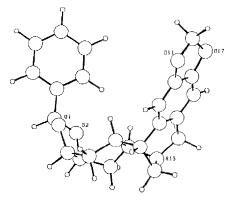

A FIRST TOTAL SYNTHESIS OF MONTANINE-TYPE AMARYLLIDACEAE ALKALOIDS, (±)-COCCININE, (±)-MONTANINE, AND (±)-PANCRACINE

Miyuki Ishizaki,^a Osamu Hoshino,*a and Yoichi Iitaka^b

 ^a Faculty of Pharmaceutical Sciences, Science University of Tokyo, Shinjuku-ku, Tokyo 162, Japan
^b Department of Biological Sciences, Nishi Tokyo University, Uenohara Kitatsurugun, Yamanashi 409-01


Abstract: Montanine-type Amaryllidaceae alkaloids, (\pm) -coccinine (1), (\pm) -montanine (2), and (\pm) -pancracine (3) were synthesized starting from (\pm) -1,2-*cis*-2-(3,4-methylenedioxybenzoyl)cyclohex-4-enecarboxylic acid (6) via (\pm) -2,3-*cis*-3-benzyloxy-2-hydroxy-4a,11a-*cis*-11,11a-syn-5,11-methano-8,9-methylenedioxymorphanthridine (7) as a key compound.

Although many studies on synthesis of Amaryllidaceae alkaloids¹ are reported, montanine-type Amaryllidaceae alkaloids have not been synthesized so far. Recently, we reported that reductive cyclization² of (\pm) -11acetoxymethyl-5-tosylmorphanthidine (4) with vitride[®] in boiling toluene gives 5,11-methanomorphanthridine (5) in good yield, which is a basic skeleton of montanine-type alkaloids.³ In the present communication we describe a first total synthesis of (\pm) -coccinine (1), (\pm) -montanine (2), and (\pm) -pancracine (3).

A potential key compound (7) was synthesized as follows. Reaction of 1,2-*cis*-cyclohex-4-enedicarbxylic anhydride with 3,4-methylenedioxyphenylmagnesium bromide in THF gave the corresponding keto acid (6)⁴ (m.p. 150-152°C; 96%), which was converted to tosylamide (8)³ (m.p. 150°C; 67%) in the similar manner as reported previously.² *Cis*-dihydroxylation of 8 with OsO₄ (catalytic amount) in the presence of N-methylmorphorine N-oxide (NMO)⁵ in dioxane-H₂O (4:1) afforded, after acetylation, a separable diastereometric mixture of β -isomer (9)⁴ (m.p. 254-256°C; 93%) and α -isomer (10)⁴ (m.p. 230-231°C; 5%). Reaction of 9 in the similar manner as reported previously² gave 2,3-diacetoxy-11-acetoxymethyl-5-tosylmorphanthridine (11)⁴(m.p. 168.5°C; 83%). Hydrolysis of 11 followed by protection of vicinal hydroxyl groups with benzaldehyde dimethyl acetal gave a benzylidene tosylamide (12)⁴ (m.p. 235-237°C; 83%). Reductive cyclization of 12 with vitride[®] in xylene produced the corresponding 5,11-methanomorphanthridine (13)⁴ (m.p.

177°C; 91%), stereochemistry of which was confirmed by X-ray crystallographic analysis⁶ (Fig. 1). Reduction of **13** with diisobutylaluminum hydride (DIBAH)⁷ in toluene afforded, after silica gel column chromatography, desired 2-hydroxy product (7)⁴ (m.p. 161-162°C; 75%) and a regioisomer (14)⁴ (m.p.123-124°C; 22%), respectively.

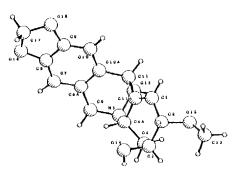
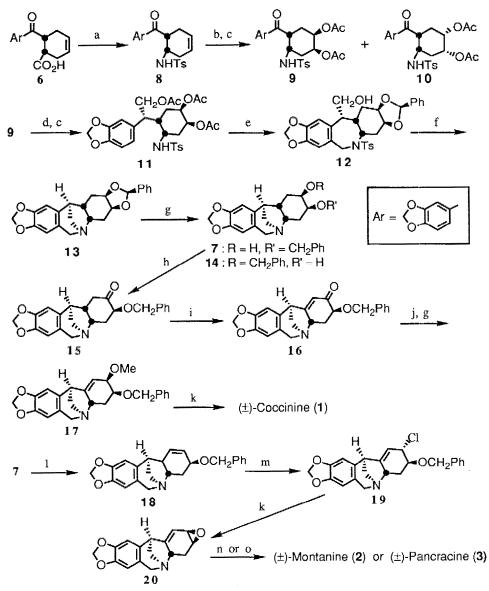


Fig. 1. The molecular structure of 13.


Fig. 2. The molecular structure of 2.

Conversion of 7 to montanine-type alkaloids required introduction of a double bond and methoxyl group. Therefore, 7 was oxidized with Jones reagent to give 5,11-methanomorphanthridin-2-one $(15)^4$ (oil; 50%). After unfruitful attempts to introduce a double bond to 1(11a) positions in 15, reaction of 15 with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) in the presence of disodium hydrogen phosphate in refluxing dioxane afforded an enone (16)⁴ (oil; 26%). Ketalization of 16 with methyl orthoformate followed by DIBAH reduction⁷ produced exclusively (±)-O-benzylcoccinine (17)⁴ (m.p.117°C; 25% from 16). Finally, debenzylation of 17 with trimethylsilyl iodide (TMS-I)⁸ in CHCl₃ afforded (±)-coccinine (1)⁴ (m.p. 71-73°C; 87%), mass spectrum of which was identical with that reported in a literature.⁹

Next, synthesis of (\pm)-montanine (**2**) and (\pm)-pancracine (**3**) was performed starting from the same key compound (**7**). Namely, **7** was converted to olefin (**18**)⁴ (oil; 70%) via mesylate⁴ (m.p. 200°C). Although attempts to epoxidize **18** were unsuccessful, phenylselenenylation¹⁰ of **18** with phenylselenenyl chloride (PhSeCl) in MeOH under ultrasonication¹¹ followed by oxidation afforded unexpectedly allylic chloride (**19**)⁴ (oil; 82%), which was debenzylated with TMS-I⁸ in CHCl₃ to produce epoxide (**20**)^{4,12} (m.p. 144°C; 87%). Treatment of **20** with BF₃·OEt₂ in MeOH gave readily (\pm)-montanine (**2**)⁴ (m.p. 200-201°C; 94%), mass spectrum of which was identical with that reported in a literature.⁹ Furthermore, stereostructure of (\pm)-**2** was confirmed by X-ray crystallographic analysis¹³ (Fig. 2).

On the other hand, treatment of 20 with aqueous sulfuric acid in THF provided (\pm)-pancracine (3)⁴ (m.p. > 280°C; 87%). ¹H-NMR spectrum of (\pm)-pancracine diacetate (m.p. 152°C) was identical with that reported in a literature.¹⁴

Thus, a first total synthesis of montanine-type Amaryllidaceae alkaloids, (\pm) -coccinine (1), (\pm) -montanine (2), and (\pm) -pancracine (3) was accomplished by development of reductive cyclization.

a) ClCO₂Et, Et₃N, CHCl₃; NaN₃, H₂O; *t* -BuOH; TFA, CHCl₃; TsCl, Et₃N: b) OsO₄ (cat.), NMO, dioxane-H₂O(4:1): c) Ac₂O, C₅H₅N: d) *t* -BuOK, PPh₃MeBr, THF; BH₃, THF; NaOH, H₂O₂, H₂O: e) CH₂O, Ac₂O, MeSO₃H, Cl(CH₂)₂Cl; NaOMe, MeOH; PhCH(OMe)₂, TsOH, CHCl₃: f) vitride[®], xylene: g) DIBAH, toluene: h) Jones reagent, acetone-H₂O: i) DDQ, Na₂HPO₄, dioxane: j) CH(OMe)₃, TsOH, MeOH: k) TMS-I, CHCl₃: l) MsCl, Et₃N, CH₂Cl₂; *t* -BuOK, DMSO: m) PhSeCl, MeOH, ultrasound; NaIO₄, H₂O: n) BF₃·OEt₂, MeOH: o) H₂SO₄, H₂O, THF

Acknowledgement: The authors are indebted to Miss Noriko Sawabe and Mrs. Furniko Hasegawa, this faculty, for their ¹H-NMR and mass spectral measurements and to Sankyo Co., Ltd. for elementary analyses.

References and Notes

- Martin, S. F. Amaryllidaceae Alkaloids. In *The Alkaloids*; Brossi, A. R. Ed.; Academic Press, Inc.: New York, 1987; Vol. 30, chapter 3 and references cited therein.
- 2. Hoshino, O.; Ishizaki, M. Chem. Lett., 1990, 1817.
- 3. Inubushi, Y.; Fales, H. F.; Warnhoff, E. W.; Wildman, W. C. J. Org. Chem., 1960, 25, 2153.
- 4. All new compounds gave satisfactory chemical and ¹H-NMR and mass spectral analyses.
- 5. VonRheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 23, 1973.
- Crystallographic data for (±)-13: C₂₃H₂₃NO₄ (M.w.=377.4), clear colorless prism, monoclinic, space group *P*2*i*/*c*, monoclinic, *Z*=4, *a*=10.473(6), *b*=19.156(10), *c*=9.868(6)Å, β=107.62(6)°, *V*=1887Å³, *Dx*=1.329 g·cm⁻³, *R*=0.053.
- 7. Takano, S.; Akiyama, A.; Sato, S.; Ogasawara, K. Chem. Lett. 1983, 1593.
- 8. Jung, M. E.; Lyster, M. A. J. Org. Chem. 1977, 42, 3761.
- 9. Duffield, A. M.; Apilin, R. T.; Budzikiewicz, H.; Djerassi, C.; Murphy, C. F.; Wildman, W. C. J. Am. Chem. Soc. 1965, 87, 4902.
- 10. It is noteworthy that reaction of 18 with PhSeCl even in MeOH gives PhSeCl / olefin adduct.
- Reaction of 18 with PhSeCl in MeOH was accelerated under ultrasonication. A review on ultrasonication in organic synthesis. Lindley, L.; Mason, T. J. Chem. Soc. Rev. 1987, 16, 273.
- 12. Debenzylation of 18 with BF₃·OEt₂ and Me₂S¹⁵ in CH₂Cl₂ gave allylic alcohol⁴ (m.p. 229-230°C; 41 %), phenylselenenylation of which followed by oxidation afforded epoxide (20)(41%) accompanied with chloroallylic alcohol⁴ (oil; 21%). This finding suggests generation of allylic chlorohydrin in the course of reaction.
- Crystallographic data for (±)-2: C₁₇H₁₉NO₄ (M.w.= 301.3), colorless plates, orthorhombic, space group *Pbca*, Z=8, a=15.444(9), b=17.863(10), c=11.034(7) Å, V= 3044 Å³, Dx=1.315 g·cm⁻³, R= 0.0657.
- 14. Wildman, W. C.; Brown, C. L. J. Am. Chem. Soc. 1968, 90, 6439.
- 15. Fuji, K.; Kawabata, T.; Fujita, E. Chem. Pharm. Bull. 1980, 28, 3662.

(Received in Japan 18 September 1991)