The Canadian J 1 of Statisti 109
Vol. 30, No. 1, 2002, Pages 109-126
La revue canadienne de siatistique

Design and analysis of computer
experiments when the output is
highly correlated over the input space

Yong B. LIM, Jerome SACKS, W. J. STUDDEN & William J. WELCH

Key words and phrases: Best linear unbiased prediction; computer code; integrated mean squared error;
interpolation; optimal design; stochastic process.

MSC 2000: Primary 62G08, 62K05; secondary 60G15, 60G2S.

Abstract: To build a predictor, the output of a deterministic computer model or “code” is often treated
as a realization of a stochastic process indexed by the code’s input variables. The authors consider an
asymptotic form of the Gaussian correlation function for the stochastic process where the correlation tends
to unity. They show that the limiting best linear unbiased predictor involves Lagrange interpolating poly-
nomials; linear model terms are implicitly included. The authors then develop optimal designs based on
minimizing the limiting integrated mean squared error of prediction. They show through several examples
that these designs lead to good prediction accuracy.

Planification et analyse d'expériences par ordinateur dont les extrants

sont fortement corrélés sur 'ensemble de I'espace des intrants

Résumé : Pour batr un prédicteur, les extrants d’un modele informatique déterministe appelé “code”
doivent souvent étre traités comme une réalisation d’un processus aléatoire indicé par les intrants de ce
code. Les auteurs s’intéressent a la forme asymptotique de la fonction de corrélation gaussienne associée
2 un processus aléatoire dont la corrélation tend vers un. Ils montrent qu’a la limite, le meilleur prédictenr
linéaire non-biais€ s’exprime en terme de polyndmes d’interpolation de Lagrange; des termes de modéle
linéaire sont sous-entendus. Les auteurs identifient des plans optimaux qui minimisent ’erreur quadratique
moyenne intégrée de prévision. Ils montrent a travers plusieurs exemples la bonne précision des prévisions
auxquelles meénent ces plans.

1. INTRODUCTION

Experimentation via computer models or codes is becoming increasingly common throughout
the (pure and applied) sciences and engineering. For example, Sacks, Schiller & Welch (1989)
presented applications in chemometrics; Aslett, Buck, Duvall, Sacks & Welch (1998), Currin,
Mitchell, Morris & Ylvisaker (1991) and Sacks, Welch, Mitchell & Wynn (1989) gave exam-
ples in the engineering design of electronic circuits; and Chapman, Welch, Bowman, Sacks &
Walsh (1994) and Gough & Welch (1994) described sensitivity experiments for environmental
models.

In these applications, the output y from the computer code is often deterministic, i.e., running
the code twice with the same values for the inputs or explanatory variables x would give the same
output. To provide a basis for constructing a predictor, the deterministic function y(x ) is regarded
as if it were a realization from a Gaussian stochastic process

Y(z) = §'f(z) + Z(=), M

where (' f(z) is a polynomial linear model (regression function) and Z is a Gaussian random
function with mean zero and variance o2.

The correlation properties of Z are crucial to the construction and performance of a predictor.
One choice, widely used in the above applications, is

Comr{Z(z), Z(z*)} = R{Z(z), Z(z*)} = exp (— 3 bla; - x;v*:) ,
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where z; and z7 are the values for the jth input variable for tworuns at z and =, and 6; > 0 and
0 < p; < 2. For simplicity in the derivations below, we assume that the ;s are the same for all
inputs. For all j, we also take p; = 2, a value arising often in applications when the parameters
are estimated by maximum likelihood; this is known as the Gaussian correlation function. Thus,
the correlation function simplifies to

R{Z(z), Z(z*)} :exp{—ZO(a:j —x;)ﬁ}. @

Model (1) leads to the best linear unbiased predictor (BLUP), based on n observations of the
computer code (see Section 2). This predictor respects the deterministic nature of the computer
code as it interpolates the observed output values.

Working with model (1) in various applications has suggested that the BLUP has some spe-
cial asymptotic properties as § — 0 in the Gaussian correlation function (2). In their second
chemometrics application, Sacks, Schiller & Welch (1989) fitted model (1) with polynomial lin-
ear models 0’ f(z) of degrees 0, 1, and 2. They found that maximum likelihood estimation
chose very different values of § in the three cases. The linear model of degree 0 (which gave the
best prediction accuracy) had a very small estimated 6. Lucas (1996) gave an artificial example
in which the deterministic “‘output” from five input variables was a sum of bilinear interaction
terms, i.e., a polynomial. In their rejoinder, Welch et al. (1996) showed that this polynomial
could be predicted almost exactly, even when 3’ f(z) in (1) was of degree zero if # was small.
Furthermore, given 32 runs, maximum likelihood estimation clearly chose small values of 6.

These examples suggest that the stochastic-process component, Z( - }, in model (1) can com-
pensate for omission of polynomial terms by making ¢ smaller when analyzing the results of a
computer experiment.

Consideration of asymptotic properties as # — () may also have implications for design, i.e.,
choosing input vectors at which to run the computer model. Choosing a design to make the BLUP
from model (1) have small integrated mean squared error (IMSE), say, is difficult in practice
because # is unknown at the design stage and hence the IMSE cannot be computed. Sacks,
Schiller & Welch (1989) carried out several robustness studies. They compared designs from
different assumed values of ¢ and looked at their performances for various true values. The study
showed that designs from small values of # tended to have good relative efficiency. Robustness
studies of this type are laborious to carry out, even more so when linear model polynomial
functions of various degrees are also considered.

The results and organization of this article are as follows. Section 2 provides notation for the
BLUP and its mean squared error. In Section 3, we develop the main results on properties of the
BLUP as § — 0. We show that the asymptotic coefficients in the BLUP are weighted combi-
nations of Lagrange interpolation polynomials. Even if there is no explicit linear model &' f{x)
in the model (1), asymptotically the estimation procedure can implicitly include a polynomial
trend in the inputs. Thus, broadly speaking, model (1) can work as well as a polynomial when
a low-order polynomial approximation is good (and potentially much better when a low-order
polynomial is inadequate). Taking accurate prediction of the computer code as the primary ob-
jective, in Section 4 we are concerned with the mean squared error of prediction for model (1).
When there are no linear model terms, it is possible to write down a fairly simple expression for
the limiting MSE, and hence the limiting IMSE, as § — 0.

We next consider experimental design. In Section 5, we express the asymptotic IMSE for
the BLUP with no linear model and a given design as a quadratic form. This leads to a criterion
for numerically choosing a design. We give some examples showing that the asymptotic design
performs well even when the true model (1) has a moderate value of ¢ and polynomial linear
model terms are present. Thus, an asymptotic design with no linear model terms may provide a
robust way of designing experiments when little is known. In particular, it is a candidate for the
initial design in a sequential approach. Section 6 restricts attention to design for one-dimensional
input. Asymptotically, the IMSE does not depend on the linear model 3’ f(z). We show that the
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design points minimizing the asymptotic IMSE are roots of orthogonal polynomials.
Finally, the implications of the article are illustrated numerically in Section 7, and Section 8
contains some concluding remarks. The proofs of all the theorems are given in the Appendix.

2. THE BEST LINEAR UNBIASED PREDICTOR

Define a fixed design of n points by ¢1,...,t,. Thus, ¢; = (¢;1,...,tix) is a design point
for the k input variables, whereas = (z,, ..., zx)’ will represent a configuration of the input
variables at which we wish to predict the unknown output Y (z). For the n design points, let F =
{f(t1),..., f(tn)} denote the linear model function values (the “expanded design matrix”),
and let Y = (Y3,...,Y;)’ denote the vector of observed output values. From the Gaussian
correlation function in (2), these output values have the n x n correlation matrix

1 exp(=0||t1 —t2]|?) ... exp(—08|t1 —ta]|?)
) . . )
Ry .

exp(—0|[tn—1 — tal|*)
Symmetric e 1

Similarly, let
re(2) = {exp(=0l|ts = I1°),. .., exp(=bl|tn — 2]}’
denote the n x 1 vector of correlations between Y (z) and Yy, ..., Y.

Based on the model in (1), we can derive a best linear unbiased predictor (BLUP), f’(x) =
ch(2)Y, where co(z) = {ci(z),...,c5(z)}’. The BLUP minimizes the mean squared error
(MSE) of prediction subject to the unbiasedness constraint F'c4(z) = f(z). By introducing
Lagrange multipliers A(z) for the unbiasedness constraints, we can show that the optimal coeffi-

cients cq () satisfy
0 F —A(z) flz)
(e 2 (o) = (i) ®
F Ry co(z) re(x)
and that the BLUP’s MSE is
J.=E {}A’(:c) - Y(;L')}2 = 1+ cy(z)Roce(z) — 2ch(z)re(x). (C))
(See, e.g., Sacks, Schiller & Welch 1989 for details.) Without loss of generality, we have set
o’ =1.

For given 6, apart from possible numerical ill-conditioning of Ry, it is straightforward to
calculate cq () from (3) and the corresponding minimal J,; from (4).

3. ASYMPTOTIC PROPERTIES OF THE BLUP

Since this paper is largely concerned with polynomial approximations, we will first present the
notation to be used for the monomials comprising a polynomial function. The monomial :c‘l"‘ X
ceeX x,‘f“ has integer degree d; > 0 for input variable =, j = 1, ..., k. We denote this monomial
by z°, where 6 = (d1,...,dx). Then |§] = E§=1 d; is the degree of the monomial. We will
also write 4! for di! x -+ x d!.

With k input variables, it is well known that the number of monomials of degree at most d is

d+ k
m(d,k)=< : ) )

and that the number of monomials of exact degree d is

<d+k-—1

) ) = m(d, k) — m(d — 1, k).
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We order monomials by the degree d, with any arbitrary order within degree. For example,
the polynomial in £ = 3 variables has 1, 3, and 6 monomials of degree 0, 1, and 2, respectively.
Up to degree d = 2, then, there are m(2, 3) = 10 monomials in total, which we order

2 .2 2
17 T1,%2,%3, T{,T5,23,T1X2,T123,T2k3 (6)
e — ~— .
d=10 d=1 d=2

The BLUP interpolates the data, and we will relate it to Lagrange interpolating polynomials

or functions throughout the remainder of the paper. Given a set of n points, ¢1,...,{,, and n
functions, u1(z), .. ., u,(r), the corresponding Lagrange interpolating functions are
D(;ll 1:1'-1 u; ::i+1 lttn)
Li(x;ul,...,un): - izl T i 2 n ,
(731 Lee Up
()
t1 ... i,
where
(23} P /]
D ( " ) )
th ... 1,
denotes the determinant of the matrix with element ¢, j given by u;(¢;) for¢,j = 1,....n. If
the denominator determinant is zero, we formally define L;(x;u1,...,u,) = 0. Note that the
dependence of L;(z;u;,...,u,) onty,... ¢, is suppressed for now in our notation, because
we will be interpolating at the same set of design points. The functions u;, . . ., u, will vary

considerably, however, and hence are stated explicitly.

Lagrange interpolating functions have several useful properties. At the design points
t1,...,tn, we have L;(t;:u1,...,un) = 1if ¢ = j and O otherwise. Thus, for any given
function y(z), the predictor

n

w(z) =Dyt Li(z;ur, ... up) 8)

i=1

interpolates y(x) at the design points. It is also easily shown that if y(z) = u, () for any ¢, then
the interpolator (8) reproduces u; () exactly for all x (a property used in the proof of Theorem 3).

We will first show that the BLUP for model (1) can be written as an average of Lagrange
interpolators, each involving n functions. The behaviour as § — 0 will then be examined.

Henceforth, we assume that the linear model component ' f(z) in model (1) is a polynomial
and f(x) has all monomials up to degree d; and none of higher degrec. Thus, m; = m{d;, k)
from (5) will refer to the number of monomial terms in 3’ f(z). These will play a role in m; of
the n Lagrange interpolating functions. The remaining r; = n — m; Lagrange functions will
also be various monomials.

Specifically, consider the n functions

exp(0llz||®) f(z), 2. 2%s, ©)
where 6;. ..., d,, define r; arbitrary monomials. Let
Lf(z;dl,‘..,érf), i=1,...,n

be the Lagrange functions from ¢, ...,¢, and the functions in (9). The corresponding deter-
minant in (7) appearing in the denominator of these Lagrange functions will be denoted by
D(exp(8||z||*) f(x),é1,...,8,,) or simply as Dg(d1,....d,,). The BLUP can be written as
a weighted combination of these Lagrange functions according to the following theorem.
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THEOREM 1. The coefficient vector cg(z) = {c?(z),...,cl(z)} in (3) defining the BLUP for
model (1) is given by

ol (@) = exp{O(llt:[1* = llel>)} Y we(r,...,6,, )L (:61,...,6,,),  (10)

§1<-<éy,

where
|61

Ty
wg(d1,-..,0r,) x D3(y....,8 H 1)

and

S welby,..n8,) =1,

81< by,

Here the infinite summation is over all possible ordered sets of r; distinct monomial terms
of any degree. The ordering of the monomials is arbitrary, as in (6) for instance.

To illustrate, when we have n = 9 observations and a first-degree linear model in k£ = 2
input variables and then d; = 1, there are my = m(1,2) = 3 monomials, namely 1, x,, and
zg,and ry = n — my = 6. Theorem 1 says that the BLUP’s coefficient cf () can be expressed
as a weighted combination of Lagrange interpolating functions in exp(||z({?)(1, z1, =) and
any six monomials. In general, the BLUP c(z)Y itself is equivalent to a weighted average of
interpolators of the data, with weights given in (11). Each interpolator is based on the functions
in (9) for a given set of monomials defined by 4, , . .., d,,.

Obtaining an expression for the limiting coefficients in (10) is complicated by the fact that
LY(z;6,,. .., dr,) and Dy(d1,...,d,,) depend on 6. When there is no linear model, however,
neither of these quantities involve ¢, because the functions exp(8||z||?) f(z) do not appear, and
the result is nearly immediate. Note also that there are now r; = n remaining functions to
choose. The weight in (11) becomes

wy(8y,...,8,) x D*(dy,...,6, H

j=1

and the leading terms in 6 are obtained from the the lowest-order monomials.
Specifically, in the case of no linear model terms, suppose n is large enough to fit all mono-
mials up to degree d,, — 1 but not all of degree d,,, i.e.,

m(d, — 1,k) < n < m{d,, k). 12)

There is aremainder of 7, = n—m(d, — 1, k) monomials from those of degree d,,. Let g; denote
the vector of monomials of degree up to d, — 1. These must always be included. The remaining

r, monomials, denoted by é;,. . ., 6, , must be chosen from those of degree d,,. When r,, = 0,
i.e., n is exactly big enough to fit all monomials up to degree d,, — 1, the limiting coefficients
¢} (z) = limg_,o ¢! () are the Lagrange interpolators of degree d,, — l att; fori=1,...,n

In the case of no linear model, then, the limiting coefficients of the BLUP involve only the
Lagrange interpolators
Li(z;91,61,....,0r,),

as summarized by the following corollary.

COROLLARY 1. If model (1) has no linear model terms 3' f(z), then the limiting coefficients
¢} (z) of the BLUP are given by

)= D w(ér,.. 6L 61, .. 6, (13)
§1< <oy,
16y ]==léyr, |=dn



114 LiM, SACKS, STUDDEN & WELCH Vol. 30, No. 1

where
r

~o1
w(él,...,érn)aDQ(gl,él,...,érn)HF (14)
j=1 7"

and
w(él,...,érn) =1.

§1<<bry,
181)=--={6r, I=dn
n

Thus, even with no explicit linear model functions f(z) in the model (1), we see that the
limiting BLUP involves the functions ¢ (z). We are tacitly assuming that the design points
t1,...,t, are such that at least one of the determinants D(g1,dy, . . -, d,.) is nonzero so that the
weights w(dy, ..., d, ) in (14) are not all zero.

Example I (No linear model). Suppose there are £ = 2 explanatory variables and n = 4 obser-
vations. The three monomials

g1 = (61,02,63) = {(0,0), (1,0),(0, 1)}

(i.e., 1, z;, and x») of degree up to 1 can be fitted. In addition, we take r, = 1 of the following
monomials of degree d,, = 2:

s =(2,0). or & =(0,2). or &' =(11)
(i-e., 2%, 0r £, or z;z2). The weight function (11) in Theorem 1 has

166*
84!

(20)° (26)" (26)" (26)°
1 1 1 4,

D*(g1,64) = D*(g1,64)

as the leading term in 6 for these three possibilities for (g;,d4); it is O(6°) for any other set of
monomials. Let

Dag = D(1,z1,22,23), Doz = D(1,21,%2,23), and Dy = D(1,z1, 22, 2122)

denote the determinants in (7) with the indicated functions evaluated at the four two-dimensional
design points ¢4, t2, ¢3, and £4. Also,

54(120)! - (5‘(102)! —9 and 5‘(411)! =1.

Thus, the limiting ¢} (x) is a weighted combination of the polynomial interpolators using the
three sets of monomials and is given by

D?; o DE‘) 9 QDE
20 L(2;1, 2y, 20, 23) + =2 Li(x; 1, 21, 22, 23) + TllLi(x; 1,21, 29, 2122),
1

ci(x) = T, T

where T} = D3, + D3, + 2D3,, which could be obtained directly from Corollary 1.

When linear model polynomial terms 3’ f{x) are present, the expression for the limiting ¢ ()
is still of the form (13) in Corollary 1. Recall that f(z) is assumed to include all monomials up to
a certain degree. Possibly positive limiting weights can result only when we choose d,, . . ., 4, in
Theorem 1 from the lowest-degree monomials notin f(z). These weights are more complicated,
however, than those given in (14). Example 2 illustrates the additional complications.
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Example 2 (Linear model present). Let n = 4 and k£ = 2, as in Example 1. Now, however,
assume that ' f(z) is the constant model of degree 0, so that the number of monomials in f(x)
ismy = 1,and ry = n — m; = J. Noting that

D(exp(8||z||%), 2%, 2%, 2%) = D(1,2°, 2%, 2%) 4 0D(||z||?, 2%, 2%, 2%) + O(6?), (15)
the leading term in (11) involves #* and occurs when
(i) |01] = |82| = 1 and |63} = 2 in the first term on the right of (15) or
(i) |6;] = 0 and |d| = |d3| = 1 in the second term.

(The monomial with |§| = 0 would duplicate 1 if included in the first term and give D = 0.)
Case (i), with three possibilities for 43, leads to Dyg, Doz, and D;; of Example 1. In case (ii),
the weight in (11) is proportional to

2(26)° (26)" (26)"

= 4l) 02
1 1 1 46%* (D30 + Dga)",

[0D(ll<]|?, 1, 21, 22)]

since ||z})? = z? 4 % and

D(HCL’HZ, 11 1'1,$2) = D(Ify 1) T, 12) + D(zgy 1,331,1’2) = DZO + D02'

Thus
D2 D? 2D?
ci(z) = ﬁOLi(z;l,rl,xz,xf)wLT(J;Li(x;l,zl,zz,z%)%- T;lLi(x;l,rl,xz,wwz)
Dag + Dyg2)?/2
+ L-MJML;'(I; Lzy, 20,23 + 73), (16)

T

where To = T1 + (D20 + Do2)?/2 and Ty = D3, + D3, + 2D?, as in Example 1. Note that the
last interpolator can be written as

Dgo 2 D02
L; ;1) ¥ B} 2 2 == L; 111 ) y 7
@il e 2z 2+ 2y) Dag + Do2 i(z Lz e, 27) + Dag + Dqa

so that (16) is a weighted combination of the first three interpolators, as in Example 1. The
weights differ, however. For instance, the weight for L;(z; 1, z1, z2, 2?) is now
D3y + 3(Dao + Doz)zig-— 2 1
20 72 Dag + Doo _ D3g+ 5D20(D20 + Do2)
I Ty + 3(Dao + Dp2)?

L;(I‘, laxlaIZng)a

versus D2,/T; in Example 1.

4. ASYMPTOTIC MEAN SQUARED ERROR OF PREDICTION

We first show that the MSE of prediction J, in (4) can be re-expressed in terms of the accuracy
of interpolation of monomials of all degrees. Suppose we interpolate the monomial x° using (8),
the functions in (9), and the design points ¢4, .. ., t,. Let Z4(x, d; 01, ..., d,,) denote this inter-
polator of 2%, i.e.,

k43
To(z,8:01,....8,,) = 3 0L (2;01,...,6;,). (a7
i=1
There are an infinite number of such interpolators of =¢, generated by the choices for d, . . ., §, ‘-

Theorem 2 expresses the MSE of prediction in terms of the accuracy of interpolating x° with a
weighted average of its possible interpolators, averaged over all possible monomials «°.
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THEOREM 2. The MSE of the BLUP for model (1) is

20)101 _ 2
Jz :exp(-—?ﬂ“r”z)zé:( 5)! {Zs(x,0) — 2°}
where B
Io(z,0)= Y. we(ds,....0,,)To(2.6;61,....8,,), (18)
8y<<6y,

and wg(dy, . ..,0,,) is given by (11) in Theorem 1.

Theorem 2 leads to a convenient expression for the limiting MSE as § — 0 when no linear
model terms are present. We now let Z*(z, §) denote the interpolator of the function z° using
the limiting BLUP coefficients ¢} (x) in (13), i.e.,

n

I*(x.8) =Y tic] (k). (19)

i=1

The next theorem shows that the leading term in # of the limiting MSE is O(6%~ ), where d,, is
defined in (12). Furthermore, it involves only interpolators Z*(z,J) of z° for monomials § of
exact degree d,.

THEOREM 3. As 6 — 0, the limiting MSE of the BLUP for model (1) with no linear model terms
is
I*(z,8) — z%}*
Je = (20) N Tlzd) -7} 5)! 4 o),
§:|61=dn

When linear mode] terms are present, a similar result holds, but the coefficient of #% in J,
is considerably more complicated and will not be given here.

5. ASYMPTOTIC DESIGN (NO LINEAR MODEL TERMS)

We use the integrated MSE (IMSE) of prediction as a design criterion. Integration is over the
region of interest and may be weighted. The IMSE criterion seeks the design that minimizes

JIMSE =/er(~l‘)d-’t,

where w(z} is a given weight function.

In practice, ¢ is unknown, but the robustness studies of Sacks, Schiller & Welch (1989)
suggested that small values of # should be used to choose an experimental design. Thus, we will
now consider the limiting Jimsg as § — 0. We will rewrite the asymptotic expression for J; in
Theorem 3 in the form

Jr = hix:ty, ... t,)0% + 064 11).

Leth(t),....tn) denote the integral of 2(z: ¢y, .. .. ;) withrespect tow(z ). The design problem
is then to minimize h(¢,...,¢,) in

Jivse = Rty ... 1,)8% + O(f% 1)

over the design points ¢4, .. ., t,.

When model (1) has no linear model terms, the following theorem shows that the limiting
¢*(z) is the same as the solution of a constrained minimization problem and provides a basis
for a numerical algorithm for constructing optimal asymptotic designs. Recall from Corollary 1
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that g4 (z) is the vector of monomials of degree at most d,, — 1. Similarly, let g»(z) denote the
vector of m(d,,, k) monomials of exact degree d,,. Also, define A, to be the diagonal matrix
with elements 1/4! in the same order as the m(d,,, k) monomials in g, and let

G, = {yl(tl), .. .,gl(tn)}l and G, = {g2(t1), . .,gz(tn)}" (20)

THEOREM 4. When model (1) has no linear model terms, the BLUP's limiting coefficient vector
c*(x) is the solution of the following constrained minimization problem:

Icl(lir)l{G'ZC(f) = 92(2)} 8o{Ghe(x) — g2(x)}  subjectto Gic(z) =g1(z), (1)

and the leading term h(x:;t,,...,1,) of J;, except for the factor 2™, is the quadratic form
h(z;t1, ... tn) = {G5¢*(z) — g2(x) Y A2{Goe* (z) — g2(z)}. (22)

We now use Theorem 4 to write the leading term h(z; 5, .. .,t,) of J,, and hence the leading
term of JiMmsEe, in a form convenient for numerical optimization. Use of Lagrange multipliers
produces the equations

GQAQGQC*(x) - G2A2g2($) - Glx\(x) =0 (23)
and
1¢7(z) ~g1(x) =0
( 0 Gl ) (—/\(x)) ( 91(x) ) 24
G, GgAzGIQ (z) G2A29‘7( )
Premultiplying (23) by ¢*'(z), and then noting g, (z) = G} c"(z), we obtain

¢*'(2)G28:Gye* (2) = ¢ (z )GzAzgz( ) + g1 (2) ().
Substituting this into (22) gives

h(z;ty, ... 1) = g5(x)Azg2(2) + g1 (z)A(2) — g5(2)A2Ghe (2)

G - 91(z)
- s@asen) (o oo ).
Gi1 G2AyG G2A2g2(x)
Therefore, the leading term of Jimse, found by integrating A (z; 11, . . ., {,,) with respect to w(z),
is

il(tl, .. .,tn) = trace (AzMgg)
0 Gy \'f Mn M12A,.GY
—trace , (25)
Gl GzAgG/Z GzAg]le GgAzMnggGé

M;; = /gi(w)g}(r)W(l‘) dz, i,j=1,2 (26)

is a matrix containing various moments of the degree d,, polynomial model with respect to the
weight function w(z). Often the blocks of M;; are patterned; for example, when «/(z) is uniform
over [—1/2,1/2]%, all the odd moments are zero.

Thus, the design problem reduces to finding ¢, . . ., ¢, that minimize (25). The algorithm for
implementing this optimization has the following steps.

where
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1. Find d,, from (12) to determine the monomials that will be implicitly included.

2. Generate the quantities that do not depend on ¢,,...,¢,: the diagonal matrix A,, the
moment matrices M;; in (26), and hence trace (A2 Ma2) in (25).

3. Apply an optimization algorithm to find the optimal design points {7, . . ., ¢;, minimizing
h{ty,...,t,) in(25). Foreach ¢, ..., ¢, considered by the algorithm:

3.1 Generate (G, and G5 in (20).
3.2 Calculate h(t, ..., ty,).

To illustrate the qualitative features of optimal asymptotic designs, Figure 1 shows the design
constructed by the above algorithm for two explanatory variables and nine runs. It can be seen
that the design is spread throughout the space. Compared with the minimax or maximin designs
produced by Johnson, Moore & Ylvisaker (1990), however, it is slightly concentrated around the
edges of the design space to reduce the MSE of prediction where it is largest.

In ..................................
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FIGURE 1: Optimal asymptotic design for two explanatory variables and nine runs.

We also investigated the efficiency of the optimal asymptotic design for a larger example with
four explanatory variables and 18 runs. The optimal designs for model (1) were constructed for
constant (3g) or first-order (3 + S121 + Fax2) linear models and § = 1 or 10, i.e., moderately
large values. Under each of these four scenarios, the IMSE for the asymptotic design can be
compared with the optimal IMSE. Table 1 gives the relative efficiencies of the asymptotic design.
Efficiency remains high when 8 is not small. Moreover, although the asymptotic design does not
explicitly include any linear model terms, efficiency is maintained when a first-order linear model
should be included.

TABLE 1: Percent efficiency of the optimal asymptotic 18-run design for four explanatory variables.
Efficiency is relative to the design optimal for a given linear model and value of 4.

8
Linear model 1 10

Constant 99.6 96.1
First order 94.6 96.3
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_ In contrast, the designs optimal for large ¢ have very poor efficiency when 6 is small. Using
h(t1,...,1,) in (25) as the criterion, relative to the optimal asymptotic design, the designs for
8 = 10 have efficiencies of .3% for the constant model and .1% for the first-order model.

6. ASYMPTOTIC DESIGN FOR ONE-DIMENSIONAL INPUT

In the case of only one input variable, the optimal asymptotic design can be written down al-
most immediately. Let Z)(x) denote the asymptotic interpolator of =" using the n functions
1,z,...,z" ! and the n design points ¢;,...,¢,. In this one-dimensional case, Theorem 3
leads to a simple expression for the asymptotic integrated mean squared error, viz.

JIMSE & g /{I;;(:L') - x"}zw(x) dx + O(9n+1),

regardless of the explicit polynomial terms 3’ f(z) in (1). The design problem then is to choose
ty,...,t, such that

/{I,";(:r) — 2"}w(z)dx

is minimized. It is well known that the minimum of this integral occurs when P, (x) = I (z) —
z" is proportional to the polynomial of degree n orthogonal with respect to w(z). As Z)(z)
interpolates =" at t;, we have P,(¢;) = 0, implying that ¢,...,¢, must be the zeros of the
orthogonal polynomial of degree n with respect to w(z).

Suppose, for instance, thatw(z) is proportional to (1/2—x)%(1/2+)®. Itis well known that
the Jacobi polynomials P{*%(z) are orthogonal on [~1/2,1/2] with respect to w(z) (see, e.g.,
Ghizzetti & Ossicini 1970, p. 58). When w(z) is uniform (a = b = 0), then P, (z) = P>V(x)
is the Legendre polynomial of degree n, recursively defined by

and
nPp(z) = (2n — 1)2¢P,_1{z) — {n — 1) Ph_s(x)

forn > 2.

7. NUMERICAL ILLUSTRATION OF THE RESULTS

The results in Section 3 show that the BLUP interpolator with the Gaussian correlation func-
tion (2) becomes a polynomial as § — 0. Thus, if the true function y(x) is a low-order polyno-
mial, the BLUP should be able to predict it very accurately for sufficiently small . To illustrate
this, let y{z) be a polynomial of two-dimensional input, with terms up to degree 5:

5 5 5 15 5
y(xl;*t?) = 9+ 5101 - -5'1?2 + -2'111'2 + 19:c§ - 71‘? - §:L'1:L'§
11
—7x§+x?z§, 0<r,22<1. 27

The contour and perspective plots in Figure 2 show that this function is moderately nonlinear
and representative of the fairly complex but smooth functions that often arise in computer exper-
iments.
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FIGURE 2: Polynomial function y(z) in (27): (a) Contour plot and (b) Perspective plot.

With n = 21 design points, we could fit, say by least squares, a linear model with all 21
monomials up to degree 5 [put m(5, 2) in (5)). In this way the function could be predicted with-
out error. For example, the 21-run design in Figure 3(a) is a Latin hypercube sample (McKay,
Conover & Beckman 1979). Latin hypercubes are a popular class of designs for computer exper-
iments.

Without explicitly assuming a functional form, we can also achieve essentially a perfect fit
here with the same design and data. Suppose we take model (1) with no trend terms, i.e.,

Y(z) = B+ Z(z).

When we predict y(z) at the 21 x 21 grid {0,1/20....,20/20}? of z; and z» values, we obtain
the first column of root mean squared error (RMSE) values in Table 2. It is seen that the RMSE
decreases with smaller §. At 0 = .05, the RMSE is .0026; this is .03% of the range in the true
function values. Smaller values of § should predict with even better accuracy, but § = .05 was
about the smallest value that avoided ill-conditioning.

Even better results are obtained in conjunction with the optimal 21-run asymptotic design
generated by the algorithm in Section 5 and shown in Figure 3(b). The second column of RMSE
values in Table 2 show the asymptotic design performs uniformly better here than the Latin
hypercube. At § = .05, the RMSE is only .003% of the range in the true values.

In practice, we would not know that y(x) is a moderate-degree polynomial and hence that a
small value of 0 leads to the best prediction accuracy. With the data from the asymptotic design,
maximum likelihood gives estimates 6, = .055 and 65 = .079 (z1 and r, are allowed to have
different ¢ values). These fairly small estimates lead to the RMSE value of .0003 reported in
Table 2, i.e., a highly accurate predictor of the polynomial function.
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TABLE 2: Root mean squared error of prediction for various values of § in the BLUP with coefficients
given by (3). The polynomial function is in (27) and the nonpolynomial function is in (28).

RMSE of prediction
Polynomial function Nonpolynomial function
@ for Latin Asymptotic Latin Asymptotic
predicting hypercube design hypercube design
.05 0026 .0002 151 053
.1 0053 .0004 122 052
1.0 0513 0070 .103 050
10.0 .3906 2342 414 251
MLE .0064 0003 162 .081
(a) (b)
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FIGURE 3: Designs for two explanatory variables and 21 runs: (a) Latin hypercube sample and (b)
Optimal asymptotic design.

Also in practice, a computer model need not be well approximated by a low-degree polyno-
mial. To look at the implications of our results in this situation, consider a second, nonpolynomial
function,

{30 + 521 sin(521) } {4 + exp(—5z2)} — 100
6 )

y(z1,22) = 0<zy,22< 1. (28)
Other than some rescaling, this is the same function used by Welch, Buck, Sacks, Wynn,
Mitchell & Morris (1992) to illustrate the type of nonlinear behaviour that might occur in a
computer model. Figure 4 gives contour and perspective plots of this function. The features are
qualitatively similar to those of the polynomial (27). The two functions also have similar ranges
of y values, facilitating comparison of their prediction RMSE values. [The coefficients of the
polynomial (27) were chosen with these aims in mind.]
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FIGURE 4: Nonpolynomial function y(z) in (28): (a) Contour plot and (b) Perspective plot.

We again include no trend terms in model (1). Data are generated from (28), using the 21-run
designs in Figure 3, and prediction is at the same 21 x 21 grid. The third and fourth columns
of RMSE values in Table 2 show that prediction is less accurate than for the polynomial (27),
but still fairly good: The best RMSE of prediction values are about .5% of the range in y. For
both designs, as 6 becomes smaller and the BLUP approaches a low-degree polynomial, there
is no reason why accuracy should improve now. The best value of § appears to be a moderate
value of about 1, particularly for the Latin hypercube design. Interestingly, though, the optimal
asymptotic design again substantially outperforms the Latin hypercube. Also curious is the fact
that, in conjunction with the asymptotic design, the BLUP does fairly well for small values of 6.
At § = .05, prediction accuracy is not quite optimal, but better than that of the BLUP with
maximum likelihood estimates (§; = 2.54 and 6, = 2.24).

8. CONCLUSIONS

The results presented here follow from some special properties of the Gaussian correlation func-
tion in (2). A power series expansion of the exponential in the Gaussian correlation function
generates polynomial terms. [This is a critical step in the proof of Theorem 1; see (31).] The
low-degree terms dominate as § — 0. In the case of no linear model terms in the model (1}, the
BLUP is an interpolator using basis functions from the correlation function. Thus, the BLUP
is also asymptotically a polynomial. Under these conditions, if y(z) is a polynomial, it can be
approximated essentially without error.

To realize this result for polynomial y(x), a small value of 4 has to be selected. In a nu-
merical example in Section 7, maximum likelihood estimation does indeed choose a fairly small
value. This empirical work is backed up by analysis of the likelihood function by Huang (2000),
who gave examples for one-dimensional  and some more general results for equally spaced
one-dimensional designs. These results suggest that if y(x) is a polynomial, the likelihood is
maximized when § — 0, provided the design has more than twice as many data points as the
degree of the polynomial. For instance, if y(z) is quadratic in z, then # — 0 is the maximum
likelihood estimate if there are at least n = 5 points in the design.

The theoretical relative efficiencies in Table 1 show that the asymptotic optimal design per-
forms very well, even when 6 takes a moderately large value. In contrast, designs optimal for
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moderately large 6 perform poorly in the asymptotic setting. These theoretical results are sup-
ported by the numerical root mean squared errors of prediction in Table 2. The optimal asymp-
totic design performs well for both the polynomial and nonpolynomial test functions. The algo-
rithm for constructing optimal asymptotic designs is practical for problems with up to about 10
explanatory variables and 100 runs. Further research is needed to handle larger designs.

APPENDIX A: PROOFS
Proof of Theorem 1. Recalling (3), ¢y () is found by solving

(2 ;) (—A<(>)> B (:9((?)) 29)
Let
0 | fit) - flt)
Ao f’(:il) |
Ro(si,t;)
f'(sn)

which is simply the first matrix in (29) with the design points denoted by s, . . ., s, in the rows
to distinguish rows and columns below. The coefficients ¢y (x) are obtained using Cramér’s rule
so that
g 1B
¢i(z) =

141’
where B is obtained from A by replacing the appropriate column in A by the right-hand side
of (29).

The key step is to show that

g)1951

Al = (0P -0 SR - F 1%

§1< - <6r j=1

D(fa(f) EL R ¥ ’)D(fo() 2% x‘s'f)’ o)

tl tn 81 Sn

where fy(z) = exp(6]|z||?) f(x). With this result, ¢! (z) in Theorem 1 follows when ¢; is re-
placed by « in | 4| and then each term is divided and multiplied by the determinant D.
To show (30), we first write

Ro(s,t) = exp(=f]lsl|® ~ O1tl}*) Qs (s, 1),

where

b 14
Qo(s,t) = exp(20s't) = =) (—2%)‘—5"156. @31
- !

Note that each value of h in the first sum generates terms in the second sum with |§] = A, and
5%t occurs |]!/6! times. Then,

4] = exp (—o S lsilF =63 ||tj||:') cl.
j:l j:l
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where

0 fo(t1) fo(tn)

Qo(sity)

folsn)

We first expand the determinant of the (my +n) x (m; +n) matrix C' by a Laplace expansion
using the last n columns. Since the m; x m; upper-left block is all zeros, only selections
involving all of the first m; rows plus r; = n — m; of the remaining rows contribute to the
expansion. Hence,

foltr) ... feltn) .
t t T | TS
ICI - Z Q9(5217 1) Qe(szzla n) (_1)]:1(m,+1j ]=1J . ’ (32)
R P ' filsi, )
Qolsi,, t1) - Qolsi,, tn) 8(5i,,
where {s] ,.. .,s;"ml} is the complementary set to {s;,,.... Sir,} and ¢} is the row position

of s;j. For convenience below, we are summing over the selected row and column indices but
using the complementary indices to determine the parity.

Using the expansion for (»(s,t) in (31) and a slight extension of the Basic Composition
Formula (see Karlin 1968, p. 17), we may write the first determinant in the right-hand side
of (32) as

folty) . falta) | 4 ;
st ... st
> N |3 (a0l
: : : s 1
§1<-<r, 5 P S‘?rf 8‘,57 Jj=1 %
t." t,! h iy
' n

In (32) we can also interchange the summations. The inner sum, now over i; < - -+ < i, ,» Can
be summed using a Laplace expansion to give (30).

Proof of Theorem 2. Recalling (31), we may write

el
RGZE—12(25)' %%/E-l
3 !

and ol
- 26)
re(z) = exp(~6ll2l )= 32 ED Tt
§
where
To=(t],....t5),
and E is a diagonal matrix with elements exp(8|t;||*) fori = 1,... n.
From (10),
co(z) =exp(=Ol|z|F)E D we(dr,... 0, ) Lo(x;01.....5,,),
Sy <<y,
where

Lo(zi81. ..., 6:,) = {LY(2; 81, .. 6,,) 00 Lo(@ibr, . 600 )



"uonenasaid ay) poacidun Apeasd yorym suonsedns Joj saiajal © Yuey om ‘b8 L9296-SINA
JUBID UOKEPUNO 30USIOS [eUOREN Aq 1red UT PSPUNJ SBM YIIEasal s, USPpIug ‘BPeue) JO [IOUN0D) YoIeassy
SuusomBug pue s30uslog [eIMeN oy woy woddns paatasar osye YI[3M 'UODRONpY JO ANSIUIN BAIOY
‘S1P1-96-TISH ‘wreadold AMAsu] Yoreasay 0USIOS dIseq S WOy FUIPUNy PoAIIdal OS[e W' pSSITI6
-SINQ el Uonepunod aouslog reuoneN Aq wed ur pauoddns sem Yo[op puR ‘SYORS ‘WII] JO YOIRISA ST

SINIWIOATTMONMOV
‘10 3o suwnjod
JO Ioquinu 3 $AIOUIP (¥ ‘T — “plwr = lwe ‘oS[y "Us * ** * Ts Aq POXOPUI dIe SMOI ISE] 3} ‘UTedY
) us P IS' ul PR Il
(u,gz B PE (x)Ib‘)G(u,S,x T g (z)lb‘)ax
= P Coivin 1
T OtvED 9
S X o) = |7
I p Uy ¢ ID 0

‘1 w109y, Jo yooid ayy 0y snoZoreue sdajs BIA pue (H7) WOL SMO[[OF INSAI
SIQL "(€]) Ul UIALS ST Yorym *(z),2 3091100 31y $aALS (1) 03 UOHINOS Y} JeLy} MOYS O} saoygns 1
‘21033194, * up, 10308 3y} 10§ 1d20Xd € WAICAYL, Ul «,4 JO JUSIDYJS00 3 0) enbo st (2),0 = (z)o
i (17) Ut uorssaxdxs ag ‘o0usy “Up = |g| P ¢ [[e 10§ (61) W (¢ ‘7),T S1ore[odiorur oy
saterouag (z),950 1eq (07) Ut 25 JO UONIUYSp 3y} WOl UdSs A[ISes ST | p waloay] fo foorq

"¥f 01UOHNQLIUCO Ou Syeur pue A[10eXd ,z dnpoidal (g1) ut sFeIsAe s)1 pue
(L1) 101ef0daotur 313 T — ¥p 90180p 01 dn % 10J ‘30UdY “suonounj Funefodisyul se | — ¥p 03 dn
9313ap Jo 16 sreruouow oY spnyour s&emre (€1) ut s1us1OYIo00 Sunnury sy3 ey ajou A[duirs op
"7 WRI03Y], Ul 7/ 10 Uolssaidxa Ay WOl ARIPSWUI A[JedU ST I[NSAI AU, 'S walody] Jo foaid

"SMO[[0] 3[nsa1 3 “(y£) pue ‘(gg) ‘() Suruiquio)
4

Z Zllzllgg—)dxs + 1

., 4
{ga+ 7= (9'0)or}—2 T (lzllgg-)dxo =

@) [ {7 — (9°0)L} + { = — (9‘z)?L} ]

=’ 101(62)
. ¢
{(e*2)er} M;{;Z)Z (cllzllgg—)dxo = 626374
pue
)
(£€) { T_ ? (l‘ ol}g (az) Z(g“x“%—)dxa‘i'l =
) 9
{92 + T - (g‘z)ﬂl}ga:—i— Z(z”zﬂgg—)dxa =
11(62)
(9'z)er,x (gz Z( lellgz—)dxe = (a)a(x)%
‘910J019Y L
Figs.. >t

(era)or = (Mo tpta)er(Tpttgyem T 91
9ARY 9M ‘(8T) pue (1) Aq pue

748 30VdS LNdNI H3AO A31VI13HHOO ATHDIH LNdLNO €00¢



126 LIM, SACKS, STUDDEN & WELCH Vol. 30, No. 1

REFERENCES

R. Aslett, R. J. Buck, S. G. Duvall, J. Sacks & W. J. Welch (1998). Circuit optimization via sequential
computer experiments: design of an output buffer. Applied Statistics, 47, 31-48.

W. L. Chapman, W. J. Welch, K. P. Bowman, J. Sacks & J. E. Walsh (1994). Arctic sea ice variability:
Model sensitivities and a multidecadal simulation. Journal of Geophysical Research, 99, 919-935.

C. Currin, T. Mitchell, M. Morris & D. Ylvisaker (1991). Bayesian prediction of deterministic functions,
with applications to the design and analysis of computer experiments. Journal of the American Statis-
tical Association, 86, 953-963.

A. Ghizzetti & A. Ossicini (1970). Quadrature Formulae. Academic Press, New York & Birkhiuser, Basel.

W. A. Gough & W. J. Welch (1994). Parameter space exploration of an ocean general circulation model
using an isopycnal mixing parameterization. Journal of Marine Research, 52, 773-796.

W. Huang (2000). Properties of Parameters in a Stochastic Process Model for Computer Experiments.
Unpublished M. Math. thesis, Department of Statistics and Actuarial Science, University of Waterloo,
Waterloo, Ontario, Canada.

M. E. Johnson, L. M. Moore & D. Yivisaker (1990). Minimax and maximin distance designs. Journal of
Statistical Planning and Inference, 26, 131-148.

S. Karlin (1968). Total Positivity, Volume 1. Stanford University Press.

J. M. Lucas (1996). Comments on “Screening, predicting, and computer experiments” [by W. J. Welch,
R. J. Buck, J. Sacks, H. P. Wynn, T. J. Mitchell & M. D. Morris (1992)]). Technometrics, 38, 197-199.

M. D. McKay, W. J. Conover & R. J. Beckman (1979). A comparison of three methods for selecting values
of input variables in the analysis of output from a computer code. Technometrics,21, 239-245.

J. Sacks, S. B. Schiller & W. J. Welch (1989). Designs for computer experiments. Technometrics, 31,
41-47.

J. Sacks, W. J. Welch, T. J. Mitchell & H. P. Wynn (1989). Design and analysis of computer experiments
(with discussion). Statistical Science, 4, 409—435.

W.J. Welch, R. J. Buck, J. Sacks, H. P. Wynn, T. J. Mitchell & M. D. Morris (1992). Screening, predicting,
and computer experiments. Technometrics, 34, 15-25.

W. J. Welch, R. J. Buck, J. Sacks, H. P. Wynn, M. D. Morris & M. Schonlau (1996). Reply to “Comments
on ‘Screening, predicting, and computer experiments’ ” [by J. M. Lucas (1996)]. Technometrics, 38,
199-203.

Received 1 October 1997 Yong B. LIM: yblim @mm.ewha.ac.kr

Accepted 20 July 2001 Department of Statistics, Ewha Woman's University
Seoul 120-750, Korea

Jerome SACKS: sacks @niss.org
National Institute of Statistical Sciences
P. O. Box 14006, Research Triangie Park, NC 27709-4006, USA

W. J. STUDDEN: studden @stat.purdue.edu
Department of Statistics, Purdue University
West Lafayette, IN 47907, USA

William J. WELCH: wjweich@uwaterioo.ca
Department of Statistics and Actuarial Science, University of Waterloo
Waterloo, Ontario, Canada N2L 3Gl



