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Abstract: To build a predictor, the output of a deterministic computer model or “code” is often treated 
as a realization of a stochastic process indexed by the code’s input variables. The authors consider an 
asymptotic form of the Gaussian correlation function for the stochastic process where the correlation tends 
to unity. They show that the limiting best linear unbiased predictor involves Lagrange interpolating poly- 
nomials; linear model terms are implicitly included. The authors then develop optimal designs based on 
minimizing the limiting integrated mean squared error of prediction. They show through several examples 
that these designs lead to good prediction accuracy. 

Planification et analyse d’experiences par ordinateur dont les extrants 
sont fortement com5l6s sur I’ensemble de I’espace des intrants 
R 6 s m t  : Pour bfitir un pddicteur, les extrants d‘un modkle informatique ddtehiste appeld “code” 
doivent souvent &tre trait& c o m e  une dalisation d’un processus aldatoire indid par les intrants de ce 
code. Les auteurs s’inthssent h la forme asymptotique de la fonction de com5lation gaussienne associke 

un processus aldatoire dont la codlation tend vers un. Ils montrent qu’h la limite, le meilleur pddicteur 
lin6aire non-biaid s’exprime en terme de polyn8mes d’inteplation de Lagrange; des termes de modhle 
lindaire sont sousentendus. Les auteurs identitient des plans optimaux qui minimisent l’erreur quadratique 
moyenne inti5gr6e de pdvision. Ils montrent B travers plusieurs exemples la bonne pdcision des pdvisions 
auxquelles mihent ces plans. 

1. INTRODUCTION 
Experimentation via computer models or codes is becoming increasingly common throughout 
the (pure and applied) sciences and engineering. For example, Sacks, Schiller & Welch (1989) 
presented applications in chemometrics; Aslett, Buck, Duvall, Sacks & Welch (1998), Currin, 
Mitchell, Moms & Ylvisaker (1991) and Sacks, Welch, Mitchell & Wynn (1989) gave exam- 
ples in the engineering design of electronic circuits; and Chapman, Welch, Bowman, Sacks & 
Walsh (1994) and Gough & Welch (1994) described sensitivity experiments for environmental 
models. 

In these applications, the output y from the computer code is often deterministic, i.e., running 
the code twice with the same values for the inputs or explanatory variables z would give the same 
output. To provide a basis for constructing a predictor, the deterministic function y( x) is regarded 
as if it were a realization from a Gaussian stochastic process 

(1) 

where /Yf(z) is a polynomial linear model (regression function) and 2 is a Gaussian random 
function with mean zero and variance u2. 

The correlation properties of 2 are crucial to the construction and performance of a predictor. 
One choice, widely used in the above applications, is 

Y ( x )  = P’f(r) + Z ( X ) ,  

corr{z(z),z(z*)} = R{Z( r ) ,Z (z * ) }  = e x p ( - C 6 y z j  +), 
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where xJ and xJ* are the values for the jth input variable for two runs at x and x*, and 0, 2 0 and 
0 < p ,  5 2. For simplicity in the derivations below, we assume that the %, s are the same for all 
inputs. For all j ,  we also take pJ = 2, a value arising often in applications when the parameters 
are estimated by maximum likelihood; this is known as the Gaussian correlation function. Thus, 
the correlation function simplifies to 

R { Z ( x ) ,  Z(+* ) }  = exp{ - c B ( Z j  - x;?}. 

Model (1) leads to the best linear unbiased predictor (BLUP), based on n observations of the 
computer code (see Section 2). This predictor respects the deterministic nature of the computer 
code as it interpolates the observed output values. 

Working with model (1) in various applications has suggested that the BLUP has some spe- 
cial asymptotic properties as 0 + 0 in the Gaussian correlation function (2). In their second 
chemometrics application, Sacks, Schiller & Welch (1989) fitted model (1) with polynomial lin- 
ear models P’f(x) of degrees 0, 1, and 2. They found that maximum likelihood estimation 
chose very different values of B in the three cases. The linear model of degree 0 (which gave the 
best prediction accuracy) had a very small estimated 0. Lucas (1996) gave an artificial example 
in which the deterministic “output” from five input variables was a sum of bilinear interaction 
terms, i.e., a polynomial. In their rejoinder, Welch et al. (1996) showed that this polynomial 
could be predicted almost exactly, even when p’f(z) in (1) was of degree zero if B was small. 
Furthermore, given 32 runs, maximum likelihood estimation clearly chose small values of 0. 

These examples suggest that the stochastic-process component, Z (  . ), in model (1) can com- 
pensate for omission of polynomial terms by making B smaller when analyzing the results of a 
computer experiment. 

Consideration of asymptotic properties as B + 0 may also have implications for design, i.e., 
choosing input vectors at which to run the computer model. Choosing a design to make the BLUP 
from model (1) have small integrated mean squared error (IMSE), say, is difficult in practice 
because B is unknown at the design stage and hence the IMSE cannot be computed. Sacks, 
Schiller & Welch (1989) carried out several robustness studies. They compared designs from 
different assumed values of B and looked at their performances for various true values. The study 
showed that designs from small values of B tended to have good relative efficiency. Robustness 
studies of this type are laborious to carry out, even more so when linear model polynomial 
functions of various degrees are also considered. 

The results and organization of this article are as follows. Section 2 provides notation for the 
BLUP and its mean squared error. In Section 3, we develop the main results on properties of the 
BLUP as B + 0. We show that the asymptotic coefficients in the BLUP are weighted combi- 
nations of Lagrange interpolation polynomials. Even if there is no explicit linear model P’ f (  z) 
in the model (l) ,  asymptotically the estimation procedure can implicitly include a polynomial 
trend in the inputs. Thus, broadly speaking, model (1) can work as well as a polynomial when 
a low-order polynomial approximation is good (and potentially much better when a low-order 
polynomial is inadequate). Taking accurate prediction of the computer code as the primary ob- 
jective, in Section 4 we are concerned with the mean squared error of prediction for model (1). 
When there are no linear model terms, it is possible to write down a fairly simple expression for 
the limiting MSE, and hence the limiting IMSE, as B + 0. 

We next consider experimental design. In Section 5 ,  we express the asymptotic IMSE for 
the BLUP with no linear model and a given design as a quadratic form. This leads to a criterion 
for numerically choosing a design. We give some examples showing that the asymptotic design 
performs well even when the true model (1) has a moderate value of B and polynomial linear 
model terms are present. Thus, an asymptotic design with no linear model terms may provide a 
robust way of designing experiments when little is known. In particular, it is a candidate for the 
initial design in a sequential approach. Section 6 restricts attention to design for one-dimensional 
input. Asymptotically, the IMSE does not depend on the linear model p’ f (x). We show that the 
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Re = 

design points minimizing the asymptotic IMSE are. roots of orthogonal polynomials. 

contains some concluding remarks. The proofs of all the theorems are given in the Appendix. 
Finally, the implications of the article are illustrated numerically in Section 7, and Section 8 

1 

* - .  exP(-qlt,-l - tn1I2) 
. 

and that the BLUP’s MSE is 

(4) 
2 ,. 

J,  = E { Y ( x )  - Y(x)} = 1 + c i (x )Rece(z )  - 2ci(x)re(x). 

(See, e.g., Sacks, Schiller & Welch 1989 for details.) Without loss of generality, we have set 
0 2  = 1. 

For given 8, apart from possible numerical ill-conditioning of Re, it is straightforward to 
calculate ce (x) from (3) and the corresponding minimal J ,  from (4). 

3. ASYMPTOTIC PROPERTIES OF THE BLUP 
Since this paper is largely concerned with polynomial approximations, we will first present the 
notation to be u s 4  for the monomials comprising a polynomial function. The monomial x f l  x 
. . . x x;fd* has integer degree d j  2 0 for input variable xj, j = 1, . . . , k .  We denote this monomial 
by x6, where S = ( d l ,  . . . , d k ) .  Then 161 = C;=, d j  is the degree of the monomial. We will 
also write 6! for d l !  x . . . x d k ! .  

With k input variables, it is well known that the number of monomials of degree at most d is 

and that the number of monomials of exact degree d is 
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We order monomials by the degree d, with any arbitrary order within degree. For example, 
the polynomial in k = 3 variables has 1,3,  and 6 monomials of degree 0, 1, and 2, respectively. 
Up to degree d = 2, then, there are m ( 2 , 3 )  = 10 monomials in total, which we order 

The BLUP interpolates the data, and we will relate it to Lagrange interpolating polynomials 
or functions throughout the remainder of the paper. Given a set of n points, t 1,  . . . , t,, and n 
functions, u1 ( I ) ,  . . . , u, (x) ,  the corresponding Lagrange interpolating functions are 

where 

(:: : : :  3 (7) 

denotes the determinant of the matrix with element i ,  j given by u, ( t 3 )  for i, j = 1, . . . . n. If 
the denominator determinant is zero, we formally define L, ( I ;  u1, . . . , u,) = 0. Note that the 
dependence of L, (2; u 1 . . . , u, ) on t 1, . . . , t, is suppressed for now in our notation, because 
we will be interpolating at the same set of design points. The functions ~ 1 ,  . . . , u, will vary 
considerably, however, and hence are stated explicitly. 

At the design points 
t l ,  . . . ,  t , ,wehaveL, ( t , ;u l  , . . , ,  u,) = l i f i  = jandootherwise.  Thus,foranygiven 
function y(s), the predictor 

Lagrange interpolating functions have several useful properties. 

n 

2 = 1  

interpolates y( I )  at the design points. It is also easily shown that if y( x )  = ui (x)  for any i, then 
the interpolator (8) reproduces u, ( x )  exactly for all x (a property used in the proof of Theorem 3). 

We will first show that the BLUP for model (1) can be written as an average of Lagrange 
interpolators, each involving n functions. The behaviour as 0 + 0 will then be examined. 

Henceforth, we assume that the linear model component a'f( x)  in model (1) is a polynomial 
and f ( ~ )  has all monomials up to degree d f  and none of higher degree. Thus, mf = r n ( d 1 , k )  
from ( 5 )  will refer to the number of monomial terms in P'f( x). These will play a role in mf of 
the R Lagrange interpolating functions. The remaining rf = n - mf Lagrange functions will 
also be various monomials. 

Specifically, consider the n functions 

where 61 ~ . . . , d,, define rf arbitrary monomials. Let 

be the Lagrange functions from 1 1 ,  . . . , t ,  and the functions in (9). The corresponding deter- 
minant in (7) appearing in the denominator of these Lagrange functions will be denoted by 
D(exp(Oll~ll ' )f(x),sl l .  . . ,d,,) or simply as Do(b1,. . . >&,). The BLUP can be written as 
a weighted combination of these Lagrange functions according to the following theorem. 
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and 

Here the infinite summation is over all possible ordered sets of rf distinct monomial terms 
of any degree. The ordering of the monomials is arbitrary, as in (6) for instance. 

To illustrate, when we have n = 9 observations and a first-degree linear model in k = 2 
input variables and then df = 1, there are rnf = m( 1 , 2 )  = 3 monomials, namely 1, z lr  and 
22, and rf = n. - mf = 6. Theorem 1 says that the B L W s  coefficient c! (z) can be expressed 
as a weighted combination of Lagrange interpolating functions in exp(811z112)(1, 11,x~) and 
any six monomials. In general, the BLUP cL(z)Y itself is equivalent to a weighted average of 
interpolators of the data, with weights given in (1 1). Each interpolator is based on the functions 
in (9) for a given set of monomials defined by 61, . . . , 6rj. 

Obtaining an expression for the limiting coefficients in (10) is complicated by the fact that 
LB (z ; 61, . . . , dr, ) and De (61 . . . , 6,, ) depend on 8. When there is no linear model, however, 
neither of these quantities involve 8, because the functions e~p(Ollx11~)f(z) do not appear, and 
the result is nearly immediate. Note also that there are now rf = R remaining functions to 
choose. The weight in (1 1) becomes 

and the leading terms in O are obtained from the the lowest-order monomials. 

mials up to degree dn - 1 but not all of degree d,, i.e., 
Specifically, in the case of no linear model terms, suppose n is large enough to fit all mono- 

(12) 

There is a remainder of r ,  = n - m( dn - 1, k) monomials from those of degree d, . Let g1 denote 
the vector of monomials of degree up to d, - 1. These must always be included. The remaining 
r,% monomials, denoted by 61, . . . ,6,,, , must be chosen from those of degree d,. When r, = 0, 
i.e., n is exactly big enough to fit all monomials up to degree dn - 1, the limiting coefficients 
c: (x) = lime+o c: (x) are the Lagrange interpolators of degree dn - 1 at t ,  for i = 1 , . . . , R .  

In the case of no linear model, then, the limiting coefficients of the BLUP involve only the 
Lagrange interpolators 

as summarized by the following corollary. 

m(d, - 1, k) 5 12 < m(d,, k). 

8 

Li(2; 91 3 61, . . 4 , ) l  

COROLLARY 1. If model (1) has no linear model terms p’f (x), then the limiting coefficients 
cf ( I )  of the BLUP are given by 

cf (x)  = C ~ ’ ( 6 1 1 .  . 6rn ) ~ i  (2; 91 j 61 t . . . *  6 r n  9 (13) 
6 1 <  ..<6r, 

1 6 1 1 ~  ..=(6,, I=dn 
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(14) 

and 

Thus, even with no explicit linear model functions f(x) in the model (l), we see that the 
limiting BLUP involves the functions g1 (z). We are tacitly assuming that the design points 
t l  , . . . , t ,  are such that at least one of the determinants D(g1 61, . . . , drn)  is nonzero so that the 
weights u~(d1, . . . J r n )  in (14) are not all zero. 

Example I (No linear model). Suppose there are k = 2 explanatory variables and n = 4 obser- 
vations. The three monomials 

(i.e., l ,x1,  and 22) of degree up to 1 can be fitted. In addition, we take r, = 1 of the following 
monomials of degree d, = 2: 

6y0) = (2, o ) ,  or 6y2' = (0, a ) ,  or = (1,1) 

(i.e., x:, or zz, or z1x2). The weight function (11) in Theorem 1 has 

( 2 0 ) ~  (20)' ( 2 0 ) ~  ( 2 0 ) ~  ,, 1 604 
D2(g1 7 64) - - - - = D- (g1,64) - 1 1 1 64! 6q! 

as the leading term in 8 for these three possibilities for (gl , 64); it is O( 0 5 )  for any other set of 
monomials. Let 

denote the determinants in (7) with the indicated functions evaluated at the four two-dimensional 
design points t l ,  t?,  t 3 ,  and t 4 .  Also, 

Thus, the limiting c: ( x )  is a weighted combination of the polynomial interpolators using the 
three sets of monomials and is given by 

where TI = D:o + D& + 2Df1, which could be obtained directly from Corollary 1. 

When linear model polynomial terms d' f( z) are present, the expression for the limiting ct (z)  
is still of the form (13) in Corollary 1. Recall that f( x )  is assumed to include all monomials up to 
a certain degree. Possibly positive limiting weights can result only when we choose 61 , . . . , 6,., in 
Theorem 1 from the lowest-degree monomials not in f( x ) .  These weights are more complicated, 
however, than those given in (14). Example 2 illustrates the additional complications. 
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Example 2 (Linear model present). Let n = 4 and k = 2, as in Example 1. Now, however, 
assume that P’f(2) is the constant model of degree 0, so that the number of monomials in f ( z )  
is rnf = 1, and rf = n - rnf = 3. Notingthat 

D(exp(6’ll;cl12), x6l1 x~~~ &) = D(1, z61 d2,  &) + 6’D(/JxJI2, &, x b 2 ,  zS3) + 0 ( O 2 ) ,  (15) 

the leading term in (1 1) involves fI4 and occurs when 

(i) (dl I = (62 1 = 1 and 1631 = 2 in the first term on the right of (15) or 

(ii) Id,] = 0 and 1621 = (631 = 1 inthe second term. 

(The monomial with 161 = 0 would duplicate 1 if included in the first term and give D = 0.) 
Case (i), with three possibilities for 63, leads to D20, 002, and Dll of Example 1. In case (ii), 
the weight in (1 1) is proportional to 

where T2 = Ti + ( D ~ o  + D02)~/2 and TI = D&, + Di2 + 2D:, as in Example 1. Note that the 
last interpolator can be written as 

so that (16) is a weighted combination of the first three interpolators, as in Example 1. The 
weights differ, however. For instance, the weight for Li (2; 1,21 2 2 ,  2:) is now 

versus @,/TI in Example 1. 

4. ASYMPTOTIC MEAN SQUARED ERROR OF PREDICTION 
We first show that the MSE of prediction J ,  in (4) can be re-expressed in terms of the accuracy 
of interpolation of monomials of all degrees. Suppose we interpolate the monomial x6 using (8). 
the functions in (9), and the design points t 1 . . . , t,. Let Ze (2’6; 61, . . . 6, ) denote this inter- 
polator of zd, i.e., 

(17) 

There are an infinite number of such interpolators of x6, generated by the choices for 61 . . . , 6,, . 
Theorem 2 expresses the MSE of prediction in terms of the accuracy of interpolating x6 with a 
weighted average of its possible interpolators, averaged over all possible monomials x6. 

n 

Z&!(a,S;bl, . . . (  6,J =Ct;L,B(r ;61 ( . . . ,  6J. 
i= l  
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THEOREM 2. The MSE of the BLUP for model (1) is 

where 

61<.--<6,f  

and 20, (61, . . . , drf ) is given by ( 1  1) in Theorem 1. 

Theorem 2 leads to a convenient expression for the limiting MSE as B + 0 when no linear 
model terms are present. We now let 2' ( I ,  6) denote the interpolator of the function x6 using 
the limiting BLUP coefficients c! (x) in (13), i.e., 

n 

i = l  

The next theorem shows that the leading term in t9 of the limiting MSE is O( B d n  ), where d ,  is 
defined in (12). Furthermore, it involves only interpolators Z* (x,6) of z6 for monomials 6 of 
exact degree d,. 

THEOREM 3. As B + 0, the limiting MSE of the BLUP for model (1) with no linear model terms 
is 

When linear model terms are present, a similar result holds, but the coefficient of Bdn in J ,  
is considerably more complicated and will not be given here. 

5. ASYMPTOTIC DESIGN (NO LINEAR MODEL TERMS) 
We use the integrated MSE (IMSE) of prediction as a design criterion. Integration is over the 
region of interest and may be weighted. The IMSE criterion seeks the design that minimizes 

where w (x) is a given weight function. 
In practice, 0 is unknown, but the robustness studies of Sacks, Schiller & Welch (1989) 

suggested that small values of B should be used to choose an experimental design. Thus, we will 
now consider the limiting JIMSE as t9 t 0. We will rewrite the asymptotic expression for J,  in 
Theorem 3 in the form 

Let h( f 1 . . . , t ,  ) denote the integral of h ( I ;  t l  , . . . . t, ) with respect to ui (x). The design problem 
is then to minimize h (t 1, . . . , t, ) in 

J ,  = h ( x : t 1 , .  . . , f , ) @  + O(Bd.+l). 

JIMSE = h(t1.. . . , t n ) @ n  + O ( O ~ ~ + ' )  

over the design points t 1. . . . , t,, . 
When model (1) has no linear model terms, the following theorem shows that the limiting 

C* ( I )  is the same as the solution of a constrained minimization problem and provides a basis 
for a numerical algorithm for constructing optimal asymptotic designs. Recall from Corollary 1 
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that g1 (x) is the vector of monomials of degree at most d, - 1. Similarly, let g2 (2) denote the 
vector of m(d, , k) monomials of exact degree d,. Also, define A, to be the diagonal matrix 
with elements 1/6! in the same order as the m(d,, k) monomials in g2, and let 

GI = {gl(tl), . . . ,gl(tn)}' and G2 = {92(t l ) , . . . , s~( tn)} ' .  (20) 

THEOREM 4. When model (1) has no linear model t e r n ,  the BLUP's limiting coefficient vector 
C* (x) is the solution of the following constrained minimization problem: 

min{G',c(z) - g2(t)}'A2{G;c(x) - g2(x)} subject to G',c(x) = gl(x), (21) 
4.) 

and the leading term h(x ;  t l  , . . . , t n )  of J,, except for the factor 2m, is the quadratic form 

h ( x ; t l , .  . .,L) = {G;c*(z) -g2(x)}'A2{G;~*(x) - g 2 ( ~ ) } .  (22) 

We now use Theorem 4 to write the leading term h(z ;  t 1, . . . , in) of J,, and hence the leading 
term of JIMSE, in a form convenient for numerical optimization. Use of Lagrange multipliers 
produces the equations 

Therefore, the leading term of J I M ~ E ,  found by integrating h( I; t l  , . . . , t ,  ) with respect to w (z), 
is 

A(t1, . . . , t,) = trace (A2M22) 

where 

M;j = gj(x)g(i(x)w(Z) d x ,  i , j  = 1 , 2  (26) s 
is a matrix containing various moments of the degree d, polynomial model with respect to the 
weight function w (x). Often the blocks of Mij are patterned; for example, when LJ (x) is uniform 
over [-1/2, l/2Ik, all the odd moments are zero. 

Thus, the design problem reduces to finding t ;  , . . . , t i  that minimize (25). The algorithm for 
implementing this optimization has the following steps. 
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1. Find d, from (1 2) to determine the monomials that will be implicitly included. 

2. Generate the quantities that do not depend on f 1, . . . , t, : the diagonal matrix A2, the 

3. Apply an optimization algorithm to find the optimal design points t ;  . . . , tk minimizing 

moment matrices Mig in (26), and hence trace (A2M22) in (25). 

A( t l  , . . . , t,) in (25). For each Z1, . . . , 2, considered by the algorithm: 

3.1 Generate GI and Ga in (20). 
3.2 Calculate h( t1 , .  . . ,in). 

To illustrate the qualitative features of optimal asymptotic designs, Figure 1 shows the design 
constructed by the above algorithm for two explanatory variables and nine runs. It can be seen 
that the design is spread throughout the space. Compared with the minimax or maximin designs 
produced by Johnson, Moore & Ylvisaker (1990), however, it is slightly concentrated around the 
edges of the design space to reduce the MSE of prediction where it is largest. 

r I 1 

-0.5 0.0 0.5 

xl 

FIGURE 1: Optimal asymptotic design for two explanatory variables and nine runs. 

We also investigated the efficiency of the optimal asymptotic design for a larger example with 
four explanatory variables and 18 runs. The optimal designs for model (1) were constructed for 
constant ( P O )  or first-order (PO + Plzl + p2z2) linear models and 8 = 1 or 10, i.e., moderately 
large values. Under each of these four scenarios, the IMSE for the asymptotic design can be 
compared with the optimal IMSE. Table 1 gives the relative efficiencies of the asymptotic design. 
Efficiency remains high when 6 is not small. Moreover, although the asymptotic design does not 
explicitly include any linear model terms, efficiency is maintained when a first-order linear model 
should be included. 

TABLE 1 : Percent efficiency of the optimal asymptotic 18-run design for four explanatory variables. 
Efficiency is relative to the design optimal for a given linear model and value of 8. 

8 
Linearmodel 1 10 

Constant 99.6 96.1 
First order 94.6 96.3 
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In contrast, the designs optimal for large 8 have very poor efficiency when 0 is small. Using 
h(t1, . . . , t,) in (25) as the criterion, relative to the optimal asymptotic design, the designs for 
0 = 10 have efficiencies of .3% for the constant model and .1 % for the first-order model. 

6. ASYMPTOTIC DESIGN FOR ONE-DIMENSIONAL INPUT 

In the case of only one input variable, the optimal asymptotic design can be written down al- 
most immediately. Let 1; (z) denote the asymptotic interpolator of zn using the n functions 
1 ,2 , .  . . , zn-1 and the n design points t l  . . . t,. In this one-dimensional case, Theorem 3 
leads to a simple expression for the asymptotic integrated mean squared error, viz. 

regardless of the explicit polynomial terms ,B'f(z) in (1). The design problem then is to choose 
t l ,  . . . , t ,  such that 

j {Z ; ( . )  - 2"}2w(x) dz 

is minimized. It is well known that the minimum of this integral occurs when P, (z) = 1; (z) - 
x" is proportional to the polynomial of degree n orthogonal with respect to w (z). As 1; (x) 
interpolates zn at ti, we have P,(ti) = 0, implying that t l ,  . . . , t ,  must be the zeros of the 
orthogonal polynomial of degree n with respect to w (z) . 

Suppose,forinstance, thatw(z) isproportiondto ( 1 / 2 - ~ ) ~ ( 1 / 2 + x ) ~ .  Itis well hownthat 
the Jacobi polynomials P;","(x) are orthogonal on [-1/2,1/2] with respect to W ( Z )  (see, e.g., 
Ghizztti & Ossicini 1970, p. 58). When w ( x )  is uniform (u = b = 0). then P,(z) = P,(O'O)(;t.) 
is the Legendre polynomial of degree n,  recursively defined by 

Po(.) = 1, P1(x) = 2z 

and 

nP,(z )  = (2n - 1)2zP,-1(z) - ( n  - 1)Pn-2(2) 

for n 2 2.  

7. NUMERICAL ILLUSTRATION OF THE RESULTS 

The results in Section 3 show that the BLUP interpolator with the Gaussian correlation func- 
tion (2) becomes a polynomial as 8 + 0. Thus, if the true function y( z) is a low-order polyno- 
mial, the BLUP should be able to predict it very accurately for sufficiently small 8. To illustrate 
this, let y( z) be a polynomial of two-dimensional input, with terms up to degree 5: 

5 35 5 15 5 2  9 + -21 - -22 + -21x2 + 192; - -z: - -z1z2 Y(X1 , .2) = 
2 2 2 2 2 

The contour and perspective plots in Figure 2 show that this function is moderately nonlinear 
and representative of the fairly complex but smooth functions that often arise in computer exper- 
iments. 
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FIGURE 2: Polynomial function y( x )  in (27): (a) Contour plot and (b) Perspective plot. 

With n = 21 design points, we could fit, say by least squares, a linear model with all 21 
monomials up to degree 5 [put m(5,2)  in (5 ) ] .  In this way the function could be predicted with- 
out error. For example, the 21-run design in Figure 3(a) is a Latin hypercube sample (McKay, 
Conover & Beckman 1979). Latin hypercubes are a popular class of designs for computer exper- 
iments. 

Without explicitly assuming a functional form, we can also achieve essentially a perfect fit 
here with the same design and data. Suppose we take model (1) with no trend terms, i.e., 

I '(z) = Po + Z ( z ) .  

When we predict y(z) at the21 x 21 grid {0,1/20, . . . , 20/20}2 of x1 and x? values, we obtain 
the first column of root mean squared error (RMSE) values in Table 2. It is seen that the RMSE 
decreases with smaller 6. At 6 = .05, the RMSE is .0026; this is .03% of the range in the true 
function values. Smaller values of 6 should predict with even better accuracy, but 6 = .05 was 
about the smallest value that avoided ill-conditioning. 

Even better results are obtained in conjunction with the optimal 21-run asymptotic design 
generated by the algorithm in Section 5 and shown in Figure 3(b). The second column of RMSE 
values in Table 2 show the asymptotic design performs uniformly better here than the Latin 
hypercube. At 6 = .05, the RMSE is only .W3% of the range in the true values. 

In practice, we would not know that y( z)  is a moderate-degree polynomial and hence that a 
small value of 6 leads to the best prediction accuracy. With the data from the asymptotic design, 
maximum likelihood gives estimates 6 ,  = .055 and 62 = .079 (21 and x2 are allowed to have 
different 6 values). These fairly small estimates lead to the RMSE value of .0003 reported in 
Table 2, i.e., a highly accurate predictor of the polynomial function. 
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TABLE 2: Root mean squared error of prediction for various values of 6 h the BLUP with coefficients 
given by (3). The polynomial function is in (27) and the nonpolynomial function is in (28). 

RMSE of prediction 

Polynomial function Nonpolynomial function 

6 for Latin Asymptotic Latin Asymptotic 
predicting hypercube design hypercube design 

.05 DO26 .0002 .151 .053 

.1 .0053 .oO04 .122 .052 
1 .o .05 13 .0070 ,103 .050 

10.0 .3906 .2342 .414 .25 1 

MLE .0064 .0003 .162 .08 1 
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FIGURE 3: Designs for two explanatory variables and 21 runs: (a) Latin hypercube sample and (b) 
Optimal asymptotic design. 

Also in practice, a computer model need not be well approximated by a low-degree polyno- 
mial. To look at the implications of our results in this situation, consider a second, nonpolynomial 
function, 

{ 30 + 5x1 s in (5q) )  { 4 + exp( - 5 ~ 2 ) )  - 100 
6 , 0 5 x1,zz 51. (28) Y(Zl10) = 

Other than some rescaling, this is the same function used by Welch, Buck, Sacks, WYM, 
Mitchell Lk Morris (1992) to illustrate the type of nonlinear behaviour that might occur in a 
computer model. Figure 4 gives contour and perspective plots of this function. The features are 
qualitatively similar to those of the polynomial (27). The two functions also have similar ranges 
of y values, facilitating comparison of their prediction RMSE values. [The coefficients of the 
polynomial (27) were chosen with these aims in mind.] 
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0.0 0.2 0.4 0.6 0.8 1.0 
xl 

FIGURE 4: Nonpolynomial function y( Z) in (28): (a) Contour plot and (b) Perspective plot. 

We again include no trend terms in model (1). Data are generated from (28), using the 21-run 
designs in Figure 3, and prediction is at the same 21 x 21 grid. The third and fourth columns 
of RMSE values in Table 2 show that prediction is less accurate than for the polynomial (27), 
but still fairly good The best RMSE of prediction values are about .5% of the range in y. For 
both designs, as I9 becomes smaller and the BLUP approaches a low-degree polynomial, there 
is no reason why accuracy should improve now. The best value of I9 appears to be a moderate 
value of about 1, particularly for the Latin hypercube design. Interestingly, though, the optimal 
asymptotic design again substantially outperforms the Latin hypercube. Also curious is the fact 
that, in conjunction with the asymptotic design, the BLUP does fairly well for small values of 8. 
At 6 = .05, prediction accuracy is not quite optimal, but better than that of the BLUP with 
maximum likelihoodestimates (I91 = 2.54 and I92 = 2.24). 

8. CONCLUSIONS 

The results presented here follow from some special properties of the Gaussian correlation func- 
tion in (2). A power series expansion of the exponential in the Gaussian correlation function 
generates polynomial terms. [This is a critical step in the proof of Theorem 1; see (31).] The 
low-degree terms dominate as I9 t 0. In the case of no linear model terms in the model (I), the 
BLUP is an interpolator using basis functions from the correlation function. Thus, the BLUP 
is also asymptotically a polynomial. Under these conditions, if y( r ) is a polynomial, it can be 
approximated essentially without error. 

To realize this result for polynomial y ( r ) ,  a small value of I9 has to be selected. In a nu- 
merical example in Section 7, maximum likelihood estimation does indeed choose a fairly small 
value. This empirical work is backed up by analysis of the likelihood function by Huang (2000), 
who gave examples for one-dimensional x and some more general results for equally spaced 
one-dimensional designs. These results suggest that if y(s) is a polynomial, the likelihood is 
maximized when I9 + 0, provided the design has more than twice as many data points as the 
degree of the polynomial. For instance, if y(s) is quadratic in x, then I9 + 0 is the maximum 
likelihood estimate if there are at least n = 5 points in the design. 

The theoretical relative efficiencies in Table 1 show that the asymptotic optimal design per- 
forms very well, even when B takes a moderately large value. In contrast, designs optimal for 
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moderately large 0 perform poorly in the asymptotic setting. These theoretical results are sup- 
ported by the numerical root mean squared errors of prediction in Table 2. The optimal asymp- 
totic design performs well for both the polynomial and nonpolynomial test functions. The algo- 
rithm for constructing optimal asymptotic designs is practical for problems with up to about 10 
explanatory variables and 100 runs. Further research is needed to handle larger designs. 

APPENDIX A: PROOFS 

Proof of Theorem 1. Recalling (3), cg (x) is found by solving 

Let 

which is simply the first matrix in (29) with the design points denoted by sl, . . . , sn in the rows 
to distinguish rows and columns below. The coefficients Ce (x) are obtained using CramQ’s rule 
so that 

where B is obtained from A by replacing the appropriate column in -4 by the right-hand side 
of (29). 

The key step is to show that 

where fe(z) = exp(e(lzl12)f(x). With this result, c ! ( x )  in Theorem 1 follows when ti is re- 
placed by 2 in ( A (  and then each term is divided and multiplied by the determinant D. 

To show (30). we first write 

&(s, t )  = e~p(-~11s11~ - elltl12)Qe(sl t ) ,  

where 

Note that each value of h in the first sum generates terms in the second sum with IS( = h, and 
s6t6 occurs (Sl!/6! times. Then, 
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where 

c ;  
61<  <6., 
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fe ( t i )  . . . f e ( t n )  
sz: . . . sp1 

b,! ' 
$ f  6 , f  j = 1  

t f ]  . . . t? rf fi (2Q)I6i1 

'I 6'1 2 ,  ' .  32 
. . .  t n  p f  

1 
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fe ( t  1 ) . . . 

C =  

We first expand the determinant of the (mf + n) x (mf + n ) matrix C by a Laplace expansion 
using the last n columns. Since the mf x mf upper-left block is all zeros, only selections 
involving all of the first mf rows plus ~f = n - rnf of the remaining rows contribute to the 
expansion. Hence, 

'f a,< . . .  < a  

Proof of Theorem 2. Recalling (31), we may write 

and 
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