Synthesis of 1,4-Dialkyl-1,4-dihydro-1,4-benzo[e]diazepine-5-ones

Tiansheng Wang*1 Ian S. Cloudsdale²

Novartis Crop Protection, Palo Alto Research Center, 975 California Ave., Palo Alto, CA 94304, USA Fax +1(781)2751127; E-mail: twang@nitromed.com Received 2 June 1999; revised 1 October 1999

Abstract: The title heterocycles were synthesized by the reaction of *N*-alkylisatoic anhydrides with *N*-alkylaminoacetaldehyde dialkylacetals, followed by hydrolysis with Amberlyst-15 and dehydration.

Key words: bicyclic compounds, benzodiazepines, condensation, heterocycles, hydrolyses, Amberlyst-15

Since the introduction of 1,4-benzodiazepines as tranquilizer drugs in early 1960s,³ synthesis of molecules bearing a 1,4-benzodiazepine pharmacophore unit has become increasingly important in the pharmaceutical industry. Synthesis of different analogs of 1,4-benzodiazepines has been well documented.^{4,5} During the course of our research, we became interested in the preparation of 1,4benzodiazepine 1, in which 1- and 4-nitrogens are connected by an unsubstituted 2,3-carbon-carbon double bond. Only one analog of 1 has been reported in the literature: it was claimed that the reaction of N-benzylamino benzamide with 2-bromoacetaldehyde diethyl acetal under basic condition (sodium amide, toluene)^{6a} afforded 1 $(R^1 = benzyl, R^2 = H)$. However, no mass spectral data were recorded in the report.⁶ To the best of our knowledge, 1,4-dialkyl version of 1 has not been reported. Here we wish to report a novel, simple synthetic route to 1,4dialkyl version of 1, namely 1,4-dialkyl-1,4-dihydro-1,4benzo[e]diazepine-5-ones 1a-f.

Refluxing equimolar amounts of *N*-methylaminoacetaldehyde dimethylacetal and *N*-alkyl (methyl, allyl and benzyl) isatoic anhydride in acetonitrile afforded the amide products 2-alkylamino-*N*-methyl-*N*-(2,2-dimethoxyethyl)benzamides $2\mathbf{a}-\mathbf{c}$ as a single product in quantitative yields (Scheme).⁷ The reaction of the more hindered N-benzylaminoacetaldehyde diethylacetal with *N*-alkyl isatoic anhydride required refluxing in DMF. The corresponding benzamides $2\mathbf{d}-\mathbf{f}$ were isolated after chromatographic purification.

Hydrolysis of the acetal groups of benzamides 2a-f in aqueous tetrahydrofuran in the presence of Amberlyst-15

Reagents and conditions: a) MeCN, reflux, 2 h, 99–100%; b) DMF, reflux, 1 h, 34–64%; c) Amberlyst-15, THF/H₂O, r.t., 2–12 h; d) toluene, reflux, Dean-Stark trap, 48–83% over 2 steps. **Scheme**

as a catalyst at room temperature afforded polar crude hydrolyzed products as an inseparable mixture of hemiaminal **3** and methyl or ethyl aminal **4**. The structures of intermediates **3a** and **4a** were confirmed by mass spectral analysis of the crude mixture [for **3a** (M + 1) = 207 while **4a** (M + 1) = 221]. This mixture was then refluxed in toluene with a Dean–Stark trap to generate the benzodiazepines **1a–f** (Scheme). The products **1a,b,d,e** were isolated as oils while **1c** and **1f** as solids. The two enamide vinyl protons of **1a–f** consistently showed two doublets in the range of 5.28–5.36 and 5.55–5.62 ppm, with a coupling constant of 5.6 Hz.

In conclusion, a novel and simple procedure for the preparations of 1,4-dialkyl-1,4-dihydro-1,4-benzo[e]diazepine-5-ones **1a-f** has been completed.

Reagents and solvents were used as received from commercial suppliers. TLC was performed on pre-coated Silica Gel 60 F_{254} plates form Merck using reagent-grade solvents. Flash chromatography was performed using Merck silica gel 60 (230–400 mesh). ¹H NMR were performed at 300 MHz and ¹³C NMR at 75 MHz in CDCl₃ unless otherwise specified. Chemical shifts are in ppm downfield from internal TMS. IR spectra were recorded on a Perkin-Elmer 1600 FT IR spectrometer. Mass spectra were recorded on a HP 5989B spec-

265

trometer. HRMS were performed by Mass Spectrometry Facility of University of California, Berkeley. Elemental analyses were conducted by Galbraith Laboratories, Inc.

2-Alkylamino-N-methyl-N-(2,2-dimethoxyethyl)benzamides 2a-c; General Procedure

N-Alkylisatoic anhydride (10 mmol) and *N*-methylaminoacetaldehyde dimethyl acetal (1.192 g, 10 mmol) were mixed in MeCN (10 mL) and the resulting mixture was heated at reflux for 2 h. Cooling and evaporation gave the oily residue as pure products **2a–c**, as confirmed by TLC and ¹H NMR analysis, in quantitative yield. The NMR data for **2a–f** were broad due to rotamer interconversion.⁸ The elemental analysis samples were obtained by simple flash chromatographic purification on silica gel (hexane/EtOAc, 2:1).

2a

Yield: 99%; TLC (silica gel, hexane /Et₂O, 1:1); R_f 0.18.

¹H NMR (300 MHz, CDCl₃): $\delta = 2.70$ (s, 3 H), 2.94 (s, 3 H), 3.26 (br s, 6 H) 3.58 (br s, 2 H), 4.60 (br s, 1 H), 4.97 (br s, 1 H), 6.64–6.68 (m, 2 H), 7.10 (dd, J = 7.7, 1.6 Hz, 1 H), 7.26 (td, J = 7.8, 1.5 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 30.15, 54.40, 102.77, 110.63, 115.61, 119.95, 127.54, 130.70, 147.22, 171.60.

IR (film): v = 3394, 2935, 2832, 1626, 1581, 1515, 1489, 1461, 1426, 1396, 1316, 1293, 1171, 1127, 1103, 1078, 980, 751 cm⁻¹.

MS (EI): *m*/*z* (%) = 253 (M + 1, 9), 252 (M, 48), 134 (100).

Anal. Calcd for C₁₃H₂₀N₂O₃: C, 61.88; H, 7.99; N, 11.10. Found: C, 62.06; H, 8.00; N, 10.96.

2b

Yield: 100%; TLC (silica gel, hexane/Et₂O, 1:1); R_f 0.32.

¹H NMR (300 MHz, $CDCl_3$): $\delta = 3.07$ (s, 3 H), 3.38 (br s, 6 H), 3.59 (br s, 2 H), 3.78 (d, J = 5.2 Hz, 2 H), 4.61 (br s, 1 H), 5.10 (br s, 1 H), 5.15 (dq, J = 10.3, 1.5 Hz, 1 H), 5.28 (dq, J = 17.1, 1.6 Hz, 1 H), 5.86–5.99 (m, 1 H), 6.66 (d, J = 7.9 Hz, 1 H), 6.67 (t, J = 7.8 Hz, 1 H), 7.10 (dd, J = 7.9, 1.6 Hz, 1 H), 7.22 (td, J = 7.8, 1.6 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 45.90, 54.46, 102.78, 111.48, 115.94, 116.03, 120.21, 127.65, 130.55, 134.96, 145.91, 171.53.

IR (film): v = 3382, 3078, 2935, 2834, 1626, 1582, 1514, 1488, 1455, 1397, 1318, 1292, 1204, 1165, 1127, 1074, 980, 920, 751 cm⁻¹.

MS (EI): *m*/*z* (%) = 279 (M + 1, 16), 278 (M, 72), 160 (100).

Anal. Calcd for: $C_{15}H_{22}N_2O_3$: C, 64.73; H, 7.97; N, 10.06. Found: C, 64.59; H, 7.96; N, 9.92.

2c

Yield: 99%; TLC (silica gel, hexane/Et₂O, 1:1); R_f 0.22.

¹H NMR (300 MHz, CDCl₃): δ = 3.06 (s, 3 H), 3.31 (s, 6 H), 3.59 (br s, 2 H), 4.32 (d, *J* = 3.5 Hz, 2 H), 4.57 (br s, 1 H), 5.40 (br s, 1 H), 6.61 (d, *J* = 8.3 Hz, 1 H), 6.65 (t, *J* = 7.5 Hz, 1 H), 7.10–7.35 (m, 7 H).

¹³C NMR (75 MHz, CDCl₃): δ = 38.31 (br), 47.58, 49.88 (br), 54.40, 102.70, 111.59, 116.10, 120.32, 127.01, 127.16, 127.66, 128.50, 130.62, 139.10, 145.89, 171.49.

IR (film): v = 3382, 3062, 3028, 2935, 2834, 1780, 1729, 1633, 1585, 1514, 1494, 1454, 1395, 1322, 1295, 1202, 1165, 1125, 1073, 1028, 981, 943, 920, 817, 750, 699 cm⁻¹.

MS (EI): *m*/*z* (%) = 329 (M + 1, 6), 328 (M, 26), 75 (100).

Anal. Calcd for $C_{19}H_{24}N_2O_3$: C, 69.49; H, 7.37; N, 8.53. Found: C, 69.85; H, 7.33; N, 8.37.

2-Alkylamino-N-benzyl-N-(2,2-diethoxyethyl)benzamides 2d-f; General Procedure

A mixture of *N*-alkylisatoic anhydride (10 mmol) and *N*-benzylaminoacetaldehyde diethylacetal (2.32 g, 10 mmol) in DMF (5 mL) was heated at the reflux temperature for 1 h. After cooling and evaporation of DMF under vacuum, the residue was flash chromatographed on silica gel, eluting with 3:1 to 1:1 hexane/Et₂O to afford 2d-e.

2d

Yield: 64%; TLC (silica gel, hexane/Et₂O, 1:1); R_f 0.33.

¹H NMR (300 MHz, CDCl₃): δ = 1.20 (t, *J* = 6.4 Hz, 6 H), 2.84 (d, *J* = 4.8 Hz, 3 H), 3.46 (br s, 4 H), 3.67 (br s, 2 H), 4.72 (br s, 3 H), 4.94 (br s, 1 H), 6.64 (t, *J* = 7.5 Hz, 1 H), 6.66 (d, *J* = 8.5 Hz, 1 H), 7.13–7.34 (m, 7 H).

 13 C NMR (75 MHz, CDCl₃) δ = 15.23, 30.17, 63.05, 101.02, 110.62, 115.81, 120.18, 127.28, 127.32, 127.59, 128.53, 130.69, 137.06, 147.04, 171.89.

IR (film): v = 3388, 2974, 2929, 1626, 1604, 1581, 1514, 1455, 1412, 1316, 1240, 1170, 1121, 1061, 976, 749, 699 cm⁻¹.

MS (EI): m/z (%) = 357 (M + 1, 6), 356 (M, 23), 103 (100).

Anal. Calcd for $C_{21}H_{28}N_2O_3$: C, 70.76; H, 7.92; N, 7.86. Found: C, 70.53; H, 7.95; N, 7.82.

2e

Yield: 56%; TLC (silica gel, hexane/Et₂O, 1:1); R_f 0.33.

¹H NMR (300 MHz, CDCl₃) δ = 1.20 (t, *J* = 6.0 Hz, 6 H), 3.48 (br s, 4 H), 3.68 (br s, 2 H), 3.79 (br s, 2 H), 4.73 (br s, 3 H), 5.13 (br s, 1 H), 5.16 (dd, *J* = 10.3, 1.4 Hz, 1 H), 5.28 (dd, *J* = 17.2, 1.4 Hz, 1 H), 5.86–5.95 (m, 1 H), 6.64 (t, *J* = 7.4 Hz, 1 H), 6.66 (d, *J* = 8.0 Hz, 1 H), 7.14–7.33 (m, 7 H).

 ^{13}C NMR (75 MHz, CDCl₃) δ = 15.26, 45.87, 63.14, 101.11, 111.52 116.02, 116.15, 120.44, 127.36, 127.61, 128.54, 130.55, 134.95, 137.05, 145.73, 171.83 (one aromatic carbon is missing due to overlapping).

IR (film): $\nu=3377,\,3064,\,3029,\,2975,\,2929,\,2880,\,1627,\,1597,\,1582,\,1513,\,1454,\,1413,\,1374,\,1318,\,1292,\,1262,\,1231,\,1123,\,1062,\,993,\,921,\,750,\,700~cm^{-1}.$

MS (EI): *m*/*z* (%) = 383 (M + 1, 5), 382 (M, 17), 103 (100).

2f

Yield: 34%; mp 77–78°C (Et₂O/hexane); TLC (silica gel, hexane/ Et₂O, 1:1); R_f 0.44.

¹H NMR (300 MHz, CDCl₃) δ = 1.18 (t, *J* = 6.7 Hz, 6 H), 3.48 (br s, 4 H), 3.65 (br s, 2 H), 4.37 (d, *J* = 5.0 Hz, 2 H), 4.75 (br s, 3 H), 5.45 (br s, 1 H), 6.63 (d, *J* = 8.9 Hz, 1 H), 6.65 (t, *J* = 8.3 Hz, 1 H), 7.14–7.41 (m, 12 H).

¹³C NMR (75 MHz, CDCl₃) δ = 15.26, 47.58, 63.18, 101.17, 111.64 116.30, 120.44, 127.02, 127.15, 127.38, 127.58, 128.51, 128.55, 130.62, 137.02, 139.08, 145.80, 171.85, (one aromatic carbon signal is missing due to overlapping).

IR (film): v = 3381, 3028, 2974, 2928, 2880, 1627, 1596, 1582, 1513, 1496, 1452, 1413, 1374, 1322, 1295, 1231, 1126, 1064, 977, 750, 698 cm⁻¹.

MS (EI): *m*/*z* (%) = 433 (M + 1, 4), 432 (M, 14), 103 (100).

1,4-Dialkyl-1,4-benzodiazepine-5-ones 1a-f; General Procedure

To a stirred solution of 2 (1–2 mmol) in THF (3 mL) and H_2O (0.5 mL) was added Amberlyst-15 (0.5 g, Aldrich) at r.t. After the starting material was consumed (TLC analysis, for 2a–d, 2 h; for 2e and 2f, 12 h), CH₂Cl₂ (15 mL) was added. After drying (Na₂SO₄), filtration and evaporation gave the residue.[In the hydrolysis of 2a, mass spectral data were collected for these intermediates 3a and 4a: API-

267

Downloaded by: Simon Fraser University Library. Copyrighted material.

TIS m/z (%): for **3a**: 207 (M + 1, 100); for **4a**: 221 (M + 1, 27)]. This residue was dissolved in toluene (15 mL) and refluxed with a Dean-Stark trap for 2-6 h (monitored by TLC). Cooling and evaporation gave the residue which was purified by flash chromatography (silica gel, hexane/Et₂O, 2:1) to afford **1a-f**.

1a

Yield: 79%; TLC (silica gel, hexane/Et₂O, 1:1); R_f 0.25.

¹H NMR (400 MHz, CDCl₃): δ = 2.92 (s, 3 H), 3.15 (s, 3 H), 5.32 (d, J = 5.6 Hz, 1 H), 5.57 (d, J = 5.6 Hz, 1 H), 6.77 (d, J = 8.2 Hz, 1 H), 6.97 (t, J = 7.5 Hz, 1 H), 7.31 (t, J = 7.7 Hz, 1 H), 7.76 (d, J = 7.7 Hz, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 36.16, 38.23, 114.39, 117.52, 121.78, 127.06, 130.23, 131.99, 132.67, 154.89, 169.25.

IR (film): v = 2960, 1690, 1632, 1596, 1476, 1454, 1391, 1282, 1262, 1216, 1194, 1168, 1046, 1011, 739 cm⁻¹.

MS (EI): m/z (%) = 189 (M + 1, 25), 188 (M, 74), 147 (100).

Anal. Calcd for C₁₁H₁₂N₂O: C, 70.19; H, 6.43; N, 14.88. Found: C, 70.37; H, 6.49; N, 14.75.

1b

Yield: 67%; TLC (silica gel, hexane/Et₂O, 1:1); R_f 0.48.

¹H NMR (300 MHz, CDCl₃): $\delta = 3.15$ (s, 3 H), 3.87 (d, J = 5.7 Hz, 2 H), 5.24 (dd, J = 10.3, 1.4 Hz, 1 H), 5.30 (dd, J = 17.3, 1.5 Hz, 1 H), 5.36 (d, J = 5.6 Hz, 1 H), 5.62 (d, J = 5.6 Hz, 1 H), 5.83–5.96 (m, 1 H), 6.76 (d, J = 8.2 Hz, 1 H), 6.99 (td, J = 7.5, 0.8 Hz, 1 H), 7.30 (td, J = 7.5, 1.7 Hz, 1 H), 7.75 (dd, J = 7.8, 1.7Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): $\delta = 36.14$, 53.22, 115.69, 118.18, 118.22, 121.95, 127.57, 128.80, 131.82, 132.53, 133.78, 154.18, 169.29.

IR (film): v = 3072, 2980, 2930, 2843, 2688, 2632 (s), 1596, 1487, 1460, 1392, 1283, 1260, 1213, 1168, 1046, 992, 973, 925, 891, 827, 742 cm⁻¹.

MS (EI): m/z (%) = 215 (M + 1, 15), 214 (M, 84), 132 (100).

Anal. Calcd for C₁₃H₁₄N₂O: C, 72.87; H, 6.59; N, 13.07. Found: C, 72.95; H, 6.66; N, 12.95.

1c

Yield: 83%; mp 122-123°C (Et₂O/hexane); TLC (silica gel, hexane/Et₂O, 1:1); R_f 0.48.

¹H NMR (300 MHz, CDCl₃): $\delta = 3.16$ (s, 3 H), 4.45 (s, 2 H), 5.34 (d, J = 5.6 Hz, 1 H), 5.56 (d, J = 5.6 Hz, 1 H), 6.82 (d, J = 8.2 Hz, 1 H)1 H), 6.99 (t, J = 7.3 Hz, 1 H), 7.25–7.35 (m, 6 H), 7.78 (dd, J = 7.7, 1.7 Hz, 1 H).

¹³C NMR(75 MHz, CDCl₃): δ = 36.11, 54.48, 115.88, 118.87, 122.19, 127.34, 127.80, 127.88, 128.52, 129.36, 131.92, 132.52, 137.05, 154.32, 169.33.

MS (EI): m/z (%) = 265 (M + 1, 18), 264 (M, 37), 132 (100).

Anal. Calcd for C₁₇H₁₆N₂O: C, 77.25; H, 6.10; N, 10.60. Found: C, 77.30; H, 6.14; N, 10.48.

1d

Yield: 75%; TLC (silica gel, hexane/Et₂O, 1:1); R_f 0.30.

¹H NMR (300 MHz, CDCl₃): $\delta = 2.88$ (s, 3 H), 4.79 (s, 2 H), 5.28 (d, *J* = 5.7 Hz, 1 H), 5.56 (d, *J* = 5.7 Hz, 1 H), 6.76 (d, *J* = 8.2 Hz, 1 H), 6.95 (t, J = 7.5 Hz, 1 H), 7.23–7.33 (m, 6 H), 7.81 (dd, J = 7.7, 1.7 Hz. 1 H).

¹³C NMR (75 MHz, CDCl₃): $\delta = 38.23$, 51.45, 114.48, 116.06, 121.78, 126.92, 127.27, 127.57, 128.51, 131.27, 132.13, 132.86, 136.81, 154.95, 169.23.

IR (film): v = 3062, 3030, 2962, 2879, 1689, 1633 (s), 1595, 1471, 1453, 1440, 1412, 1391, 1332, 1282, 1262, 1199, 1162, 1012, 887, 828, 736 cm⁻¹.

MS (EI): m/z (%) = 265 (M + 1, 20), 264 (M, 100).

Anal. Calcd for C₁₇H₁₆N₂O: C, 77.25; H, 6.10; N, 10.60. Found: C, 77.59; H, 6.22; N, 10.52.

1e

Yield: 72%; TLC (silica gel, hexane/Et₂O, 1:1); R_f 0.40.

¹H NMR (300 MHz, CDCl₃): δ = 3.83 (d, J = 5.7 Hz, 2 H), 4.80 (s, 2 H), 5.16 (dd, J = 10.3, 1.4 Hz, 1 H), 5.21 (dd, J = 17.3, 1.4 Hz, 1 H), 5.35 (d, J = 5.6 Hz, 1 H), 5.62 (d, J = 5.6 Hz, 1 H), 5.74–5.87 (m, 1 H), 6.76 (d, J = 8.2 Hz, 1 H), 6.98 (t, J = 7.3 Hz, 1 H), 7.22-7.39 (m, 6 H), 7.80 (dd, J = 7.8, 1.6 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): $\delta = 51.37$, 53.15, 115.78, 117.29, 118.16, 122.08, 127.24, 127.52, 127.58, 128.44, 130.88, 131.97, 132.68, 133.79, 136.88, 154.41, 169.23.

IR (film): v = 3064, 3031, 2982, 2924, 2827, 1682, 1633 (s), 1595, 1487, 1454, 1416, 1394, 1360, 1318, 1283, 1260, 1177, 1106, 990, 925, 746, 699 cm⁻¹.

MS (EI): *m*/*z* (%) = 291 (M + 1, 16), 290 (M, 71), 91 (100).

Anal. Calcd for C₁₈H₁₈N₂O: C, 78.59; H, 6.25; N, 9.65. Found: C, 77.57; H, 6.22; N, 9.40.

1f

Yield: 48%; mp 100-101°C (Et₂O/hexane); TLC (silica gel, hexane/Et₂O, 1:1); R_f 0.51.

¹H NMR (300 MHz, CDCl₃): $\delta = 4.41$ (s, 2 H), 4.80 (s, 2 H), 5.36 (d, J = 5.6 Hz, 1 H), 5.55 (d, J = 5.6 Hz, 1 H), 6.87 (d, J = 8.2 Hz, 1 H)1 H), 7.03 (t, J = 7.5 Hz, 1 H), 7.03-7.33 (m, 11 H), 7.84 (dd, *J* = 7.8, 1.6 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 51.61, 54.51, 115.76 117.93, 122.31, 127.26, 127.75, 127.81, 128.03, 128.44, 128.46, 130.72, 132.07, 132.63, 136.96, 137.03, 154.53, 169.19 (one aromatic carbon signal is missing due to overlapping).

IR (film): v = 3059, 3030, 1632 (s), 1594, 1495, 1453, 1413, 1296, 1220, 1165, 729, 694 cm⁻¹. MS (EI): m/z (%) = 342 (M + 2, 2), 341 (M + 1, 12), 340 (M, 45), 91 (100).

Anal. Calcd for C23H20N2O: C, 81.15; H, 5.92; N, 8.23. Found: C, 81.52; H, 6.00; N, 8.11.

Acknowledgement

We thank Belle Abrera and Ann Sjolander, formerly of Novartis, for help in MS determination.

References

- (1) Correspondence should be made to this author at: NitroMed Inc., 12 Oak Park Drive, Bedford, MA 01730, USA; Fax +1 (781)2751127; E-mail: twang@nitromed.com.
- (2) Current address: Novartis Agribusiness Biotechnology and Research Institute, 3054 Cornwallis Road, P. O. Box 12257, Research Triangle Park, NC 27709, USA
- (3) Sneader, W. In Comprehensive Medicinal Chemistry; Hansch, C; Sammes P. G.; Taylor J. B., Eds., Pergamon: London, 1990; Vol. 1, pp 65–66.
- (4) Archer, G. A.; Sternbach, L. H. Chem. Rev. 1968, 68, 747.
- (5) Tucker, H.; Le Count, D. J. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds., Elsevier: Amsterdam, 1996; Vol. 9, pp 151-182. Sharp, J. T. In Comprehensive Heterocyclic Chemistry; Katritzky, A. P.; Rees, C. W., Eds., Pergamon: Amsterdam, 1984; Vol. 7, pp 593-620.
- (6) (a) Yoo, H. W.; Lee, J. W.; Suh, M. E. Yakhak Hoechi 1989, 33, 246; Chem Abstr. 1990, 112, 216885. (b) We believe that the molecular ion peaks are important to

characterize the 1,4-benzodiazepin-5-ones bearing free NH group, since those molecules tend to form dimers according to our experience.

- (7) For a review of isatoic anhydride chemistry, see: Coppola, G. M. Synthesis 1980, 505.
- (8) Montgomery, J., Chevliakov, M. V., Brielmann, H. L. *Tetrahedron* **1997**, *53*, 16449.

Article Identifier: 1437-210X,E;2000,0,02,0265,0268,ftx,en;M00999SS.pdf