.0 M in CH₂Cl₂, 8 μmol); CH₂Cl₂ (0.80 mL); *n*-hexane–AcOEt=4:1; **3h** (30 mg, 93%); green-yellow crystals: mp 104–105 °C; IR (CHCl₃) v 1695, 1614, 1512, 1489, 1319, 1247 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.93 (1H, dd, J=7.2, 14.0 Hz), 3.02 (1H, dd, J=7.2, 13.6 Hz), 3.38 (3H, s), 3.73 (3H, s), 4.19 (1H, d, J=16.0 Hz), 4.31 (1H, d, J=16.0 Hz), 4.93 (1H, dd, J=0.8, 10.0 Hz), 5.08 (1H, dd, J=1.6, 17.2 Hz), 5.53 (1H, tdd, J=7.2, 10.0, 17.2 Hz), 6.57 (1H, d, J=8.4 Hz), 6.68–6.73 (1H, m), 6.71 (2H, d, J=8.4 Hz), 6.76 (1H, d, J=8.0 Hz), 6.91-6.99 (1H, m), 6.94 (2H, d, *J*=8.8 Hz), 7.23–7.29 (1H, m), 7.30–7.36 (1H, m), 7.45 (1H, dd, *I*=1.6, 8.0 Hz), 7.63 (1H, d, J=7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 39.1, 46.7, 55.1, 55.2, 73.0, 108.6, 111.6, 113.6, 116.5, 119.0, 120.6, 122.0, 123.5, 127.0, 128.2, 128.7, 129.5, 130.0, 131.4, 136.0, 157.2, 158.3, 159.6, 202.7. Anal. Calcd for C₂₆H₂₅NO₃: C, 78.17; H, 6.31; N, 3.51. Found: C, 78.39; H, 6.44; N, 3.71; HRMS (EI) calcd for C₂₆H₂₅NO₃ 399.1834. found 399.1839.

4.4.6. 2-Allyl-1-(4-methoxybenzyl)-2-(4-methoxyphenyl)-1,2-dihy*dro-3H-indol-3-one* (3i). Compound 2i (300 mg, 0.80 mmol); allyltrimethylsilane (253 µL, 1.6 mmol); TiCl₄ (880 µL, 1.0 M in CH₂Cl₂, 0.88 mmol); CH₂Cl₂ (8.0 mL); *n*-hexane-AcOEt=4:1; 3i (292 mg, 91%); green-yellow oil: IR (CHCl₃) v 1694, 1612, 1512, 1485, 1465, 1319 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.90 (1H, dd, J=7.2, 14.4 Hz), 3.12 (1H, dd, *J*=6.8, 14.0 Hz), 3.73 (3H, s), 3.74 (3H, s), 4.22 (1H, d, J=16.4 Hz), 4.47 (1H, d, J=16.4 Hz), 4.89 (1H, dd, J=1.6, 10.8 Hz), 5.00 (1H, dd, J=1.2, 16.8 Hz), 5.49 (1H, tdd, J=6.8, 10.0, 16.8 Hz), 6.69 (1H, d, J=8.8 Hz), 6.73 (1H, d, J=7.2 Hz), 6.79 (2H, d, J=8.4 Hz), 6.82 (2H, d, J=9.2 Hz), 7.09 (2H, d, J=8.8 Hz), 7.13 (2H, d, *J*=9.2 Hz), 7.38 (1H, ddd, *J*=1.2, 7.2, 8.4 Hz), 7.59 (1H, d, *J*=7.6 Hz); $^{13}\text{C}\,\text{NMR}\,(100\,\text{MHz},\text{CDCl}_3)\,\delta$ 38.0, 47.5, 55.1, 75.8, 109.0, 113.6, 114.0, 117.3, 119.1, 119.7, 124.9, 127.6, 128.3, 129.2, 129.4, 131.5, 137.2, 158.5, 159.0, 160.0, 161.3, 201.2; HRMS (EI) calcd for C₂₆H₂₅NO₃ 399.1834, found 399.1840.

4.4.7. Ethyl 2-allyl-1-(4-methoxybenzyl)-3-oxo-1,2-dihydro-3H-indol-2-carboxylate (3j). Compound 2j (400 mg, 1.2 mmol); allyltrimethylsilane (371 µL, 2.3 mmol); TiCl₄ (1.3 mL, 1.0 M in CH₂Cl₂, 1.3 mmol); CH₂Cl₂ (12 mL); *n*-hexane–AcOEt=6:1; **3**j (148 mg, 35%); pale-yellow oil; IR (CHCl₃) v 1736, 1701, 1612, 1512, 1485, 1321, 1246 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.15 (3H, t, *J*=7.2 Hz), 2.94 (1H, dd, J=7.2, 14.8 Hz), 3.02 (1H, dd, J=6.8, 14.8 Hz), 3.80 (3H, s), 4.01 (1H, ddd, J=7.2, 10.8, 14.4 Hz), 4.08 (1H, ddd, J=7.2, 10.8, 14.4 Hz), 4.47 (1H, d, J=16.0, Hz), 4.56 (1H, d, J=16.4 Hz), 4.96 (1H, d, J=10.0 Hz), 5.03 (1H, d, J=17.2 Hz), 5.45 (1H, tdd, J=7.2, 10.0, 17.2 Hz), 6.65 (1H, d, J=8.4 Hz), 6.78 (1H, t, J=7.2 Hz), 6.86 (2H, d, J=7.2 Hz), 7.24 (2H, d, J=8.4 Hz), 7.39 (1H, t, J=7.2 Hz), 7.60 (1H, d, J=8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 37.0, 48.2, 55.3, 62.1, 109.8, 113.9, 118.1, 119.8, 119.9, 124.9, 128.3, 128.8, 130.6, 137.5, 158.8, 161.6, 167.3, 195.5; HRMS (EI) calcd for C₂₂H₂₃NO₄ 365.1627, found 365.1632.

4.4.8. 2-Allyl-1-(4-methoxybenzyl)-2-(2-nitrophenyl)-1,2-dihydro-3H-indol-3-one (**3d**). Compound **2d** (200 mg, 0.51 mmol); allylboronic acid pinacol ester (0.19 mL, 1.0 mmol); TiCl₄ (0.56 mL, 1.0 M in CH₂Cl₂, 0.56 mmol); *n*-hexane–AcOEt (3:1); **3d** (208 mg, 98%).

4.4.9. Methyl 2-[1-(4-methoxybenzyl)-2-(2-nitrophenyl)-3-oxo-1,2*dihydro-3H-indol-2-yl]-2-methylpropanoate* (31). Compound 2d (200 mg, 0.51 mmol); O-methyl O'-trimethylsilyl dimethylketene acetal (0.21 mL, 1.0 mmol); TiCl₄ (0.56 mL, 1.0 M in CH₂Cl₂, 0.56 mmol); *n*-hexane–AcOEt (3:1); **3l** (228 mg, 93%) as brownish crystals: mp 102–104 °C; IR (CHCl₃) v 1736, 1612, 1530, 1512 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.24 (3H, s), 1.34 (3H, s), 3.62 (3H, s), 3.72 (3H, s), 4.92 (1H, d, *J*=16.5 Hz), 5.28 (1H, d, *J*=16.8 Hz), 6.68 (2H, d, *J*=9.0 Hz), 6.77 (2H, d, *J*=8.7 Hz), 7.08-7.23 (3H, m), 7.42 (1H, dd, J=2.1, 7.5 Hz), 7.53 (1H, dt, J=1.8, 7.5 Hz), 7.58 (1H, dt, J=1.5, 4.5 Hz), 7.62 (1H, dd, *J*=1.5, 6.6 Hz), 8.08 (1H, dd, *J*=1.5, 7.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 25.0, 47.5, 52.3, 55.2, 82.0, 110.3, 113.8, 119.0, 119.7, 122.6, 123.3, 124.5, 125.6, 127.1, 127.2, 129.2, 129.3, 131.7, 132.4, 134.1, 134.8, 149.4, 158.5, 173.9. Anal. Calcd for C₂₇H₂₆N₂O₆: C, 68.34; H, 5.52; N, 5.90.Found: C, 68.56; H, 5.65; N, 5.86; HRMS (EI) calcd for C₂₇H₂₆N₂O₆ 474.1791, found 474.1787.

4.4.10. 1-(4-Methoxybenzyl)-2-(2-nitrophenyl)-2-(2-oxo-2-phenylethyl)-1,2-dihydro-3H-indol-3-one (3m). Compound 2d (200 mg, 0.51 mmol); trimethyl(1-phenylvinyloxy)silane (0.21 mL, 1.0 mmol); TiCl₄ (0.56 mL, 1.0 M in CH₂Cl₂, 0.56 mmol); *n*-hexane–AcOEt (3:1); **3m** (249 mg, 98%) as yellowish powder: mp 192–194 °C; IR (CHCl₃) ν 1711, 1697, 1612, 1528, 1512 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.50 (3H, s), 3.73 (1H, d, *J*=17.1 Hz), 3.96 (1H, d, *J*=17.4 Hz), 4.43 (1H, d, *I*=16.8 Hz), 4.60 (1H, d, *I*=16.8 Hz), 6.42 (2H, d, *I*=8.4 Hz), 6.79 (1H, d, J=8.4 Hz), 6.89 (2H, d, J=8.7 Hz), 6.91 (1H, t, J=7.8 Hz), 7.22-7.30 (2H, m), 7.40-7.56 (8H, m), 7.67 (1H, dd, *J*=0.6, 7.8 Hz); $^{13}\mathrm{C}$ NMR (100 MHz, CDCl_3) δ 44.5, 47.0, 55.0, 71.9, 108.8, 113.6, 118.9, 119.1, 123.9, 124.7, 127.5, 127.8, 127.9, 128.9, 129.0, 129.1, 130.4, 131.0, 132.8, 135.8, 137.3, 149.0, 158.2, 160.1, 193.9, 198.5. Anal. Calcd for C₃₀H₂₄N₂O₅: C, 73.16; H, 4.91; N, 5.69. Found: C, 73.31; H, 5.12; N, 5.75; HRMS (EI) calcd for C₃₀H₂₄N₂O₅ 492.1685, found 492.1685.

4.4.11. 2-[1-(4-Methoxybenzyl)-2-(2-nitrophenyl)-3-oxo-1,2-dihydro-3H-indol-2-yl]acetaldehyde (3n). For entry 4: 2d (200 mg, 0.51 mmol); trimethyl(vinyloxy)silane (0.15 mL, 1.0 mmol); TiCl₄ (0.56 mL, 1.0 M in CH₂Cl₂, 0.56 mmol); *n*-hexane-AcOEt (3:1); 3n (79 mg, 39%) as yellowish crystals. For entry 5: 2d (100 mg, 0.26 mmol); trimethyl(vinyloxy)silane (76 µL, 0.51 mmol); CSA (60 mg, 0.26 mmol); n-hexane-AcOEt (4:1); 3n (60 mg, 56%, 41% of recovered **2d**) as yellowish crystals: mp 154–155 °C; IR (CHCl₃) ν 1715, 1612, 1530, 1512 cm $^{-1};\,^{1}\text{H}$ NMR (400 MHz, CDCl₃) δ 3.00 (1H, dd, J=2.4, 15.6 Hz), 3.23 (1H, dd, J=2.0, 15.6 Hz), 3.74 (3H, s), 4.22 (1H, d, *J*=16.4 Hz), 4.52 (1H, d, *J*=16.4 Hz), 6.73 (2H, d, *J*=8.4 Hz), 6.80 (1H, d, J=8.8 Hz), 6.93 (1H, d, J=7.2 Hz), 6.98 (2H, d, J=8.8 Hz), 7.43–7.61 (5H, m), 7.73 (1H, dt, *J*=8.0, 0.8 Hz), 9.32 (1H, t, *J*=2.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 47.0, 48.6, 55.3, 71.4, 109.3, 114.0, 119.3, 119.5, 124.8, 125.0, 128.2, 128.4, 129.0, 129.6, 130.1, 132.0, 137.6, 148.9, 158.9, 159.2, 197.1, 198.0. Anal. Calcd for C₂₄H₂₀N₂O₅: C, 69.22; H, 4.84; N, 6.73. Found: C, 69.25; H, 4.91; N, 6.78; HRMS (EI) calcd for C₂₄H₂₀N₂O₅ 416.1372, found 416.1377.

4.4.12. 2-(2-Furyl)-1-(4-methoxybenzyl)-2-(2-nitrophenyl)-1,2-dihydro-3H-indol-3-one (**3o**). Compound **2d** (100 mg, 0.26 mmol); furan (37 µL, 0.51 mmol); CSA (65 mg, 0.28 mmol); 1 h; *n*-hexane– AcOEt=3:1; **3o** (110 mg, 98%); orange powder; IR (CHCl₃): 1719, 1612, 1530, 1512, 1483 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.68 (3H, s), 4.57 (1H, d, *J*=17.2 Hz), 4.75 (1H, d, *J*=17.2 Hz), 6.34 (1H, dd, *J*=2.0, 3.2 Hz), 6.43 (1H, d, *J*=3.6 Hz), 6.45 (1H, d, *J*=8.4 Hz), 6.63 (4H, s), 6.85 (1H, t, *J*=7.2 Hz), 7.05 (1H, dd, *J*=2.0, 8.0 Hz), 7.22 (1H, d, *J*=1.6 Hz), 7.36 (1H, ddd, *J*=1.2, 7.2, 8.4 Hz), 7.40–7.50 (2H, m), 7.57 (1H, dd, *J*=1.6, 7.6 Hz), 7.73 (1H, d, *J*=7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 47.3, 55.1, 73.8, 110.0, 110.3, 111.3, 113.6, 118.7, 118.9, 123.9, 124.9, 126.9, 128.4, 129.4, 129.7, 131.5, 133.0, 137.2, 143.8, 148.7, 149.0, 158.0, 158.3, 194.7; HRMS (EI) Calcd for C₂₆H₂₀N₂O₅ 440.1372, found 440.1371.

4.4.13. 2-(1-Methyl-3-indolyl)-1-(4-methoxybenzyl)-2-(2-nitrophenyl)-1,2-dihydro-3H-indol-3-one (**3p**). Compound **2d** (100 mg, 0.26 mmol); *N*-methyl indole (35 μ L, 0.28 mmol); CSA (65 mg, 0.28 mmol); column chromatography eluent: CH₂Cl₂; **3p** (128 mg, 98%) as orange powder: mp 255–257 °C; IR (CHCl₃) ν 1707, 1612, 1530, 1512, 1481 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.67 (3H, s), 3.70 (3H, s), 4.70 (1H, d, *J*=16.5 Hz), 4.80 (1H, d, *J*=16.5 Hz), 6.50–6.62 (2H, m), 6.72–6.95 (7H, m), 7.08–7.14 (1H, m), 7.18–7.24 (1H, m), 7.33–7.49 (3H, m), 7.57–7.64 (2H, m), 7.83 (1H, br d, *J*=8.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 33.1, 47.3, 55.2, 74.6, 108.6, 109.4, 110.4, 113.4, 118.0, 119.6, 120.3, 122.1, 125.0, 125.3, 125.9, 127.3, 128.9, 129.3, 131.1, 131.9, 134.5, 136.7, 137.7, 149.0, 157.9, 158.1. Anal. Calcd for C₃₁H₂₅N₃O₄: C, 73.94; H, 5.00; N, 8.34. Found: C, 74.15; H, 5.24; N, 8.35; HRMS (EI) calcd for C₃₁H₂₅N₃O₄ 503.1845, found 503.1843.

Acknowledgements

We thank N. Eguchi, T. Koseki, and S. Kubota at the Analytical Center of our university for microanalysis, NMR, and mass spectral measurements. This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B), 21790027, 2009 and the High-Tech Research Center Project, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (S0801043).

References and notes

- Isolation: (a) Steyn, P. S. Tetrahedron Lett. **1971**, *12*, 3331–3334; (b) Steyn, P. S. Tetrahedron **1973**, *29*, 107–120; Synthesis: (c) Hutchison, A. J.; Kishi, Y. J. Am. Chem. Soc. **1979**, *101*, 6786–6788.
- Isolation: (a) Birch, A. J.; Wright, J. J. J. Chem. Soc., Chem. Commun. 1969, 644– 645; (b) Birch, A. J.; Wright, J. J. Tetrahedron 1970, 26, 2329–2344; (c) Birch, A. J.; Russell, R. A. Tetrahedron 1972, 28, 2999–3008; Synthesis: (d) Williams, R. M.; Glinka, T.; Kwast, E.; Coffman, H.; Stille, J. K. J. Am. Chem. Soc. 1990, 112, 808–821.
- Isolation: (a) Bhakuni, D. S.; Silva, M.; Matlin, S. A.; Sammes, P. G. Phytochemistry 1976, 15, 574–575; Synthesis: (b) Stoermer, D.; Heathcock, C. H. J. Org. Chem. 1993, 58, 564–568.
- Isolation: (a) Takahashi, I.; Takahashi, K.; Ichimura, M.; Morimoto, M.; Asano, K.; Kawamoto, I.; Tomita, F.; Nakano, H. J. Antibiot. **1988**, 41, 1915–1917 Synthesis: (b) Fukuda, Y.; Nakatani, K.; Ito, Y.; Terashima, S. Tetrahedron Lett. **1990**, 31, 6699–6702.
- (a) Witkop, B. J. Am. Chem. Soc. 1950, 72, 614–620; (b) Witkop, B.; Ek, A. J. Am. Chem. Soc. 1951, 73, 5664–5669; (c) Beitzke, B.; Schmidt, R. R. Chem. Ber. 1985, 118, 1726–1731.
- (a) Patrick, J. B.; Witkop, B. J. Am. Chem. Soc. 1950, 72, 633–634; (b) Witkop, B.; Patrick, J. B. J. Am. Chem. Soc. 1951, 73, 2188–2194; (c) Lednicer, D.; Emmert, D. E. J. Heterocycl. Chem. 1970, 7, 575–581.
- 7. Zhang, X.; Foote, C. S. J. Am. Chem. Soc. 1993, 115, 8867–8868.
- (a) Berti, C.; Greci, L.; Marchetti, L. J. Chem. Soc., Perkin Trans. 2 1979, 233–236;
 (b) Adam, J.-M.; Winkler, T. Helv. Chim. Acta 1984, 67, 2186–2191; (c) Tommasi,
 G.; Bruni, P.; Greci, L.; Sgarabotto, P.; Righi, L. J. Chem. Soc., Perkin Trans. 1 1999, 681–686; (d) Liu, Y.; McWhorter, W. W., Jr. J. Org. Chem. 2003, 68, 2618–2622.
- (a) Yamaguchi, K. Bull. Chem. Soc. Jpn. **1976**, *49*, 1366–1368; (b) Ardakani, M. A.; Smalley, R. K. Tetrahedron Lett. **1979**, *20*, 4769–4772; (c) Kawasaki, T.; Ohtsuka, H.; Chien, C.-S.; Omata, M.; Sakamoto, M. Chem. Pharm. Bull. **1987**, *35*, 1339– 1346.
- (a) Ghavshou, M.; Widdowson, D. A. J. Chem. Soc., Perkin Trans. 1 1983, 3065–3070;
 (b) Mérour, J.-Y.; Chichereau, L.; Finet, J.-P. Tetrahedron Lett. 1992, 33, 3867–3870;
 (c) Boger, D. L.; Nishi, T. Bioorg. Med. Chem. 1995, 3, 67–77;
 (d) Yun, S.; Kim, K. J. Chem. Soc., Perkin Trans. 1 2002, 2360–2369;
 (e) Yamada, K.; Kurokawa, T.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2003, 125, 6630–6631;
 (f) Astolfi, P.; Bruni, P.; Greci, L.; Stipa, P.; Righi, L.; Rizzoli, C. Eur. J. Org. Chem. 2003, 2626–2634;
 (g) Higuchi, K.; Masuda, K.; Koseki, T.; Hatori, M.; Sakamoto, M.; Kawasaki, T. Heterocycles 2007, 73, 641–650.
- 11. Buller, M. J.; Cook, T. G.; Kobayashi, Y. Heterocycles 2007, 72, 163-166.
- 12. Higuchi, K.; Sato, Y.; Tsuchimochi, M.; Sugiura, K.; Hatori, M.; Kawasaki, T. Org. Lett. **2009**, *11*, 197–199.
- Reviews; (a) Sundberg, R. J. The Chemistry of Indoles; Academic: New York, NY and London, 1970; pp 282–315; (b) Katritzky, A. R.; Boulton, A. J. Advances in Heterocyclic Chemistry. In Isatogen and Indoles; Hiremath, S. P.,

Hooper, M., Eds.; Academic: New York, NY and London, 1978; Vol. 22, pp 123-181; (c) Sundberg, R. J. Indoles; Academic: London and San Diego, 1996, pp 152-158.

- 14. MoO₅; (a) Chien, C.-S.; Suzuki, T.; Kawasaki, T.; Sakamoto, M. Chem. Pharm. Bull. **1984**, 32, 3945–3951; (b) Chien, C.-S.; Takanami, T.; Kawasaki, T.; Sakamoto, M. *Chem. Pharm. Bull.* **1985**, 33, 1843–1848; (c) Wang, Z.; Jimenez, L. S. *Tetrahedron* Lett. 1996, 34, 6049-6052; (d) Kiraz, C. I. A.; Emge, T. J.; Jimenez, L. S. J. Org. Chem. 2004, 69, 2200-2202.
- 15. m-CPBA; (a) Hino, T.; Yamaguchi, H.; Matsuki, K.; Nakano, K.; Sodeoka, M.; Nakagawa, M. J. Chem. Soc., Perkin Trans. 1 **1983**, 141–146; (b) Harrison, D. M. Tetrahedron Lett. 1984, 25, 6063-6064; (c) Bourlot, A. S.; Desarbre, E.; Mérour, I.-Y. Synthesis **1994**, 411–416; (d) Astolfi, P.; Greci, L.; Rizzoli, C.; Sgarabotto, P.; Marrosu, G. J. Chem. Soc., Perkin Trans. 2 2001, 1634–1640; (e) Clawson, R. W., Jr.; Dacko, C. A.; Deavers, R. E., III; Akhmedov, N. G.; Söderberg, B. C. G. Tetrahedron 2009, 65, 8786-8793.
- 16. Monoperphthalic acid Braudeau, E.: David, S.: Fischer, I.-C. Tetrahedron 1974, 30. 1445-1455.
- DMDO: (a) Zhang, W.; Wang, C.; Jimenez, L. S. Synth. Commun. 2000, 30, 351– 366; (b) Colandrea, V. C.; Rajaraman, S.; Jimenez, L. S. Org. Lett. 2003, 5, 785– 787; (c) See also Ref. 7.

- 18. ¹O₂; (a) Nakagawa, M.; Ohyoshi, N.; Hino, T. Heterocycles **1976**, *4*, 1275–1280; (b) Zhang, X.; Foote, C. S.; Khan, S. I. J. Org. Chem. 1993, 58, 47-51; (c) Ling, K.-Q. Synth. *Commun.* **1995**, 25, 3831–3835; (d) Ling, K.-Q. Synth. Commun. **1996**, 26, 149–152.
- O₃ Patrick, J. B.; Witkop, B. J. Org. Chem. **1954**, 19, 1824–1829. 19.
- 20. Davis' reagents Wang, Z.; Jimenez, L. S. J. Am. Chem. Soc. 1994, 116, 4977-4978.
- 21. Pb(OAc)₄ Hewitt, M. C.; Shao, L. *ARKIVOC* **2006**, *xi*, 37–46.
- 22. In CH₂Cl₂ or MeOH as solvents, the oxidation of **1c** with *m*-CPBA resulted in complex mixture.
- 23 Reviews; (a) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56, 3817–3856; (b) Maryanoff, B. E.; Zhang, H.-C.; Cohen, J. H.; Turchi, I. J.; Maryanoff, C. A. Chem. Rev. 2004. 104. 1431-1628.
- 24 (a) Grieco, P. A.; Larsen, S. D.; Fobare, W. F. Tetrahedron Lett. 1986, 27, 1975-1978; (b) Bailey, P. D.; Brown, G. R.; Korber, F.; Reed, A.; Wilson, R. D. Tetrahedron: Asymmetry 1991, 2, 1263–1282; (c) Padwa, A.; Kappe, C. O.; Reger, T. S. J. Org. Chem. 1996, 61, 4888-4889.
- 25. Batey, R. A.; MacKay, D. B.; Santhakumar, V. J. Am. Chem. Soc. 1999, 121, 5075-5076.
- 26. MacPhillamy, H. B.; Dziemian, R. L.; Lucas, R. A.; Kuehne, M. E. J. Am. Chem. Soc. 1958. 80. 2172-2178.
- So, C. M.; Lau, C. P.; Kwong, F. Y. Org. Lett. 2007, 9, 2795–2798.
 Slätt, J.; Bergman, J. Tetrahedron 2002, 58, 9187–9191.