Formation of Sulfuric Acid and Sulfur Trioxide/Water Complex from Photooxidation of Hydrogen Sulfide in Solid O₂ at 15 K

Tai-Ly Tso and Edward K. C. Lee*

Department of Chemistry, University of California, Irvine, California 92717 (Received: June 30, 1983)

The photooxidation of H₂S in solid O₂ at 15 K by UV light (λ < 300 nm) gives H₂O, SO₂, SO₃, and H₂SO₄ as stable products which are identified by FTIR spectroscopy. The molecular complexes, H_2OSO_2 and H_2OSO_3 , are also present in significant amounts. The key facile intermediates in photooxidation are probably HS, HO₂, SO, and HO, but not O atoms. Unlike the photooxidation of H₂CO in solid O₂, the H₂S/O₂ system gives no (HO₂)₂, because of the photochemical recoil of the H atom out of the photolysis cage and because HO₂ acts as a strong oxidizer of S-containing species. We observe all of the stable molecular product sets formed in reactions with exothermicity greater than ~90 kcal/mol. A tentative mechanism of H_2S photooxidation is given.

Introduction

Homogeneous and heterogeneous oxidation of simple sulfurcontaining compounds has been a subject of much recent interest,¹⁻⁴ because of environmental concern for aerosol formation and acid rain. Rapid reaction of H₂O with SO₃ to form H₂SO₄ and subsequent hydration of H₂SO₄ have been suggested as the primary mechanism of nucleation.² Another suggested mechanism of nucleation involves free-radical reactions, such as that of HO with SO₂.³⁻⁵ The present study was initiated with the intention of forming SO_2 and SO_3 complexes of H_2O from the photo-oxidation of H_2S in solid O_2 at a cryogenic temperature, since it has been shown in photooxidation studies of matrix-isolated simple polyatomic molecules such as H_2CO and $(HCO)_2$ in solid O_2 that the oxidation products formed in the photolysis cage can be predicted largely on the basis of chemical stoichiometry involving the consumption of one and two molecules of O_2 .^{6,7} The initial photodissociation products of H_2S in the gas phase are $H(^2S)$ and $HS(^{2}\Pi)$ radicals, and the thermochemical threshold for dissociation is 82 kcal/mol (or $\lambda < 317$ nm).⁸ Hence, the expected photooxidation products from matrix-isolated H_2S/O_2 samples are shown by the following set of reactions.

$$H_2S + O_2 \rightarrow H_2 + SO_2 \tag{1}$$

$$\rightarrow$$
 HS + HO₂ (2)

$$\rightarrow$$
 HSO + HO (3)

$$\rightarrow H_2O + SO(X^3\Sigma^{-})$$
 (4)

$$+ 2O_2 \rightarrow H_2O_2 + SO_2 \tag{5}$$

$$\rightarrow H_2O + SO_3 \tag{6}$$

$$\rightarrow H_2 SO_4 \tag{7}$$

$$H_2S + 3O_2 \rightarrow 2HO_2 + SO_2 \tag{8}$$

$$\rightarrow$$
 HO₂ + HO + SO₃ (9)

$$\rightarrow H_2O + SO_2 + O_3 \tag{10}$$

We have observed all of the above products with the exception of SO, HS, HO, and HSO radicals and H₂, when the products of the photolyzed sample are analyzed by Fourier transform

- (1) See for recent reviews: (a) Calvert, J. G.; Su, F.; Bottenheim, J. W.; Strausz, O. P. Atmos. Environ. 1978, 13, 197. (b) Daubendiek, R. L.; Calvert, J. G. Environ. Lett. 1975, 8, 103.
- (2) (a) Holland, P. M.; Castleman, Jr., A. W. Chem. Phys. Lett. 1978, 56, 511.
 (b) Castleman, Jr., A. W.; Davis, R. E.; Munkelwitz, H. R.; Tang, I. N.; Wood, W. P. Int. J. Chem. Kinet. 1975, 7 (Symp. No. 1), 629.
 (3) Marvin, D. C.; Reiss, H. J. Chem. Phys. 1978, 69, 1897.
 (4) Friend, J. P.; Barnes, R. A.; Vasta, R. M. J. Phys. Chem. 1980, 84, 2423 and references therein

 H_2S

- 2423 and references therein.
 (5) Davis, D. D.; Ravishankara, A. R.; Fischer, S. Geophys. Res. Lett.
- 1979, 6, 113 and references therein.
 - (6) Diem, M.; Lee, E. K. C. J. Phys. Chem. 1982, 86, 4507.

(7) Tso, T.-L.; Diem, M.; Lee, E. K. C. Chem. Phys. Lett. 1982, 91, 339.
(8) Okabe, H. "Photochemistry of Small Molecules"; Wiley-Interscience: New York, 1978.

infrared (FTIR) spectroscopy. Since nearly all products except some HO₂ (via hot H atoms) and O₃ (via site migration caused by secondary photolyses of ozone) are formed inside the photolysis cage,^{6,9} we observe significant amounts of H_2SO_4 as well as SO_3 ·H₂O and SO_2 ·H₂O molecular complexes. We find that the ratio of SO_3/SO_2 from the H_2S/O_2 matrix system is several times greater than that from the OCS/O₂ and CS₂/O₂ matrix photolysis systems described in the accompanying paper.¹⁰ The cause for this difference will be discussed later. Furthermore, we have not observed HSOH in our matrix-isolated H_2S/O_2 photolysis at 15 K, although Smardzewski and Lin observed HSOH as the nearly exclusive photolysis product in their $O_3/H_2S/Ar$ matrix experiments at 8 K.¹¹ The contrast between the two experiments will be discussed in light of the importance of the O atom reactions with H_2S in their experiments but not in ours.

Experimental Section

H₂S (Matheson, CP grade, minimum purity 99.5%) was used after "freeze-pump-thaw" purification in a vacuum line. A small amount of OCS was present as an impurity, but it did not interfere with the experiment. O_2 (Liquid Carbonic, 99.999% state purity) as matrix gas (M) was used directly without purification. Two values of a matrix/reactant ratio (M/R) were used: $O_2/H_2S =$ 700 or 1500. The gas mixture of H_2S and O_2 was made in a 1-L bulb by standard manometric techniques, and it was pulse deposited onto the cold CsI sample window (inside the cold head) maintained within 1 K by a closed-cycle helium refrigerator (Air Products Displex Model 202B). Approximately $3-10 \mu mol \text{ of } H_2S$ was deposited. Photolysis as carried out at ~ 15 K using a high-pressure mercury arc lamp (Osram HBO-500 w/2). The light was collimated by a fused silica lens, passed through a 10-cm water filter, and imaged onto the cold sample in the vacuum shroud of the cryostat. In this configuration, the shortest UV wavelength available for the photolysis is \sim 220 nm. If a set of Schott WG 280 and Corning CS-7-54 filters was inserted, a transmission envelope of 260-420 nm was achieved. Likewise, a transmission envelope was achieved between 270 and 420 nm with a WG 295/7-54 set and between 300 and 420 nm with a WG 320/7-54 set. Additionally, cutoff filters such as WG 320 (300-nm cutoff), CS-0-54 (330 nm), CS-4-97 (340 nm), CS-4-96 (350 nm), and CS-0-51 (360 nm) were used for photolysis. The photolysis products were monitored after each preset photolysis time as well as after temperature-controlled warm-up cycle for an annealing/diffusion study.

The sample analysis was carried out with an FTIR spectrometer (Nicolet 7199) equipped with a germanium-coated KBr beam splitter and a HgCdTe detector adequate for the 7000-400-cm⁻¹ range. In a typical run, 200 scans were signal averaged. The

⁽⁹⁾ Tso, T.-L.; Lee, E. K. C., unpublished work.
(10) Tso, T.-L.; Lee, E. K. C. J. Phys. Chem., following paper in this issue.
(11) Smardzewski, R. R.; Lin, M. C. J. Chem. Phys. 1977, 66, 3197.

TABLE I:	Observ	ed II	R Absorp	tion	Peaks	(cm^{-1})) and	
Assignment	s from	the I	Photolys	is of]	H ₂ S in	Solid	0, (1	5 K) ^a

		-2 ()
assignt	ν^b	assignt
$SO_2 \cdot H_2 O(\nu_3)$	1343.5	$SO_2(v_3)\cdot H_2O$
$SO_3 \cdot H_2O(\nu_3)$	1218.6	H_2SO_4
$SO_2 \cdot H_2 O(v_1)$	1155.7 (w) 1151.5	$SO_2(\nu_1)$ ·H ₂ O
H_2SO_4	1146.1	$SO_2(\nu_1)$
$H_2O_2(v_{1,5})$ ·SO ₂ ?	1101.1 (w)	$HO_2(\nu_3)$
$SO_3 \cdot H_2O(v_1)$	1038.0 942.9 (vw)	$O_3(\nu_3)$?
$H_2O_2(v_{1,5})$ ·SO ₂ ?	889.5	H_2SO_4
$HO_2(\nu_1)$	842 (w)	H₂SO₄
$H_2S(\nu_3)$	834 (vw)	2 4
$H_2 S(v_1)$	778 (vw)	?
$SO_{(n, \pm n)}H_{0}$	702.7 (w)	$O_3(v_2)$
$^{12}CO_2$ impurity	578) 560)	H_2SO_4
¹³ CO ₂ impurity ?	549.41	$[SO_3(\nu_4) \cdot H_2O]?$
$SO_x \cdot H_2 O(\nu_2)$	528.0 (w)	$SO_3(v_4)$
? H.SO	525.6) 523.8	$SO_2(\nu_2) \cdot H_2O$
$\Pi_2 \cup U_4$	519.4	50 ()
$SU_{3}(\nu_{3}) \cdot \Pi_{2}U$	517.9 (W)	$SO_2(\nu_2)$
$SO_{2}(\nu_{2})$	490.8 (w)	$SO_2(v_2)$
$SO_{2}(\nu_{3})$	488.5 (br)	$SO_{3}(\nu_{2})$ ·H ₂ O
	$\frac{\text{assignt}}{\text{SO}_2 \cdot H_2 O(\nu_3)}$ $SO_2 \cdot H_2 O(\nu_3)$ $SO_2 \cdot H_2 O(\nu_3)$ $SO_2 \cdot H_2 O(\nu_1)$ $H_2 SO_4$ $H_2 O_2(\nu_{1,5}) \cdot SO_2?$ $SO_3 \cdot H_2 O(\nu_1)$ $H_2 O_2(\nu_{1,5}) \cdot SO_2?$? $HO_2(\nu_1)$ $H_2 S(\nu_3)$ $H_2 S(\nu_1)$ $SO_2(\nu_1 + \nu_3) \cdot H_2 O$ $^{12}CO_2 \text{ impurity}$ $^{13}CO_2 \text{ impurity}$? $H_2 SO_4$ $SO_3(\nu_3) \cdot H_2 O$ $HO_2(\nu_2)$ $SO_3(\nu_3)$ $SO_2(\nu_3)$	$\begin{array}{c ccccc} \hline & assignt & \nu^b \\ \hline \\ \hline & assignt & \nu^b \\ \hline \\ SO_2 \cdot H_2 O(\nu_3) & 1343.5 \\ SO_3 \cdot H_2 O(\nu_3) & 1218.6 \\ SO_2 \cdot H_2 O(\nu_1) & 1155.7 & (W) \\ 1151.5 & 1\\ H_2 O_2(\nu_{1,5}) \cdot SO_2? & 1101.1 & (W) \\ SO_3 \cdot H_2 O(\nu_1) & 942.9 & (vW) \\ H_2 O_2(\nu_{1,5}) \cdot SO_2? & 889.5 \\ ? & 884.6 \\ \hline \\ HO_2(\nu_1) & 842 & (W) \\ H_2 S(\nu_3) & 834 & (vW) \\ H_2 S(\nu_3) & 834 & (vW) \\ H_2 S(\nu_1) & 778 & (vW) \\ SO_2(\nu_1 + \nu_3) \cdot H_2 O & 578 \\ ? & 502 \\ (V_1 + \nu_3) \cdot H_2 O & 578 \\ ? & 502 \\ H_2 O_2 & impurity & 560 \\ 1^{13}CO_2 & impurity & 560 \\ 1^{13}CO_2 & impurity & 549.4 \\ ? & 545.8 \\ SO_x \cdot H_2 O(\nu_2) & 528.0 & (W) \\ ? & 525.6 \\ H_2 SO_4 & 519.4 \\ SO_3(\nu_3) \cdot H_2 O & 517.9 & (W) \\ HO_2(\nu_2) & 516.6 & (W) \\ SO_2(\nu_3) & 488.5 & (br) \\ \end{array}$

^aBroad peaks typically 5–10 cm⁻¹ wide were not listed above, because they appear as the matrix surface condensation: 3685, 2280, 2235, 2153, 1434, 1255–65, 1118–23, 1050, 850, 805, 790, 732, 704, and 490 cm⁻¹. All except the first four peaks are probably due to the condensed form of H₂SO₄ from the vacuum system, since liquid H₂SO₄ has broad peaks at 1378, 1187, 972, 908, and 558 cm⁻¹ (see ref 16). ^bThe accuracy is probably ± 0.2 cm⁻¹.

truncated length of the travel of the moving mirror in the interferometer was set at 4.14 cm. The use of a full aperture size of IR radiation source and the Hang-Genzel apodization function gave a resolution of ~ 0.37 cm⁻¹. The absolute error in frequency reported here is probably ± 0.2 cm⁻¹. In this paper, we present the *difference* spectrum with the ordinate as the difference of absorbances, i.e., the absorbance of the photolysis sample of interest minus the absorbance of the preceding photolysis sample, since it is more informative to examine the product yield for each successive photolysis period. In typical experiments, impurity H₂O peaks are not observed. However, sometimes a very broad absorption peak appears near 3700 cm⁻¹ (see Figure 1).

Results and Discussion

IR Absorption of H_2S . The IR absorption peaks were weak in both samples with $H_2S/O_2 = 1/700$ and 1/1500. We observed two S-H stretch peaks in solid O_2 , 2635.0 and 2585.3 cm⁻¹, the latter peak being slightly more intense than the former. These peaks correspond to 2629.1-cm⁻¹ (ν_3 , weak) and 2582.5-cm⁻¹ (ν_1 , strong) peaks observed in solid Ar by Barnes and Howells.¹² The ν_2 peak corresponding to 1179.0 cm⁻¹ (weak) in solid Ar was too weak to be observed in solid O_2 in the present experiment. Since ν_3 (very strong) and ν_1 (strong) peaks in solid N_2 have been observed at 2632.6 and 2619.5 cm⁻¹, respectively, ^{12,13} it appears that the H_2S monomer interaction with the O_2 matrix is intermediate between those with solid Ar and N_2 but more similar to that with solid Ar than that with solid N_2 . The readers are referred to earlier papers^{12,13} for detailed discussions of the matrix effects.

*Photolysis of H*₂*S*. The first electronic absorption band of H₂*S* in the gas phase commences near 270 nm and reaches a broad maximum near 190 nm.⁸ The thermochemical threshold of the

TABLE II: IR Absorption Frequencies (cm^{-1}) of Monomeric HO₂, H₂O, O₃, SO₂, and SO₃ in Solid O₂

	13 K ^b			16 K ^c	20 K ^d		16 K ^c	
	HO ₂	H ₂ O	O ₃	SO ₂	SO ₃ ^a		SO ₃	
v_1	3400.3	3635.4		1146.1	ν_1	1070 (R)		
							490.8	
ν_2	1392.1	1612.8	702.6	516.6	ν_2	465	488.8	
-					-	1399	1385.6	
V ₆	1102.8	3731.0	1038.0	1348.8	v_{3} (e)	1385	1384.8	
Ŭ					ν_4 (e)		528.0	

^{*a*}Radio-frequency or microwave discharge on pure SO₂. ^{*b*}Reference 9. ^{*c*}Reference 10. ^{*d*}Reference 15.

TABLE III: Comparison of the IR Absorption Frequencies (cm^{-1}) of H_2SO_4 Observed in Solid O_2 (12 K) and in the Vapor (~500 K)

۰.	,				
	vib descripn	O ₂	vapor ^d	vapor ^e	
	OH, str	3591.6ª	3610 (Q)	3610 (Q)	_
SO ₂ , asym str		{1455.5 (w)	1450	1456	
	SO ₂ , sym str	1218.6	1223 (Q)	1224 (Q)	
	SOH, bend	b	1159, 1138	1160, 1141	
	S(OH) ₂ , asym str	{889.5 (w) {884.6	883 (O)	882 (O)	
	S(OH) ₂ , sym str	(842.3 (834.0 (w)	834	831	
	SO ₂ , rock	{578 (vw) {560 (vw)	568	570	
	SO ₂ , bend	{549.4 (vw) {545.8 (vw)	550	550	

^{*a*} There should be two OH stretches, symmetric and asymmetric. We tentatively assign one of these to be at 3591.6 cm⁻¹. b SO₂(ν_1) absorbs in this region, and it is difficult to make an unambiguous assignment. ^{*c*} This work. ^{*d*} Reference 16. ^{*e*} Reference 17.

dissociation giving the ground electronic states of the H atom and HS radical corresponds to 317 nm. In order to determine the photochemical reaction threshold of H_2S in solid O_2 (M/R = 1500), we have carried out photolyses using several filter combinations with different UV cutoff wavelengths between 260 and 360 nm. A 0.5-h photolysis with a 270-nm cutoff filter gave appreciable amounts of products, but a 1-h photolysis with 300-360-nm cutoff filters gave no measurable product yield. Therefore, the photochemical reaction threshold in solid O_2 is below 300 nm, and the wavelengths of mercury lines effective for photolysis are 275, 280, 289, and 297 nm in order of decreasing importance. If we neglect the matrix effect on the initial photodissociation, most of the excess energy (22 kcal/mol at 275 nm and 14 kcal/mol at 297 nm) should appear as the translational recoil energy of H atoms, since the photodissociation of H_2S gives hot H atoms.¹⁴

Photolysis Products. The photolysis results from the 260-nm cutoff using the WG 280/7-54 filter combination and M/R = 700 were similar to those from the 270-nm cutoff using the WG 295/7-54 filter combination and M/R = 1500. Important spectral features from the former are shown in Figure 1: photochemical formations of H₂SO₄, SO₂, SO₃, and H₂O·SO_x complexes as well as HO₂ and O₃. Spectral features illustrating the variation of SO₂, SO₃, H₂O·SO_x, and O₃ yields due to the use of unfiltered, "white" light ($\lambda < 220$ nm) are shown in Figure 2. A significant amount of 250-nm radiation is available for photolysis with white light. The observed IR absorption frequencies and assignments of HO₂, H₂O, O₃, SO₂, and SO₃ peaks are based on the monomer assignments (in solid O₂) given by other studies tabulated in Table II. The assignment of H₂SO₄ peaks are based on the gas-phase values,^{16,17}

⁽¹²⁾ Barnes, A. J.; Howells, J. D. R. J. Chem. Soc., Faraday Trans. 2 1972, 68, 729.

⁽¹³⁾ Tursi, A. J.; Nixon, E. R. J. Chem. Phys. 1970, 53, 518.

^{(14) (}a) Gann, R. G.; Dubrin, J. J. Chem. Phys. 1967, 47, 1867. (b) Oldershaw, G. A.; Porter, D. A.; Smith, A. J. Chem. Soc., Faraday Trans. 1 1972, 68, 2218.

⁽¹⁵⁾ Hopkins, A. G.; Tang, S.-V.; Brown, C. W. J. Am. Chem. Soc. 1973, 95, 3486.

Figure 1. FTIR spectrum of the photolysis product yields from an O_2/H_2S sample (M/R = 700) at 15 K by using an Hg arc lamp with a filter set (WG 280/7-54) for 260-420-nm transmission. For the 600-480-cm⁻¹ region, the result from an O_2/H_2S sample (M/R = 1500) is shown: (a) 20-min photolysis; (b) the subsequent 130-min photolysis.

and the agreement shown in Table III is quite good.

The assignment of the 3400.2-cm⁻¹ peak to $HO_2(\nu_2)$ is based on the previous assignment from the photolysis of H₂CO and $(HCO)_2$ in solid O_2 .^{6,9} In the O_2/H_2CO photolysis system (and not in the $O_2/(HCO)_2$ photolysis system), a minor peak appears at 3410 cm⁻¹ which might be $HO(\nu) \cdot CO_2$ or the $HO_2(\nu_2) \cdot HC$ -(O)OO complex.⁹ The absorptions by HO in solid Ar at 4.2 (and 20.4) K occur at 3452.5 and 3428.2 cm⁻¹,¹⁸ and it is ~ 129 cm⁻¹ red-shifted from the gas-phase value. The absorptions by HO₂ in solid Ar occur at 3414, 1389, and 1101 cm^{-1.19} Since OH shows an abnormally large value of gas-matrix shift in solid Ar, $\sim 3.5\%$, compared to numerous other transient molecules,²⁰ the HO absorption frequency at $3450-3410 \text{ cm}^{-1}$ in solid O₂ is expected, but no absorption attributable to HO or the HO O₂ complex is found. The absorptions by H_2O_2 in solid Ar occur at 3597.4 and 3593 cm⁻¹ for ν_1/ν_5 fundamentals and 1270.6 cm⁻¹ for the ν_6 fundamental,^{21,22} and we tentatively assign the weak peaks observed at 3568 and 3548 cm⁻¹ in solid O₂ to $H_2O_2(\nu_1,\nu_5)$ ·SO₂ complex, as for the $H_2O_2(\nu_1,\nu_5)$ ·CO complex^{6,9} observed in the H_2CO/O_2 photolysis system.

- (16) Chackalackal, S. M.; Stafford, F. E. J. Am. Chem. Soc. 1966, 88, 723
- (17) Stopperka, K.; Kilz, F. Z. Anorg. Allg. Chem. 1969, 370, 49.
 (18) Acquista, N.; Schoen, L. J.; Lide, Jr., D. R. J. Chem. Phys. 1968, 48,
- 1534. (19) Jacox, M. E.; Milligan, D. E. J. Mol. Spectrosc. 1972, 42, 495.
- (20) Jacox, M. E., private communication. A comparison of ground-state vibrational fundamentals of 40 transient molecules observed in the gas phase and in an Ar matrix shows less than 1.5% deviation.
- (21) Lannon, J. A.; Verderame, F. D.; Anderson, Jr., R. W. J. Chem. Phys. 1971, 54, 2212.
- (22) Giguere, P. A.; Srinivasan, T. K. K. Chem. Phys. Lett. 1975, 33, 479.

Figure 2. FTIR spectrum of the photolysis product yields from an O_2/H_2S sample (M/R = 1500) at 15 K by using an Hg arc lamp with a filter set (WG 295/7-54) for 270-420-nm transmission. Only the spectral regions for SO₃(ν_3), SO₂(ν_3), and O₃(ν_3) are shown: (a)-(c) photolysis time variation for 0.5, 3.0, and 9.5 h, respectively; (d) and (e) effect of white light photolysis at 4.0 and 6.5 h, respectively. Note the consumption of O₃ on prolonged photolysis and also the higher ratio of SO_3/SO_2 with white light photolysis.

Three transient species (HS, SO, and HSO) were searched for but not found (see Figure 1): their absorptions in an Ar matrix occurs at 2540.8 cm⁻¹ for HS in Ar,²³ 1136.7 cm⁻¹ for SO in Ar,²⁴ and 1063 cm⁻¹ $(\nu_2)^{25}$ and 1009.36 cm⁻¹ $(\nu_3)^{26}$ for HSO in the gas phase.

 H_2OSO_x Complexes. The assignments of five absorption peaks between 3730 and 3560 cm⁻¹ to $H_2O(\nu_1,\nu_3)$. SO_x complexes and to H_2SO_4 (O-H stretch) are based on (i) temperature-controlled warm-up experiments after photolysis and (ii) relative frequency shifts for the $H_2O(\nu_1,\nu_3)$ ·SO₂ and $H_2O(\nu_1,\nu_3)$ ·SO₃ complexes from the monomeric $H_2O(v_1, v_3)$. We have observed a slight decrease of the intensity of the 3591.6-cm⁻¹ absorption peak upon a short warm-up to 37 K, whereas a significant increase of the intensities and a distinct sharpening of the peak shape were observed with the other four peaks. The warm-up cycle also reduced the $SO_2(\nu_3)$ monomer peak and increased the $SO_2(\nu_3) \cdot H_2O$ peak. Therefore, we assign the 3591.6-cm⁻¹ peak as one of the two H-O stretch fundamentals of H_2SO_4 and we attribute the latter observation to thermally induced annealing and formation of H₂O·SO, complexes by diffusion near the photolysis cage.²⁷ SO₂ and SO₃ are expected to behave as Lewis acids with respect to H₂O as a Lewis base, SO₃ being a stronger acid than SO₂ due to a greater positive atomic charge on the S atom of SO_3 than that on SO_2 .²⁸ If the electrostatic interaction is dominant in the molecular complex formation^{29,30} for the SO₂–H₂O and SO₃–H₂O pairs, the binding energy for the H_2O ·SO₃ complex should be greater than that for the H_2O ·SO₂ complex. In the gas phase at room temperature, SO_2 does not hydrate as easily as SO_3 does. This is indicative of a stronger binding energy of the $H_2O \cdot SO_3$ complex than that of the $H_2O \cdot SO_2$ complex.

- (23) Acquista, N.; Schoen, L. J. J. Chem. Phys. 1970, 53, 1290.
 (24) Hopkins, A. G.; Brown, C. W. J. Chem. Phys. 1975, 62, 2511
- (25) Schurath, U.; Weber, M.; Becker, K. H. J. Chem. Phys. 1977, 67, 110
- (26) Sears, T. J.; McKellar, A. R. W. Mol. Phys. 1983, 49, 25.
- (27) A similar behavior is observed in typical warm-up experiments (see Figure 1a,b in ref 10).
- (28) Hout, Jr., R. F.; Hehre, W. J. J. Am. Chem. Soc. 1983, 105, 3728. The charge on sulfur is ± 1.34 e for SO₃ and ± 0.70 e for SO₂ if one uses ± 1.00 for S⁺ and -1.00 e for S⁻
- (29) (a) Morokuma, K. Acc. Chem. Res. 1977, 10, 294. (b) Umeyama, H.; Morokuma, K. J. Am. Chem. Soc. 1977, 99, 1316
- (30) Kollman, P. J. Am. Chem. Soc. 1977, 99, 4875.

A recent calculation^{2a} indicates a binding energy of 15.2 kcal/mol for the most favored structure of H₂O·SO₃ with the O atom of H₂O sitting on top of the central S atom of "near"-planar SO_3 . For the H₂O·SO₂ complex, the largest noncovalent intermolecular interaction was obtained with a close approach of the O atom of H₂O to the S atom of SO_2 .³⁰ If one assumes that the nature of the donor-acceptor interactions $(H_2O - SO_x)$ in the two complexes are similar but that H2O·SO3 has a substantially greater binding energy than $H_2O \cdot SO_2$, the frequency shifts of the H_2O fundamentals in the $H_2O \cdot SO_3$ complex from monomeric H_2O fundamentals are expected to be greater than those in the H2O·SO2 complex. The v_1 and v_3 fundamentals of H₂O isolated in solid O_2 have been measured to be 3635.4 and 3731.0 cm^{-1,9} respectively, as shown in Table II. Hence, we assign $X = SO_2$ and Y = SO₃ in Figure 1, i.e., $H_2O(\nu_3)$ ·SO₂ at 3719.3 cm⁻¹, $H_2O(\nu_3)$ ·SO₃ at 3678.2 cm⁻¹, $H_2O(v_1)$ ·SO₂ at 3632.2 cm⁻¹, and $H_2O(v_1)$ ·SO₃ at 3562.8 cm⁻¹. At the present time, we can only *tentatively* assign the 1597.7- and 1589.9-cm⁻¹ peaks to $H_2O(\nu_2)\cdot Z$ and $H_2O(\nu_2)\cdot Z'$ complexes, respectively, where Z and Z' are SO_x . The H₂O(ν_2)·Z' peak disappears with white light photolysis. The intensity ratios of the absorption peaks for the two partners $(H_2O \text{ and } SO_3)$ in the H₂O·SO₃ complex remained constant with the variation of photolysis time. Those for the two partners $(H_2O \text{ or } SO_2)$ in the H₂O·SO₂ complex also remained constant.

The S–O asymmetric stretch peaks of $SO_2(v_3)$ ·V and $SO_3(v_3)$ ·W complexes shown in Figures 1 and 2 can be assigned to those of H_2O complexes, i.e., $V = H_2O$ and $W = H_2O$, since the amount of H₂O produced is far greater than that of H₂O₂ formed as indicated by the H₂O₂ absorption near the 3570-3550-cm⁻¹ (H-O stretch) and 1280-1260-cm⁻¹ (OOH bend) regions.^{6,9} The monomer SO₂ and SO₃ frequency assignments in solid O₂ are described in the accompanying paper.¹⁰ It is interesting to note that $SO_2(\nu_3)$ ·H₂O is a doublet with a ~6-cm⁻¹ lower frequency than SO₂(ν_3), whereas SO₃(ν_3)·H₂O is a doublet with a ~10-cm⁻¹ higher frequency than SO₃(ν_3). Both SO₂(ν_1)·H₂O and SO₂- (ν_2) ·H₂O peaks appear at higher frequencies (6 and 9 cm⁻¹) from the corresponding monomer SO₂ peaks. The $SO_3(\nu_2)$ ·H₂O peak is at slightly lower frequencies (-2 cm^{-1}) than the $SO_3(\nu_2)$ outof-plane bend. However, the location of the $SO_3(v_4)$ ·H₂O absorption is uncertain, and we believe that it may overlap with the four peaks of H₂SO₄ (SO₂, rock and bend) as a broad peak near 560 cm⁻¹ as seen in Figure 1. If this were the case, the SO_3 - (ν_4) ·H₂O peak is at ~30-cm⁻¹ higher frequency than SO₃ (ν_4) , a doubly degenerate in-plane bend (e'). The overlapping of the $H_2SO_4(SO_2, \text{ rock and bend})$ with the $SO_3(v_4) \cdot H_2O$ fundamentals probably reflects the similarity of their geometric structures. A recent structure determination of H₂SO₄ by microwave spectroscopy³¹ shows that it has a conformation with C_2 symmetry, not C_{2v} . Holland and Castleman^{2a} have shown in their CNDO/2 calculation, however, assuming C_{2v} symmetry for H₂SO₄, that the energy barrier for the H₂O·SO₃ adduct rearrangement to H₂SO₄

$$H_2O \cdot SO_3 \rightarrow H_2SO_4$$
 (11)

is only \sim 3.3 kcal/mol. This minimum-energy path involves the hopping of an H atom of H₂O to one of the oxygens of SO₃. We were unable to prepare good matrix samples for calibrating $SO_3 \cdot H_2O$ and $SO_2 \cdot H_2O$. We believe that rapid conversion of the $SO_3 H_2O$ complex to H_2SO_4 during the mixed-sample preparation by conventional manometric techniques is responsible for the failure. Because H₂O and SO₂ are both strongly dipolar molecules and form self-dimers very easily, conventional sample preparation techniques used are unsatisfactory for observing the SO₂·H₂O complex without overshadowing effects of the self-dimers. For this reasons, we prefer the photochemical method of generating mixed dimers and provide relatively unambiguous spectral assignments.

Photooxidation Processes. A direct detection of neither H_2 nor H2.SO2 complex was possible under our experimental conditions. However, a minor amount of the SO₂ monomer is ob-

Figure 3. Energetics of oxidation processes starting with $H_2S + nO_2$. The standard enthalpies of the reactions at 300 K (ΔH_{rx}°) giving various final products are shown. The numbers in parentheses are estimated values. $^{\rm 33b}$

served with the major amount being the $SO_2 \cdot H_2O$ complex. Therefore, it is likely that SO₂ is formed directly by process 1 or indirectly via a disproportionation reaction of HS and HO₂ formed in process 2 and H₂ could have diffused away from the photolysis cage. The energetics of these processes and other reactions are illustrated in Figure 3, with use of the standard enthalpy values from ref 32. We observe all of the stable product combinations with exothermicity greater than ~ 90 kcal/mol.

We consider the comparison of the SO_3/SO_2 product ratios observed in the photooxidation of H₂S, OCS, and SOCl₂ in solid O₂ to be the key for understanding photooxidation processes of H_2S in solid O_2 . At the present time, the lack of reliable integrated IR absorption intensities for SO_3 in solid O_2 prevents the determination of the molar ratios of SO_3/SO_2 for these systems from the observed SO_3/SO_2 intensity ratios. A rough estimate (±40%) of the integrated absorption coefficient of $SO_3(v_3)$ in the gas phase (courtesy of Dr. J. G. Calvert) is 1.5 times that of $SO_2(\nu_3)$. The application of these gas-phase values to the product yields shown in Figure 1 gives the mole ratio of SO_3/SO_2 to be approximately 1/2. It has been found in our recent work that the SO_3/SO_2 product ratios obtained from the H_2S/O_2 and $SOCl_2/O_2$ systems³³ are similar and that they are several times greater than the ratio obtained from the OCS/O_2 system.¹⁰ Near 250 nm, the photodissociation process on the absorption continuum should give an S atom from OCS and also an SO from SOCl₂. The higher ratio of SO_3/SO_2 appears to be a characteristic of the SO reaction in solid O_2 , and the lower ratio of SO_3/SO_2 appears to be a characteristic of the S atom reaction in solid O2. We shall proceed to discuss the results with this premise.

The disproportionation and recombination of the HS and HO₂ radicals formed via (2) in the photolysis cage could give HSO and OH via (3) and $H_2O + SO$ via (4).

$$HS + HO_2 \longrightarrow \begin{bmatrix} H - S \\ H & 0 \end{bmatrix} \longrightarrow HSO + OH (3)$$
$$SO + H_2O (4)$$

It is not surprising that no IR absorption peaks of appreciable intensity attributable to OH, HSO, and SO were observed under our experimental conditions which do not favor the stabilization

⁽³¹⁾ Kuczkowski, R. L.; Suenram, R. D.; Lovas, F. J. J. Am. Chem. Soc. 1981, 103, 2561.

^{(32) (}a) Stull, D. R.; Prophet, H. Natl. Stand. Ref. Data Ser. (U. S., Natl. Bur. Stand.) 1971, NSRDS-NBS 37. (b) Benson, S. W. "Thermochemical Kinetics", 2nd ed.; Wiley: New York, 1976.
(33) Tso, T.-L.; Lee, E. K. C., unpublished work.

Figure 4. Schematics of a tentative mechanism of photooxidation for H₂S in solid O₂.

of these species. Processes 2 and 3 are considerably more endothermic than process 4 or others shown in Figure 3. We have not observed $(HO_2)_2$ from process 8 in the H_2S/O_2 system, in contrast to the H_2CO/O_2 system.^{6,9} This difference probably results from the escape of an H atom from the photolysis cage due to the greater photochemical recoil effect in the H₂S photodissociation than in the H₂CO photodissociation. Therefore, either initially produced, hot H atoms from the H₂S photodissociation escape with ease from the cage, preempting process 8, or H_2O + SO are formed efficiently via process 4 with a 51 kcal/mol exothermicity.

Now, SO may react further with O_2 to give SO₃ with a 96 kcal/mol exothermicity or SO₂ with a 38 kcal/mol exothermicity.

$$SO + O_2 \rightarrow SO_3$$
 (12)

$$SO + 2O_2 \rightarrow SO_2 + O_3$$
 (13)

The combination of (4) and (12) then gives an $SO_3 \cdot H_2O$ complex. The observation of O_3 is consistent with process 13. The mechanism giving rise to process 13 may be

$$SO + O_2 \rightarrow SO_2 + O(^3P)$$
 (14)

followed by

$$O + O_2 \rightarrow O_3 \tag{15}$$

Reactions 14 and 15 are both exothermic by 13 and 25 kcal/mol, respectively. The actual process may not even involve O atoms but require an additional UV photon to excite SO($\bar{X}^3\Sigma$) to SO- $(\tilde{A}^{3}\Pi)$,³⁴ because the gas-phase reaction involving the ground electronic states is extremely slow.^{35,36} Since there is H_2O in the cage, the sequence of (14) and (15) gives SO₂ and O₃ which complexes with H_2O . The overall process corresponds to (10). If an O atom from (14) reacts with H_2O , rather than with O_2 , H_2O_2 is formed.

$$O + H_2 O \to H_2 O_2 \tag{16}$$

A photochemical conversion mechanism which would oxidize SO_2 to SO_3 in solid O_2 should be unimportant here, since it has been shown in a study $3^{\overline{7}}$ in our laboratory that such conversion requires

photolysis of $(SO_2)_2$ with white light. However, it should be noted that white light gives a somewhat higher SO_3/SO_2 ratio and more O_3 than 280-nm light (see Figure 2)

The gas-phase values of integrated IR absorption coefficients of H_2SO_4 and SO_2 are available in the literature: 120 atm⁻¹ cm⁻² for the 1222-cm⁻¹ band of H_2SO_4 ;³⁸ 95.6 atm⁻¹ cm⁻² for the 1151-cm⁻¹ band (ν_1) and 780 atm⁻¹ cm⁻² for the 1362-cm⁻¹ band (ν_3) of SO₂.³⁹ As mentioned before, the integrated absorption coefficient of SO₃(ν_3) is ~1.5 times the value for SO₂(ν_3) from the gas-phase data of Calvert.¹⁰ On the assumption that the gas-phase absorption coefficients are directly applicable to the O2 matrix results, one can obtain a reasonable estimate of relative species concentrations of SO₂ (plus SO₂·H₂O), SO₃ (plus SO₃· H_2O , and H_2SO_4 from the inspection of the IR absorption peak sizes shown in Figure 1: all three species are present in approximately equal amounts after 130-min photolysis (Figure 1b), but H_2SO_4 is certainly in an amount, 1/3-1/2 of SO_2 (or SO_3) after 20-min photolysis (Figure 1a). It is also interesting to note that the high-resolution IR spectrum of the 1222-cm⁻¹ band of H₂SO₄ in the gas phase has a wider bandwidth of at least 5 cm⁻¹ $(fwhm)^{38,40}$ as compared to the value of 1–2 cm⁻¹ that we observe in solid O₂.

We have not observed $(HO_2)_2$ in the H_2S/O_2 system in contrast to the H_2CO/O_2 system,^{6,9} because of the escape of an H atom from the photolysis cage (due to the greater photochemical recoil effect in the H₂S photodissociation), leaving HS in the photolysis cage. The elementary reactions of HS with O₂ give two sets of products.

$$HS + O_2 \rightarrow HO + SO$$
 (17)

$$HS + 2O_2 \rightarrow HO_2 + SO_2 \tag{18}$$

 H_2O_2 in our system may come from the reaction of the HO₂ produced in reaction 18 with nearby HO2. The gas-phase kinetics of (17) has been well established with an upper limit value of the rate constant being 10^{-13} cm³ molecule⁻¹ s⁻¹.^{35,36} The cage reactions of SO in solid O_2 can give SO₃ and SO₂ by processes 12 and 13, respectively, and further reactions of SO_3 and SO_2 with HO can give HOSO₃ and HOSO₂ radicals.

$$HO + SO_3 \rightarrow HOSO_3$$
 (19)

$$HO + SO_2 \rightarrow HOSO_2$$
 (20)

The gas-phase reaction of HO addition to SO_2 is considered to be the most important step for the formation of H_2SO_4 .^{1,4,5} This

⁽³⁴⁾ Huber, K. P.; Herzberg, G. "Constants of Diatomic Molecules"; Van Nostrand Reinhold: New York, 1979. (35) Baulch, D. L.; Cox, R. A.; Hampson, Jr., R. F.; Kerr, J. A.; Troe, J.;

Watson, R. T. J. Phys. Chem. Ref. Data 1980, 9, 295.
 (36) Cupitt, L. T.; Glass, G. P. Int. J. Chem. Kinet. 1975, 7 (Symp. No.

^{1), 39. (}b) Matsuda, S.; Bauer, S. H. Ibid. 1975, 7, (Symp. No. 1), 462. (c) (37) Sodeau, J. R.; Lee, E. K. C. J. Phys. Chem. 1980, 84, 3358.

⁽³⁸⁾ Majkowski, R. F. J. Opt. Soc. Am. 1977, 67, 624.
(39) Chan, S. H.; Tien, C. L. J. Heat Transfer 1971, 93, 172.
(40) Eng, R. S.; Pategna, G.; Nill, K. W. Appl. Opt. 1978, 17, 1723.
(41) Bondybey, V. E.; English, J. H. J. Mol. Spectrosc., submitted for birtherite. publication.

radical mechanism of H_2SO_4 formation is an alternative to the UV conversion of the SO_3 · H_2O complex to H_2SO_4 for which we have no proof. We are making further attempts to trap and characterize HOSO₃ and HOSO₂ radicals under different experimental conditions.

With the above set of reactions, it is now possible to account for all of the observed photooxidation product including molecular complexes. A tentative mechanism of the photooxidation of H_2S in solid O_2 is schematically summarized in Figure 4. Future studies should be directed to verify the formation mechanisms of H_2SO_4 from HOSO₂, HOSO₃, and H_2O ·SO₃, as well as to determine the branching ratio of the H_2O + SO formation reaction to the HO + HSO formation reaction.

Comparison with the $O_3/H_2S/Ar$ System.¹¹ The $O_3/H_2S/Ar$ matrix photolysis system gives HSOH as the predominant product. The photolysis of O_3 gives O_2 and an O atom which attacks H_2S to give HO and HS. The photolysis of H₂S gives an H atom and HS, and the $H + O_3$ reaction can give HO and O_2 , with the net result of producing HO, HS, and O₂ in the photolysis cage. Therefore, both photolyses give the pair of radicals which recombine to give HSOH. The H_2S/O_2 matrix photolysis system gives mainly SO₂, SO₃, H_2O , and H_2SO_4 as photooxidation products due to the formation of the key transient intermediates HS, HO₂, SO, and HO. The fact that we did not observe HSOH in the H_2S/O_2 system is indicative of the experimental condition that O atoms play an insignificant role in the H₂S photooxidation in solid O_2 even though O_3 is formed during the photolysis. Also, HO_2 and O_3 are consumed on prolonged photolysis, because of a slow conversion of SO_2 to SO_3 . HO_2 is a strong oxidizer of S-containing intermediates. Additional studies with $Ar/O_2/H_2S$ using more monochromatic light may help elucidate the photo-oxidation mechanism with a greater certainty.

Note Added in Proof. We became aware of the recent work of Bondybey and English⁴¹ in which IR spectra of SO₃ and its aggregates formed in rare gas matrices are examined. Some of the observed peaks have been assigned to SO₃, SO₃·H₂O, and H₂SO₄, H₂SO₄·H₂O. Their assigned values of the absorption frequencies of H₂SO₄ in Ne at 5 K are similar to our values obtained in solid O₂ at 12 K (Table III), except for the very weak peaks at 578–545.8 cm⁻¹ which they did not report; their values are higher by $\leq 0.5\%$. Their assigned frequency values of SO₃·H₂O are 3803.9, 3612.9, 1591.4, 1401.3, and 490.9 cm⁻¹, and the first two values are considerably different from our values shown in Table I. In any case, they conclude that H₂O·SO₃ does not rearrange to H₂SO₄ in the 5 K Ne matrix.

Acknowledgment. We wish to thank Dr. J. G. Calvert, National Center for Atmospheric Research, for helpful discussions on the SO_2 and SO_3 atmospheric reactions and for providing the IR absorption data on SO_3 . We wish to thank Dr. V. E. Bondybey for helpful discussions and the preprint of the paper on the SO_3 ·H₂O complex. The financial support of this research by the National Science Foundation Grant CHE-82-17121 is also gratefully acknowledged.

Registry No. H_2S , 7783-06-4; O_2 , 7782-44-7; H_2SO_4 , 7664-93-9; SO_2 , 7446-09-5; SO_3 , 7446-11-9; HO_2 , 3170-83-0; O_3 , 10028-15-6; H_2O , 7732-18-5; H_2SO_3 , 7782-99-2.

Photochemical Oxidation of Carbonyl Sulfide and Carbon Disulfide in Solid O_2 at 15 K and the Molecular Complexes of the Photoproducts

Tai-Ly Tso and Edward K. C. Lee*

Department of Chemistry, University of California, Irvine, California 92717 (Received: June 30, 1983)

The photooxidation of OCS and CS₂ in solid O₂ at 15 K by UV light ($\lambda < 300$ nm) has been studied by matrix FTIR spectroscopy. The OCS/O₂ system gives CO and SO₂ as major products and O₃, SO₃, and CO₂ as minor products. The product distribution is mostly the result of an S atom reaction with O₂ to give SO₂. The CS₂/O₂ system gives OCS, SO₂, and O₃ as major products and SO₃, CO, and CO₂ as minor products. The distribution of the major product is *probably* the result of the reactive intermediate formation of CS. More O₃ is formed from CS₂ than OCS. The secondary photolysis of OCS upon prolonged photolysis of the CS₂/O₂ system gives a more complex product distribution. Probable precursor mechanisms are examined. The IR spectra of SO₂, SO₃, OCS, and CO molecular complexes are identified, and some of their structural features are examined. The photooxidation is not driven to completion to the thermochemically most stable set of products.

Introduction

Photooxidation of SO₂ and its dimer, $(SO_2)_2$, in low-temperature matrices has been studied recently in our laboratory.¹ It was shown that $(SO_2)_2$ in solid O₂ at 12 K was photooxidized readily to SO₃, but SO₂ was photochemically inactive. In order to study photooxidation of other small sulfur-containing molecules of atmospheric interest and also the infrared spectra of molecular complexes produced by photolysis, we have photolyzed H₂S, OCS, and CS₂ in solid O₂ at low temperatures. This paper deals with photooxidation of OCS and CS₂ whereas the photooxidation of OCS and CS₂ gives an order of magnitude greater amount of SO₂ than SO₃, in contrast to the photooxidation of H₂S which gives nearly twice as much SO₂ as SO₃. This distinction appears to support a mechanism involving an oxidation of an S atom (or "S atom carrier") from OCS and CS₂ but a different mechanism² involving an oxidation of an SO molecule from H₂S. Our results on the photooxidation of OCS and CS₂ in solid O₂ are distinctly different from the results of the photolyses of O₃ with OCS and CS₂ in low-temperature matrices³ which give rise to O atom reactions with these molecules. The details of our work are presented here.

Experimental Section

Carbonyl sulfide (Matheson, minimum purity 97.5%) and carbon disulfide (Matheson Coleman and Bell, chromatoquality, 99+ mol%) were used after "freeze-pump-thaw" purification in a vacuum line. O₂ (Liquid Carbonic, 99.999% stated purity) and ¹⁸O₂ (Prochem, 99% atom purity) were used directly without purification. SO₃ was prepared by heating fuming sulfuric acid (20% free SO₃) to 140–160 °C under O₂ atmosphere on a vacuum line and condensing the vapor fraction as "SO₃". The gas mixture containing O₂ as the matrix gas (M) and S-containing molecules (R) was made in a 1-L bulb by standard manometric techniques and pulse deposited onto the cold CsI sample window (inside a cold head) maintained within 1 K by a closed-cycle helium re-

⁽¹⁾ Sodeau, J. R.; Lee, E. K. C. J. Phys. Chem. 1980, 84, 3358.

⁽²⁾ Tso, T.-L.; Lee, E. K. C. J. Phys. Chem., preceding paper in this issue.

⁽³⁾ Jones, P. R.; Taube, H. J. Phys. Chem. 1973, 77, 1007.