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Abstract: TMSOTf-catalyzed isomerization  of  acetates  of  the
Baylis–Hillman adducts, i.e. methyl 3-acetoxy-3-aryl-2-methyl-
enepropanoates and 3-acetoxy-3-aryl-2-methylenepropanenitriles
pro-viding methyl (2E)-2-(acetoxymethyl)-3-arylprop-2-enoates
and (2E)-2-(acetoxymethyl)-3-arylprop-2-enenitriles, respectively,
is described.
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Synthetic applications of trimethylsilyl trifluoromethane-
sulfonate (TMSOTf) in a variety of stereoselective reac-
tions and transformations have been well documented in
the literature and in fact, TMSOTf has become a reagent
of choice to the organic chemists in recent years for con-
ducting various interesting organic reactions.1-6 The Bay-
lis-Hillman reaction is an important carbon-carbon bond
forming and atom economy reaction, providing a useful
class of molecules possessing chemospecific functional
groups (Equation 1) which have been successfully used in
a variety of stereoselective processes.7-20 As a part of our
research program aimed at the development of the Bayl-
is-Hillman reaction14-20 as a source of stereo-selective
processes, we herein report trimethylsilyl trifluo-
romethanesulfonate catalyzed stereoselective isomeriza-
tion of the acetates of the Baylis-Hillman adducts, i.e.
methyl 3-acetoxy-3-aryl-2-methylenepropanoates and 3-
acetoxy-3-aryl-2-methylenepropanenitriles into methyl
(2E)-2-(acetoxymethyl)-3-arylprop-2-enoates and (2E)-
2-(acetoxymethyl)-3-arylprop-2-enenitriles, respectively.

Equation 1

We have observed a remarkable reversal of stereochemi-
cal directive effects from ester group to nitrile group in a
number of stereoselective transformations (Scheme) in-
volving acetates of the Baylis-Hillman adducts.16-19 With
a view to study the stereochemical directive effects of es-
ter and nitrile groups in the TMSOTf-catalyzed reactions
and with a view to examine the application of TMSOTf as
a catalyst for stereoselective isomerization of acetates of
the Baylis-Hillman adducts, we have undertaken the in-
vestigation   of   the  reactions   of    representative    methyl

3-acetoxy-3-aryl-2-methylenepropanoates and 3-acetoxy-
3-aryl-2-methylenepropanenitriles with trimethylsilyl tri-
fluoromethanesulfonate. 

Scheme

Accordingly,  we  first examined  the  isomerization of
methyl 3-acetoxy-2-methylene-3-phenylpropanoate (1a)
under the catalytic influence of TMSOTf. The best results
were obtained when the isomerization of 1a (1 mmol) was
carried out in the presence of TMSOTf (11 mol%) in
dichloromethane at room temperature for 2 hours, thus
providing the required methyl (2E)-2-(acetoxymethyl)-3-
phenylprop-2-enoate (2a) in 100% (E)-selectivity as evi-
denced by the 1H NMR spectral analysis.21 Encouraged by
this result, we then transformed a representative class of
methyl 3-acetoxy-3-aryl-2-methylenepropanoates under
the catalytic influence of TMSOTf into methyl (2E)-2-
(acetoxymethyl)-3-arylprop-2-enoates (Equation 2, Ta-
ble). It is worth mentioning that the isomerization of me-
thyl 3-acetoxy-3-aryl-2-methylenepropanoates to methyl
2-(acetoxymethyl)-3-arylprop-2-enoates was reported
earlier in high (E)-selectivity, under the catalytic influ-
ence of DABCO.22-24

Equation 2

With a view to understanding the stereochemical directive
effect of the nitrile group in the TMSOTf catalyzed reac-
tions, we next examined the isomerization of 3-acetoxy-2-
methylene-3-phenylpropanenitrile with a catalytic
amount of TMSOTf at room temperature for 2 hours. This
reaction provided a simple and convenient synthesis of the
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desired 2-(acetoxymethyl)-3-phenylprop-2-enenitrile
with exclusive (E)-stereoselectivity (Equation 3) in high
yields. The (E)-stereochemistry was assigned on the basis
of a 2D NOESY NMR experiment. This reaction clearly
demonstrates that there is a reversal in the stereochemical
directive effect of the nitrile group with respect to the ester
group. We then synthesized a representative class of (2E)-
2-(acetoxymethyl)-3-arylprop-2-enenitriles via TMSOTf
induced isomerization of various 3-acetoxy-3-aryl-2-me-
thylenepropanenitriles (Equation 3, Table). Our attempts
to isomerize methyl 3-acetoxy-2-methyleneoctanoate and
3-acetoxy-2-methyleneoctanenitrile under the catalytic
influence of TMSOTf were unsuccessful.

Equation 3

The reversal of stereochemical directive effects from the
ester group to the nitrile group is consistent with our ear-
lier results and can be possibly explained through the

Claisen type rearrangement (transition state models I, II,
III, and IV). In the case of molecules 1, the unusual 1,2-
interaction may be more predominant than the classical
1,3-interaction (transition state models I, II) leading to
(E)-selectivity. In the case of molecules 3, however, the
classical 1,3- interaction may be more predominant than
the unusual 1,2-interaction (transition state models III,
IV) resulting in (E)- selectivity.26

Another possible explanation for the reversal of stereo-
chemical directive effects of the nitrile group with respect
to the ester group is that the products are those of thermo-
dynamic control in all these cases. That is, the more steri-
cally demanding ester group requires a particular
conformation for optimal conjugation compared to the
slim cyano group with local cylindrical symmetry. Thus,
the molecules 1a-f provide trisubstituted alkenes 2a-f
having the aryl group trans to the ester group, whereas
compounds 3a-f produce trisubstituted alkenes 4a-f hav-
ing the aryl group cis to the nitrile group.

In conclusion, we have stereoselectively transformed ace-
tates of the Baylis-Hillman adducts, i.e., methyl 3-ace-
toxy-3-aryl-2-methylenepropanoates and 3-acetoxy-3-
aryl-2-methylenepropanenitriles under the catalytic influ-
ence of  trimethylsilyl  trifluoromethanesulfonate  into
methyl (2E)-2-(acetoxymethyl)-3-arylprop-2-enoates and
(2E)-2-(acetoxymethyl)-3-arylprop-2-enenitriles, respec-
tively. Thus, we have demonstrated the synthetic applica-
tions of trimethylsilyl trifluoromethanesulfonate, and the
importance of the Baylis-Hillman adducts in stereoselec-
tive organic synthesis.

IR spectra were recorded on JASCO-FT-IR model 5300 spectro-
meter using samples as neat liquids. 1H NMR (200 MHz) and 13C
NMR (50 MHz) spectra were recorded in CDCl3 on a Bruker-AC-
200 spectrometer using TMS as internal standard. Elemental analy-
ses were recorded on Perkin-Elmer 240C-CHN analyzer. The re-
quired acetates of the Baylis-Hillman adducts (1 and 3) were
prepared by the reaction of the corresponding Baylis-Hillman ad-
ducts (obtained from corresponding aldehydes via the reaction with
methyl acrylate and acrylonitrile, respectively, in presence of a cat-
alytic amount of DABCO according to the literature procedure)7,8

with acetyl chloride in presence of pyridine. 

Isomerization of Acetates of the Baylis-Hillman Adducts; Gen-
eral Procedure
To a stirred solution of acetates of the Baylis-Hillman adduct (1a-
f and 3a-f, 1 mmol) in CH2Cl2 (2 mL), was added TMSOTf (0.02
mL, 11 mol %, 0.0245 g)) at r.t. After 2 h, the reaction mixture was
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Table TMSOTf-Catalyzed  Isomerization  Acetates of the Baylis−
Hillman Adductsa,b,c

a All reactions were carried out on 1 mmol scale of acetates of the Bay-
lis−Hillman adducts with TMSOTf (11 mol %) at r.t. for 2 h.
b All compounds were obtained as colorless liquids and characterized 
by IR, 1H NMR, 13C NMR spectral data and microanalysis.
c 1H and 13C NMR indicate the absence of any (Z)-isomer.
d Isolated yield of the products after column chromatography (3% 
EtOAc in hexanes).
e (E)-Stereochemistry was assigned on the basis of the chemical shift 
value of the olefinic proton in 1H NMR and allylic methylene carbon 
in 13C NMR spectra in analogy with 2a.25

f This compound contains ≈10% impurity and was further purified by 
preparative HPLC (Shim-Pack PREP-ODS column, (20 mm x 25 cm), 
MeOH, flow rate 3mL/min, Rt: 20 min
g Isolated yield after purification by preparative HPLC.
h (E)-Stereochemistry was assigned by a 2D NOESY experiment.
i (E)-Stereochemistry was assigned on the basis of the 13C NMR 
chemical shift value of the allylic methylene carbon in comparison 
with that of 4a.25

Substrate Ar Z Product Yieldd (%)

1a phenyl COOMe 2a21 73
1b 4-methylphenyl COOMe 2be 65
1c 4-ethylphenyl COOMe 2ce 88
1d 4-isopropylphenyl COOMe 2de 83
1e 4-chlorophenyl COOMe 2ee 80
1f 2-methylphenyl COOMe 2fe,f 77g

3a phenyl CN 4ah 85
3b 4-methylphenyl CN 4bi 68
3c 4-ethylphenyl CN 4ci 78
3d 4-isopropylphenyl CN 4di 74
3e 4-chlorophenyl CN 4ei 65
3f 2-methylphenyl CN 4f i 84
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diluted with H2O (3 mL) and extracted with Et2O (3 x 10 mL). The
combined organic layer was dried (Na2 SO4), the solvent was evap-
orated and the crude product thus obtained was purified by column
chromatography (silica gel, 3% EtOAc in hexanes) to provide the
desired products (2a-f and 4a-f).

Methyl (2E)-2-(Acetoxymethyl)-3-phenylprop-2-enoate (2a)
Colorless liquid; yield: 73%; Rf = 0.58 (hexanes/EtOAc, 9:1).

IR (neat): nmax = 1741, 1720, 1635 cm-1.
1H NMR (CDCl3): d = 2.10 (s, 3H), 3.84 (s, 3H), 4.95 (s, 2H), 7.39
(s, 5H), 7.98 (s, 1H).
13C NMR (CDCl3): d = 20.78, 52.14, 59.26, 126.77, 128.64, 129.37,
129.47, 134.19, 145.25, 167.19, 170.49.

Anal. Calcd for C13H14O4: C, 66.65, H, 6.02. Found: C, 66.89, H,
6.05.

Methyl (2E)-2-(Acetoxymethyl)-3-(4-methylphenyl)prop-2-
enoate (2b)
Colorless liquid; yield: 65%; Rf = 0.56 (hexanes/EtOAc, 9:1).

IR (neat): nmax = 1740, 1718, 1633 cm-1.
1H NMR (CDCl3): d = 2.11 (s, 3H), 2.39 (s, 3H), 3.85 (s, 3H), 4.98
(s, 2H), 7.22 (d, 2H, J = 8.0 Hz), 7.30 (d, 2H, J = 8.0 Hz), 7.96 (s,
1H).
13C NMR (CDCl3): d = 20.75, 21.22, 52.03, 59.34, 125.74, 129.37,
129.50, 131.33, 139.87, 145.37, 167.31, 170.49.

Anal. Calcd for C14H16O4: C, 67.73, H, 6.50. Found: C, 67.86, H,
6.49.

Methyl (2E)-2-(Acetoxymethyl)-3-(4-ethylphenyl)prop-2-
enoate (2c)
Colorless liquid; yield: 88%; Rf = 0.52 (hexanes/EtOAc, 9:1).

IR (neat): nmax = 1741, 1718, 1633 cm-1.
1H NMR (CDCl3): d = 1.25 (t, 3H, J = 7.6 Hz), 2.11 (s, 3H), 2.68 (q,
2H, J = 7.6 Hz), 3.85 (s, 3H), 4.97 (s, 2H), 7.24 (d, 2H, J = 8.0 Hz),
7.32 (d, 2H, J = 8.0 Hz), 7.97 (s, 1H).
13C NMR (CDCl3): d = 15.12, 20.76, 28.60, 52.03, 59.36, 125.66,
128.16, 129.60, 131.52, 145.43, 146.13, 167.31, 170.53.

Anal. Calcd for C15H18O4: C, 68.69, H, 6.92. Found: C, 68.54, H,
6.96.

Methyl (2E)-2-(Acetoxymethyl)-3-(4-isopropylphenyl)prop-2-
enoate (2d)
Colorless liquid; yield: 83%; Rf = 0.50 (hexanes/EtOAc, 9:1).

IR (neat): nmax = 1741, 1718, 1631 cm-1.
1H NMR (CDCl3): d = 1.26 (d, 6H, J = 6.8 Hz), 2.10 (s, 3H), 2.94
(m, 1H), 3.84 (s, 3H), 4.97 (s, 2H), 7.20-7.45 (m, 4H), 7.96 (s, 1H).
13C NMR (CDCl3): d = 20.82, 23.66, 33.95, 52.07, 59.44, 125.74,
126.80, 129.68, 131.71, 145.44, 150.77, 167.36, 170.58.

Anal. Calcd for C16H20O4: C, 69.55, H, 7.30. Found: C, 69.30, H,
7.28.

Methyl (2E)-2-(Acetoxymethyl)-3-(4-chlorophenyl)prop-2-
enoate (2e)
Colorless liquid; yield: 80%; Rf = 0.61 (hexanes/EtOAc, 9:1).

IR (neat): nmax = 1740, 1720, 1637 cm-1.
1H NMR (CDCl3): d = 2.10 (s, 3H), 3.85 (s, 3H), 4.92 (s, 2H), 7.25-
7.46 (m, 4H), 7.91 (s, 1H).
13C NMR (CDCl3): d = 20.82, 52.31, 59.05, 127.32, 129.00, 130.73,
132.62, 135.71, 143.89, 167.02, 170.51.

Anal. Calcd for C13H13O4Cl: C, 58.11, H, 4.88. Found: C, 58.38, H,
4.86.

Methyl (2E)-2-(Acetoxymethyl)-3-(2-methylphenyl)prop-2-
enoate (2f)
Colorless liquid; yield: 77%; Rf = 0.57 (hexanes/EtOAc, 9:1).

IR (neat): nmax = 1740, 1722, 1637 cm-1.
1H NMR (CDCl3): d = 2.07 (s, 3H), 2.31 (s, 3H), 3.86 (s, 3H), 4.83
(s, 2H), 7.16-7.37 (m, 4H), 8.06 (s, 1H).
13C NMR (CDCl3): d = 19.81, 20.75, 52.12, 59.36, 125.84, 127.43,
128.54, 129.24, 130.11, 133.46, 136.91, 144.53, 166.95, 170.44.

Anal. Calcd for C14H16O4: C, 67.73, H, 6.50. Found: C, 67.83, H,
6.55.

(2E)-2-(Acetoxymethyl)-3-phenylprop-2-enenitrile (4a)
Colorless liquid; yield: 85%; Rf = 0.55 (hexanes/EtOAc, 9:1).

IR (neat): nmax = 2216, 1747, 1626 cm-1.
1H NMR (CDCl3): d = 2.16 (s, 3H), 4.82 (s, 2H), 7.23 (s, 1H), 7.45
(m, 3H), 7.79 (m, 2H).
13C NMR (CDCl3): d = 20.51, 65.02, 105.88, 117.04, 128.81,
129.02, 130.94, 132.52, 147.05, 169.99.

Anal. Calcd for C12H11NO2: C, 71.63, H, 5.51, N, 6.96. Found: C,
71.31, H, 5.53, N, 6.93.

(2E)-2-(Acetoxymethyl)-3-(4-methylphenyl)prop-2-enenitrile 
(4b)
Colorless liquid; yield: 68%; Rf = 0.53 (hexanes/EtOAc, 9:1).

IR (neat): nmax = 2214, 1745, 1625 cm-1.
1H NMR (CDCl3): d = 2.14 (s, 3H), 2.39 (s, 3H), 4.80 (s, 2H), 7.18
(s, 1H), 7.24 (d, 2H, J = 8.2 Hz), 7.69 (d, 2H, J = 8.2 Hz).
13C NMR (CDCl3): d = 20.68, 21.48, 65.36, 104.56, 117.43, 129.22,
129.64, 129.92, 141.76, 147.35, 170.20.

Anal. Calcd for C13H13NO2: C, 72.54, H, 6.09, N, 6.51. Found: C,
72.74, H, 6.07, N, 6.55.

(2E)-2-(Acetoxymethyl)-3-(4-ethylphenyl)prop-2-enenitrile (4c)

Colorless liquid; yield: 78%; Rf = 0.49 (hexanes/EtOAc, 9:1).

IR (neat): nmax = 2214, 1747, 1625 cm-1.
1H NMR (CDCl3): d = 1.25 (t, 3H, J = 8.0 Hz), 2.15 (s, 3H), 2.69 (q,
2H, J = 8.0 Hz), 4.81 (s, 2H), 7.20 (s, 1H), 7.28 (d, 2H, J = 8.0 Hz),
7.73 (d, 2H, J = 8.0 Hz).
13C NMR (CDCl3): d = 14.97, 20.52, 28.66, 65.21, 104.44, 117.34,
128.30, 129.19, 130.02, 147.22, 147.82, 170.03.

Anal. Calcd for C14H15NO2: C, 73.34, H, 6.59, N, 6.11. Found: C,
73.52, H, 6.54, N, 6. 09.

(2E)-2-(Acetoxymethyl)-3-(4-isopropylphenyl)prop-2-ene-
nitrile (4d)
Colorless liquid; yield: 74%; Rf = 0.47 (hexanes/EtOAc, 9:1).

IR (neat): nmax = 2214, 1747, 1626 cm-1.
1H NMR (CDCl3): d = 1.27 (d, 6H, J = 8.0 Hz), 2.15 (s, 3H), 2.95
(m, 1H), 4.81 (s, 2H), 7.20 (s, 1H), 7.30 (d, 2H, J = 8.2 Hz), 7.74 (d,
2H, J = 8.2 Hz).
13C NMR (CDCl3): d = 20.66, 23.61, 34.11, 65.35, 104.67, 117.44,
127.04, 129.37, 130.29, 147.33, 152.58, 170.17.

Anal. Calcd for C15H17NO2: C, 74.05, H, 7.04, N, 5.76. Found: C,
73.74, H, 7.07, N, 5.73.
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(2E)-2-(Acetoxymethyl)-3-(4-chlorophenyl)prop-2-enenitrile 
(4e)
Colorless liquid; yield: 65%; Rf = 0.55 (hexanes/EtOAc, 9:1).

IR (neat): nmax = 2212, 1743, 1624 cm-1.
1H NMR (CDCl3): d = 2.15 (s, 3H), 4.80 (s, 2H), 7.17 (s, 1H), 7.42
(d, 2H, J = 8.8 Hz), 7.72 (d, 2H, J = 8.8 Hz).
13C NMR (CDCl3): d = 20.71, 65.04, 106.75, 116.93, 129.34,
130.45, 131.10, 137.23, 145.72, 170.20.

Anal. Calcd for C12H10NO2Cl: C, 61.16, H, 4.28, N, 5.94. Found: C,
61.02, H, 4.27, N, 5.99.

(2E)-2-(Acetoxymethyl)-3-(2-methylphenyl)prop-2-enenitrile 
(4f)
Colorless liquid; yield: 84%; Rf = 0.53 (hexanes/EtOAc, 9:1).

IR (neat): nmax = 2218, 1747, 1624 cm-1.
1H NMR (CDCl3): d = 2.16 (s, 3H), 2.35 (s, 3H), 4.83 (s, 2H), 7.09-
7.50 (m, 4H), 7.83 (m, 1H).
13C NMR (CDCl3): d = 19.58, 20.65, 64.89, 107.95, 116.87, 126.32,
127.79, 130.46, 130.59, 131.83, 137.26, 146.13, 170.15.

Anal. Calcd for C13H13NO2: C, 72.54, H, 6.09, N, 6.51. Found: C,
72.87, H, 6.12, N, 6.49.
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interactions in the Johnson-Claisen rearrangement to explain 
the stereoselectivity. See: Basavaiah, D.; Pandiaraju, S.; 
Krishnamacharyulu, M. Synlett 1996, 747.

(27) Funabiki, T.; Hosomi, H.; Yoshida, S.; Tarama, K. J. Am. 
Chem. Soc. 1982, 104, 1560.
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