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Abstract 

The stereospecific synthesis of  the 1,3-disubstituted benzo[a]quinolizidine 6 is described starting from the 
easily accessible 3-arylated-6-substituted oxazinone 2. The skeleton is elaborated via an intramolecular aromatic 
substitution on the 0t-amino aldehyde obtained by treatment of  the intermediate piperidine 4 with glycidol and 
consecutive oxidative cleavage of  the diol. © 1999 Elsevier Science Ltd. All rights reserved. 
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With numerous examples we have already illustrated the usefulness of 3,5-dichloro-2H-1,4-oxazin- 
2-ones (e.g. 1) for the synthesis of complex heterocyclic frameworks leading to natural products and 
analogues. 1 These compounds have turned out to be outstanding starting materials in the synthesis of, 
inter alia, various functionalised pyridines. 2 

In this communication, we wish to describe the use of compound 1 in the stereospecific synthesis of the 
1,3-disubstituted benzoquinolizidine 6, which displays pharmacological equivalence with the interesting 
class of biologically active indoloquinolizidine compounds (Scheme 1). 

Our synthetic approach starts with the addition-elimination process on the previously described 6- 
methyl 3,5-dichloro-2H-1,4-oxazin-2-one 1 la'b with veratrole and AICI3 in dichloromethane at room 
temperature yielding the 3-arylated oxazinone 2 in 91%. 1i'3 This was converted into the 2-arylated 
pyridine 3 via Diels-Alder reaction and concomitant loss of carbon dioxide. The cycloaddition with 
methyl propiolate at 80°C turned out to be highly regioselective providing 90% of the 3-substituted 
pyridine (and only 9% of the regioisomer). Reductive dehalogenation and concomitant conversion into 
the piperidine 4 by treatment with hydrogen and Pd on carbon and PtO2 as the catalyst system in 
acetic acid containing K2CO3 (to capture the liberated HC1) at 1 atm yielded compound 4 in 92%. 
As expected IH NMR analysis revealed an all-cis relationship for this 2,3,5-substituted piperidine 4. 4 
A three-step sequence was further used to construct the benzoquinolizidine framework. 5 The piperidine 
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Scheme I. Ar=3,4-dimethoxyphenyl. Reagents and conditions: (i) veratrole, A1Cl3, CH2CI2, rt; (ii) methyl propiolate, 80°C; 
(iii) H2, Pd/C, PRO2, l atm, K2CO3, CHaCOOH, rt; (iv) glycidol, 100°C; (v) NalO4, CHCI3:H20 l : l ,  pH=8, 0°C-rt; (vi) 6N 
HCI, rt; (vii) H2, Pd/C, MeOH, HCI, 1 arm, rt 

4 was reacted with glycidol at 100°C followed by cleavage of the vicinal diol with NalO4 in a two- 
phase chloroform/water system affording the tx-amino aldehyde. The latter was cyclised upon treatment 
with 6N HCI yielding the 1,3-substituted-7-hydroxybenzo[a]quinolizidine 5 (72% overall yield). This 
cyclisation turned out to be completely stereoselective providing only one diastereoisomer pair depicted 
in Scheme 1. According to IH and 13C NMR analysis (CDCI3) 5 has a trans-fused quinolizidine system 
with the three substituents (1-COOCH3, 3-CH3 and 7-OH) taking an axial position. The low absorption 
value of the Hllb proton of 5 (3.41 ppm in comparison with 4.38 ppm for the analogous cis-fused 
quinolizidine system 6, vide infra) and the presence of strong Bohlmann bands in the IR-spectrum 
corroborate a trans-fused benzoquinolizidine. 6 Also the high absorption value for Ct lb in the 13C NMR 
spectrum of 5 (63.0 ppm in comparison with 59.0 ppm for the analogous cis-fused quinolizidine system 
6; vide infra) together with a small 1JcH value (126 Hz), as well as the IJcH values detected for C6 
(129 and 139 Hz) confirm a trans-fused system. The two smaller IJcH values of Cllb and C6 are due 
to the coupling with the protons H11b and H6 having a trans-diaxial relationship with the nitrogen lone 
pair thus establishing a trans-fused quinolizidine. 7 As no large trans-diaxial 3JH_H values are found 
for Hi, HE, H3. H4, H6 and H7 the three substituents (1-COOCH3, 3-CH3 and 7-OH) adopt an axial 
position. Moreover, it is known from the literature 6 that an axial 3-CH3 absorbs at lower fields (5:1.08 
ppm) and has a larger J value (5:JCH3,H3eq=7 Hz) compared with an equatorial one (for the analogous 
benzoquinolizidine 6 bearing an equatorial 3-CH3 we found: 0.89 ppm and JCH3,H3eq=6.5 Hz; vide infra). 
Only this configuration allows an intramolecular hydrogen bond between the 7-OH and the nitrogen lone 
pair. Indeed, no shift of the hydroxyl absorption (4.42 ppm) is detected in the IH NMR spectrum of 5 
upon extreme dilution. 

The stereospecific ring closure can be rationalised as follows: after protonation of the aldehyde 
group (Scheme 2) a stabilising five-membered ring intermediate A is formed. Nucleophilic attack of 
the aromatic ring is only possible if the piperidine ring adopts a chair conformation with the aryl group 
in an equatorial position, and the methyl and ester groups in an axial position. A half chair is formed 
during ring closure (B) resulting in a trans-fused quinolizidine 5 with axial orientation of the substituents 
allowing the intramolecular hydrogen bond. 

After hydrogenolysis 8 of the 7-OH the trans-fused system is inverted into a cis-fused quinolizidine 
6. Due to the absence of the intramolecular hydrogen bond, the ester and methyl groups now take the 
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energetically favoured equatorial position. The absence of strong Bohimann bands in the IR-spectrum of 
6 and the high absorption value of Hi tb (4.38 ppm) in the JH NMR spectrum 6 as well as the low 6-value 
(59.0 ppm) and the large J value (IJcH=139 Hz) of Clib in the 13C NMR spectrum 7 are indicative for 
a cis  benzoquinolizidine. Three large diaxial 3JH_ H values are found for Hi, H2, H3 and Ha indicating 
the two substituents (1-COOCH3 and 3-CH3) adopt an equatorial position. The low ~i-value and small J 
value of the 3-CH3 (0.89 ppm and 6.5 Hz) confirm an equatorial position. 6 

We can conclude that the described methodology opens a new way for the stereospecific synthesis 
of  various 1,3-substituted benzo[a]quinolizidines as different C3 substituents can be introduced starting 
from the suitable six-substituted oxazinone, l a,b The nature of the C I substituent depends upon the choice 
of the dienophile during the Diels-Alder reaction. 
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