Synthesis and structures of some silylallyl-lithium or -potassium complexes

DALTON

Peter B. Hitchcock, Michael F. Lappert, Ming-Por Leung, Dian-Sheng Liu, Thomas C. W. Mak and Zhong-Xia Wang

Received 3rd September 1998, Accepted 15th January 1999

The η^3 -1,3-bis(silyl)allyllithium [Li $\{\eta^3$ -CH(CHSiMe₂Bu^t)(CHSiMe₂R)}(tmen)] (R = Bu^t or Me) and 1,3-bis(trimethylsilyl)cyclohexenyllithium [Li $\{C(SiMe_3)CHC(SiMe_3)(CH_2)_2CH_2\}$ (tmen)] complexes were obtained by lithiation of the appropriate 1,3-bis(silyl)propene or 1,3-bis(trimethylsilyl)cyclohexene. The lithium complexes were transformed into the potassium complexes [K $\{CH(CHSiMe_2Bu^t)_2\}$] or [K $\{C(SiMe_3)CHC(SiMe_3)(CH_2)_2CH_2\}$] by reaction with KOBu^t. A dimethylsilyl *ansa*-bridged bis(cyclohexenyl)dipotassium complex [$\{K_2\{(\eta^3-C_6H_4SiMe_3-6)_2SiMe_2\}(thf)_3\}_{\infty}$] was obtained by a similar route. Single crystal structures of three complexes have been determined.

Allyls and substituted allyls of alkali metals have been the subject of extensive investigations of their chemistry, ¹⁻⁶ molecular structures by X-ray crystallography, ⁷⁻¹³ solution structures by NMR spectroscopy ¹⁴⁻¹⁸ and by calculation. ¹⁹⁻²⁴ These compounds display an astonishing variety of properties that vary with substituents, temperature and especially the nature of coligands.

The allyl ion is one of the simplest π -electron systems. Structural studies of allylalkali metal compounds showed interesting features, ⁷⁻¹³ which were recently reviewed by Weiss. ¹³

The structures of α-silylallyl anions in solution have been extensively studied by Fraenkel and co-workers ^{17,18,25} using NMR spectroscopy. The (trimethylsilyl)allyl anion seemed to adopt exclusively an *exo* orientation. This is to be contrasted with simple alkylallyl anions, which tend to exist as a mixture of *exo* and *endo* isomers, with the latter generally predominating. ^{26,27} A neutral ligand, such as tmen or pmdeta [(Me₂NCH₂-CH₂)₂NMe], when co-ordinated to 1,3-bis(trimethylsilyl)allyllithium or 1,1,3-tris(trimethylsilyl)allyllithium also adopted an *exo* orientation in solution. The crystal structure of crystalline [Li{C₃H₃(SiMe₃)₂-1,3}(tmen)] showed that it has the *exo*,*exo* orientation. ¹¹

In a preliminary publication ²⁸ we have briefly described an exploration of the synthesis and reactions of 1,3-bis(silyl)allyl-lithium or -potassium compounds. We now provide: (i) details on these compounds, (ii) the synthesis of related compounds and (iii) structures of crystalline complexes.

Results and discussion

The two 1,3-bis(silyl) propenes RMe₂SiC(H)=CHCH₂SiMe₂Bu^t $(R = Bu^t 2a \text{ or } Me 2b)$ were prepared from the appropriate 3-silylpropene $C_3H_5SiMe_2R$ (R = Bu^t 1a or Me 1b) (i in Scheme 1) by successive lithiation and quenching with Bu^tMe₂SiF. Although 1a was a known compound, having been synthesized by the reaction of Bu^tMe₃SiCl with CH₂=CHCH₂MgBr,²⁹ no physical or analytical data had been reported. We obtained 1a from Bu^tMe₂SiF and CH₂=CHCH₂MgBr. Each propene 1a or 1b was lithiated by the addition of LiBuⁿ to a stirred solution in the presence of tmen in hexane, and then treated in situ with Bu^tMe₂SiF to form the appropriate 1,3-bis(silyl)propene 2a or **2b.** 1,3-Bis(trimethylsilyl)cyclohexene **8** was prepared similarly (i-iii in Scheme 2). Thus, 3-bromocyclohexene was converted into 3-trimethylsilylcyclohexene 6 by successive treatment with magnesium and quenching with Me₃SiCl; and 6 upon lithiation and then addition of Me₃SiCl afforded 8.

The silylallyllithium compound [Li $\{\eta^3$ -C₆H₈(SiMe₃)}(tmen)] 7 and the 1,3-bis(silyl)allyllithium complexes [Li $\{\eta^3$ -CH(SiMe₂Bu^t)CHCH(SiMe₂R)}(tmen)] (R = Bu^t 3a or Me 3b) and [Li $\{C_6H_7(SiMe_3)_2$ -1,3}(tmen)] 9 were prepared from the appropriate silyl- or bis(silyl)-alkene. *n*-Butyllithium was added to a stirred solution of the silyl-substituted alkenes 2a, 2b, 6 or 8 and tmen in hexane at room temperature and the mixture was stirred overnight (and refluxed for 2 h for the case of 2a) to yield the silylallyllithium—tmen complexes 3a, 3b (ii in Scheme 1), 7

$$RMe_{2}Si \xrightarrow{i} RMe_{2}Si \xrightarrow{i} RMe_{2}Si \xrightarrow{i} RMe_{2}Si \xrightarrow{i} SiMe_{2}Bu^{t}$$

$$1a R = Bu^{t}$$

$$1b R = Me$$

$$2b R = Me$$

$$3a R = Bu^{t}$$

$$3b R = Me$$

$$iii R = Bu^{t}$$

$$SiMe_{2}Bu^{t}$$

$$K(py)_{n} \xrightarrow{V} Bu^{t}Me_{2}Si \xrightarrow{V} SiMe_{2}Bu^{t}$$

$$K = Bu^{t}$$

$$SiMe_{2}Bu^{t}$$

$$K = Bu^{t}$$

$$K = Bu^{t}$$

$$SiMe_{2}Bu^{t}$$

$$K = Bu^{t}$$

$$K = Bu^{$$

Scheme 1 i, LiBuⁿ, tmen, hexane, 0 °C to room temperature, 12 h, then Bu^tMe₂SiF, room temperature 1 h and reflux 6 h; ii, LiBuⁿ, tmen, hexane, -78 °C to room temperature, 12 h; iii, KOBu^t, hexane, room temperature, 4 h; iv, pyridine or thf, hexane; v, pyridine.

^a The Chemistry Laboratory, University of Sussex, Brighton, UK BN1 9QJ. E-mail: M.F.Lappert@sussex.ac.uk

^b Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

Scheme 2 i, Mg, Et₂O, Me₃SiCl, 0 °C, 12 h; ii, LiBuⁿ, tmen, hexane, room temperature, 12 h; iii, Me₃SiCl, hexane, -78 °C to room temperature, 4 h; iv, LiBuⁿ, tmen, hexane, room temperature, 12 h; v, KOBu^t, hexane, room temperature, 12 h; vi, Me₂SiCl₂, hexane, -78 °C to room temperature, 12 h then LiBuⁿ, tmen, room temperature, 12 h and then KOBu^t, 12 h, recrystallisation in thf-hexane.

or 9 (ii or iv in Scheme 2). Upon treatment of 3a or 9 with an equimolar amount of KOBut in hexane at room temperature the corresponding tmen-free potassium complex 4 (iii in Scheme 1) or 10 (v in Scheme 2) was precipitated. From 3b and KOBut under the same conditions only an unidentified brown solution was obtained.

Crystallisation of complex 4 from hexane in the presence of pyridine (py) or thf yielded (iv in Scheme 1) the adducts $[K\{\eta^3 CH(CHSiMe_2Bu^t)_2$ [L] (L = py **5a** or thf **5b**). The crystalline dimethylsilyl ansa-bis(silylcyclohexenyl)dipotassium complex $[K_2[(\eta^3-C_6H_4SiMe_3-6)_2SiMe_2](thf)_3\}_{\infty}]$ 11 was obtained from 7 by several steps in a one-pot reaction sequence. A dimethylsilylbridged bis(cyclohexene), presumably formed from 7 and Me₂-SiCl₂, was lithiated by LiBuⁿ and tmen; the product was further treated with KOBut and crystallisation in the presence of thf gave 11.

The identity of each of the air-stable silvl-substituted alkenes 1a, 2a, 2b, 6 and 8 was established by their ¹H NMR, IR and (for 1a, 2a and 2b) GC-MS spectra, as well as (for 2a and 2b) elemental analysis. The lithium complexes 3a, 3b, 7 and 9 were obtained as air-sensitive, colourless crystals, soluble in hexane or pentane and purified by crystallisation from hexane or pentane. They were characterised by elemental analyses (3a and 3b) and ¹H (3a, 3b, 7 and 9) and (for 3a and 3b) ¹³C-{¹H}, ⁷Li-{¹H} and ²⁹Si-{¹H} NMR spectra. These data were consistent with the formulae shown in Schemes 1 and 2. Thus, the ¹H NMR spectra in C_6D_6 showed the η^3 co-ordination mode of each allylic ligand; in addition, complex 3a (but not the less hindered **3b)** showed the presence of magnetically inequivalent methyls attached to the same silicon atom. This is attributed to the greater restriction to rotation about the silicon-allyl-carbon bond in the more hindered of the two compounds. The same distinction between **3a** and **3b** was also observed in the ¹³C NMR spectrum. It may be that at a lower temperature the SiMe₂Bu^t methyls in **3b** would also have shown inequivalence.

The solid white (4) or yellow (10) potassium complexes were insoluble in pentane or hexane. Their pyridine (5a) or thf (5b or 11) adducts were hydrocarbon-soluble, crystalline solids. They were characterised by elemental analyses (4, 5a and 5b) and ¹H (4, 5a, 5b, 10 and 11), ${}^{13}\text{C}-\{{}^{1}\text{H}\}\ (4, 5a \text{ and } 5b)\ \text{and } {}^{29}\text{Si}-\{{}^{1}\text{H}\}\ (5a)$ NMR spectra. The ¹H NMR spectrum of each neutral donor adduct 5a and 5b was consistent with the η^3 -allylic coordination mode in the non-co-ordinating C₆D₆ or C₆D₅CD₃. However, when the ¹H NMR spectrum of the allylpotassium complex 4 was recorded in [2H₅]pyridine it showed three sets of different allyl proton signals. This is attributed to the coordination of pyridine to potassium (v in Scheme 1) to yield the σ -allylmetal complex $[K\{C(H)(SiMe_2Bu^t)C(H)CHSiMe_2Bu^t\}$ - $(py)_n$ (5c $n \ge 2$), due to steric repulsion between the coordinated pyridines and the SiMe₂But group. Attempts to crystallise the adduct 5c by adding pyridine to 4 in hexane failed. The ¹H NMR spectrum of complex 10 in C₆D₆ (2 parts) and C₅D₅N (1 part) was somewhat similar to that of 4, but a

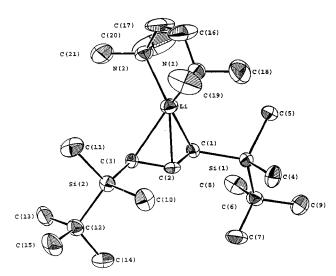


Fig. 1 An ORTEP³⁰ representation of the molecular structure of crystalline complex 3a.

little more complicated. It showed two sets of trimethylsilyl signals and two sets of allyl proton signals, respectively, in a ratio of 1 to 3. This may have been due to the formation of a mixture of σ-allylmetal complexes 10a [10·npy] (1 part) and 10b $(10 \cdot mpy)$ (3 parts) $(n \neq m)$.

Me₃Si
$$K(py)_n$$
 SiMe₃

Me₃Si
 $K(py)_m$ SiMe₃

An interesting difference between the lithium compound [Li $\{\eta^3$ -CH(CHSiMe₂Bu^t)₂\}(tmen)] **3a** and the related potassium compounds 4, 5a and 5b is that each of the latter showed singlets, rather than the two singlets for 3a, in their ¹H NMR spectra (see Experimental section). This may be because the potassium complexes are loose ion pairs, with weak potassium ligand contacts.

Crystal structures of the bis(silyl)allyllithium complexes 3a and 9

The molecular structures with the atom numbering schemes of the crystalline complexes 3a and 9 are shown in Figs. 1 and 2, respectively. Selected bond distances and angles are listed in Tables 1 and 2.

Crystalline complex 3a is a monomer with an η^3 -coordination mode of ligand to metal and exo, exo orientation of the tert-butyldimethylsilyls. The lithium atom lies almost symmetrically above the allyl group, the Li-C(2) distance of 2.11(2) Å being slightly shorter than the Li–C(1) and Li–C(3)

Table 1 Selected intramolecular distances (Å) and angles (°) for complex 3a

Li-N(1)	2.13(2)	Li-N(2)	2.09(2)
Li–C(1)	2.23(2)	Li–C(2)	2.11(2)
Li-C(3)	2.22(2)	Si(1)–C(1)	1.844(7)
C(1)-C(2)	1.415(10)	Si(2)-C(3)	1.848(8)
C(2)-C(3)	1.408(9)		` '
N(1)-Li-N(2)	86.2(6)	N(1)–Li–C(1)	133.0(6)
N(1)– Li – $C(2)$	130.4(7)	N(1)–Li–C(3)	134.6(8)
N(2)-Li-C(1)	119.9(7)	N(2)-Li-C(2)	143.4(8)
N(2)-Li-C(3)	119.1(6)	C(1)-Li-C(2)	38.0(4)
C(1)– Li – $C(3)$	69.0(5)	C(2)–Li– $C(3)$	37.8(4)
Li-N(1)-C(16)	103.1(7)	Li-N(2)-C(17)	104.0(7)
Li-C(1)-Si(1)	124.9(5)	Li-C(1)-C(2)	66.6(6)
Li-C(2)-C(1)	75.4(6)	Li-C(2)-C(3)	75.4(6)
Li-C(3)-C(2)	66.8(5)	Li-C(3)-Si(2)	126.4(5)
C(1)– $C(2)$ – $C(3)$	126.5(6)	() ()	

Table 2 Selected intramolecular distances (Å) and angles (°) for complex $\mathbf{9}$

Li(1)–N(2)	2.145(7)	Li(1)–C(2)	2.395(7)
Li(1)–C(6)	2.428(7)	C(2)-C(3)	1.541(5)
C(1)-Li(1)	2.140(6)	Li(1)-N(1)	2.116(7)
C(2)– $Si(2)$	1.305(4)	C(6)-Si(1)	1.792(4)
C(1)-C(6)	1.379(5)	C(1)–C(2)	1.412(4)
C(3)-C(4)	1.460(6)	C(4)-C(5)	1.490(5)
C(5)-C(6)	1.537(6)		` ^
N(1)-Li(1)-C(1)	152.2(4)	N(1)-Li(1)-N(2)	86.0(2)
C(1)-Li(1)-N(2)	121.5(3)	N(1)-Li(1)-C(2)	129.3(3)
N(2)-Li(1)-C(2)	130.6(3)	N(1)-Li(1)-C(6)	126.6(4)
N(2)-Li(1)-C(6)	127.3(3)	C(2)-Li(1)-C(6)	63.20(17)
C(1)-C(2)-C(3)	112.8(3)	C(6)-C(1)-C(2)	129.8(3)
C(1)-C(2)-Si(2)	125.4(3)	C(3)-C(2)-Si(2)	121.1(2)
Si(2)-C(2)-Li(1)	118.2(2)	C(4)-C(3)-C(2)	114.9(3)
C(3)-C(4)-C(5)	114.8(4)	C(4)-C(5)-C(6)	113.6(4)
C(1)-C(6)-C(5)	115.2(3)	C(1)-C(6)-Si(1)	126.6(3)
C(5)-C(6)-Si(1)	116.6(3)	Si(1)-C(6)-Li(1)	121.3(2)

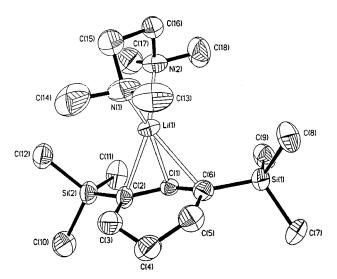


Fig. 2 An ORTEP representation of the molecular structure of crystalline complex 9.

distances, average 2.22(3) Å; this corresponds to the situation found in other allyllithium compounds $^{7-13}$ and most allyltransition metal complexes. 31 The C(1)–C(2) and C(2)–C(3) bond lengths are closely similar, average 1.41(2) Å. Comparison with the structure of $[\text{Li}\{C_3\text{H}_3(\text{SiMe}_3)_2-1,3\}\{\text{tmen}\}]^{11}$ reveals that complex 3a has the more symmetrical structure.

The molecular structure of crystalline complex 9 shows it also to be monomeric. Compared with 3a, the structure of 9 has somewhat longer Li–C distances, the central Li–C [C(1)] bond of 2.140(6) Å being shorter than the Li–C(Si) [C(2) and C(6)]

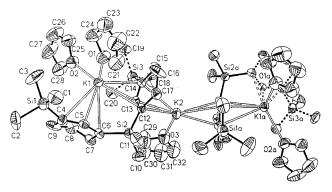


Fig. 3 An ORTEP representation of the structure of crystalline complex 11.

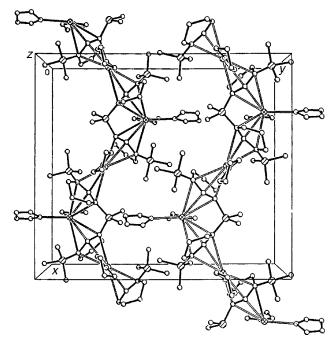


Fig. 4 The unit cell of crystalline complex 11.

bonds, average 2.412(7) Å. Noteworthy features are the very different bond distances for C(1)–C(2) [1.412(4) Å] and C(1)–C(6) [1.379(5) Å] in complex **9**, corresponding to a formal double and single bond, respectively. The C(2)–C(1)–C(6) angle of 129.8(3)° is almost the same as that subtended at the central carbon of [Li{ η^3 -CH(CHSiMe₃)₂}(tmen)] [129.4(4)°],¹¹ but is bigger than that in **3a** [126.5(6)°]. Perhaps **9** is better formulated as a σ - (or η^1)-allyllithium, rather than an η^3 -allyllithium compound.

Crystal structure of the dimethylsilyl-ansa-bis(cyclohexenyl)potassium complex 11

The molecular structure of the crystalline complex 11, with the atom numbering scheme, is shown in Fig. 3, the unit cell in Fig. 4 and selected bond distances and angles in Table 3. The crystalline complex 11 is a polymer with different co-ordination environments for successive potassium atoms, one co-ordinated by the *ansa*-bridged bis(cyclohexenyl) and the other between two such ligands. The three disordered thf molecules in an asymmetric unit of the cell have a half occupancy. The potassium atoms make contact with the allyl units of the cyclohexenyls in an asymmetric manner, the K–C distances ranging from 2.932(6) to 3.350(7) Å, which are comparable to those in $[K\{\eta^4-N(SiMe_2Bu^t)C(Bu^t)(CH)_3SiMe_2Bu^t\}]_{\infty}^{28}$ or $[\{K[C(Si-Me_3)_3]\}_{\infty}]$. The various C–C distances of the allyl units of the cyclohexenyls are in the narrow range 1.374(8) to 1.386(9) Å.

Table 3 Selected intramolecular distances (Å) and angles (°) for

$\begin{array}{c} K(1)-O(2) & 2.726(7) & K(1)-O(1) & 2.734(8) \\ K(1)-C(13) & 2.932(6) & K(1)-C(5) & 2.942(6) \\ K(1)-C(12) & 3.141(7) & K(1)-C(6) & 3.201(7) \\ K(1)-C(14) & 3.329(7) & K(1)-C(14) & 3.350(7) \\ K(1)-Si(2) & 3.727(3) & K(2)-O(3) & 2.706(9) \\ K(2)-C(13) & 2.951(6) & K(2)-C(14) & 3.084(7) \\ K(2)-C(12) & 3.184(7) & K(2)-C(15) & 3.412(11) \\ K(2)-C(17) & 3.484(10) & C(4)-C(5) & 1.386(9) \\ C(4)-C(9) & 1.520(10) & C(5)-C(6) & 1.380(9) \\ C(6)-C(7) & 1.510(9) & C(7)-C(8) & 1.493(12) \\ C(8)-C(9) & 1.533(13) & C(12)-C(13) & 1.374(8) \\ C(12)-C(17) & 1.498(9) & C(13)-C(14) & 1.381(9) \\ C(14)-C(15) & 1.336(10) & C(14)-Si(3) & 1.799(8) \\ C(15)-C(16) & 1.476(12) & C(16)-C(17) & 1.453(12) \\ O(2)-K(1)-O(1) & 109.2(2) & O(2)-K(1)-C(13) & 116.1(2) \\ O(1)-K(1)-C(13) & 118.4(2) & O(2)-K(1)-C(5) & 93.48(19) \\ O(2)-K(1)-C(12) & 142.0(2) & O(1)-K(1)-C(12) & 99.8(2) \\ C(13)-K(1)-C(6) & 124.1(2) & O(1)-K(1)-C(12) & 99.8(2) \\ C(13)-K(1)-C(6) & 124.1(2) & O(1)-K(1)-C(6) & 15.52(17) \\ C(12)-K(1)-C(6) & 58.20(18) & O(2)-K(1)-C(4) & 113.00(17) \\ C(5)-K(1)-C(4) & 110.0(2) & C(13)-K(1)-C(4) & 95.9(2) \\ O(1)-K(1)-C(14) & 112.7(2) & C(13)-K(1)-C(14) & 95.9(2) \\ O(1)-K(1)-C(14) & 112.7(2) & C(13)-K(1)-C(14) & 45.23(17) \\ C(6)-K(1)-C(14) & 117.64(17) & C(12)-K(1)-C(14) & 45.23(17) \\ C(6)-K(1)-C(14) & 117.64(19) & C(12)-K(1)-C(14) & 45.23(17) \\ C(6)-K(1)-C(14) & 117.64(19) & C(12)$				
K(1)-C(13) 2.932(6) K(1)-C(5) 2.942(6) K(1)-C(12) 3.141(7) K(1)-C(6) 3.201(7) K(1)-C(4) 3.329(7) K(1)-C(14) 3.350(7) K(1)-Si(2) 3.727(3) K(2)-O(3) 2.706(9) K(2)-C(13) 2.951(6) K(2)-C(14) 3.084(7) K(2)-C(17) 3.484(10) C(4)-C(5) 1.386(9) C(4)-C(9) 1.520(10) C(5)-C(6) 1.380(9) C(6)-C(7) 1.510(9) C(7)-C(8) 1.493(12) C(8)-C(9) 1.533(13) C(12)-C(13) 1.374(8) C(12)-C(17) 1.498(9) C(13)-C(14) 1.381(9) C(14)-C(15) 1.536(10) C(14)-Si(3) 1.799(8) C(15)-C(16) 1.476(12) C(16)-C(17) 1.453(12) O(2)-K(1)-O(1) 109.2(2) O(2)-K(1)-C(5) 119.0(2) O(1)-K(1)-C(3) 118.4(2) O(2)-K(1)-C(5) 119.0(2) O(1)-K(1)-C(13) 118.4(2) O(2)-K(1)-C(5) 19.0(2) O(2)-K(1)-C(12) 142.0(2) O(1)-K(1)-C(5) <th< td=""><td>K(1)=O(2)</td><td>2.726(7)</td><td>K(1)=O(1)</td><td>2.734(8)</td></th<>	K(1)=O(2)	2.726(7)	K(1)=O(1)	2.734(8)
K(1)-C(12)				
K(1)-C(4) 3.329(7) K(1)-C(14) 3.350(7) K(1)-Si(2) 3.727(3) K(2)-C(14) 3.350(7) K(2)-C(13) 2.951(6) K(2)-C(14) 3.084(7) K(2)-C(12) 3.184(7) K(2)-C(15) 3.412(11) K(2)-C(17) 3.484(10) C(4)-C(5) 1.386(9) C(4)-C(9) 1.520(10) C(5)-C(6) 1.380(9) C(8)-C(9) 1.533(13) C(12)-C(13) 1.374(8) C(12)-C(17) 1.498(9) C(13)-C(14) 1.381(9) C(14)-C(15) 1.536(10) C(14)-Si(3) 1.799(8) C(15)-C(16) 1.476(12) C(16)-C(17) 1.453(12) O(2)-K(1)-O(1) 109.2(2) O(2)-K(1)-C(5) 119.0(2) O(1)-K(1)-C(13) 118.4(2) O(2)-K(1)-C(5) 119.0(2) O(1)-K(1)-C(13) 118.4(2) O(2)-K(1)-C(5) 19.0(2) O(1)-K(1)-C(13) 118.4(2) O(2)-K(1)-C(5) 19.0(2) O(1)-K(1)-C(6) 124.1(2) O(1)-K(1)-C(5) 93.48(19) O(2)-K(1)-C(6) 124.1(2) O(1)-K(1)		· /		` '
K(1)-Si(2) 3.727(3) K(2)-O(3) 2.706(9) K(2)-C(13) 2.951(6) K(2)-C(14) 3.084(7) K(2)-C(12) 3.184(7) K(2)-C(15) 3.412(11) K(2)-C(17) 3.484(10) C(4)-C(5) 1.386(9) C(4)-C(9) 1.520(10) C(5)-C(6) 1.380(9) C(6)-C(7) 1.510(9) C(7)-C(8) 1.493(12) C(8)-C(9) 1.533(13) C(12)-C(13) 1.374(8) C(12)-C(17) 1.498(9) C(13)-C(14) 1.381(9) C(14)-C(15) 1.536(10) C(14)-Si(3) 1.799(8) C(15)-C(16) 1.476(12) C(16)-C(17) 1.453(12) O(2)-K(1)-O(1) 109.2(2) O(2)-K(1)-C(5) 119.0(2) O(1)-K(1)-C(13) 118.4(2) O(2)-K(1)-C(5) 119.0(2) O(1)-K(1)-C(5) 99.1(2) C(13)-K(1)-C(5) 93.48(19) O(2)-K(1)-C(12) 142.0(2) O(1)-K(1)-C(5) 93.48(19) O(2)-K(1)-C(6) 124.1(2) O(1)-K(1)-C(12) 78.53(17) O(2)-K(1)-C(6) 58.20(18) O(2)-		· /		
K(2)-C(13) 2.951(6) K(2)-C(14) 3.084(7) K(2)-C(12) 3.184(7) K(2)-C(15) 3.412(11) K(2)-C(17) 3.484(10) C(4)-C(5) 1.386(9) C(4)-C(9) 1.520(10) C(5)-C(6) 1.380(9) C(6)-C(7) 1.510(9) C(7)-C(8) 1.493(12) C(8)-C(9) 1.533(13) C(12)-C(13) 1.374(8) C(12)-C(17) 1.498(9) C(13)-C(14) 1.381(9) C(14)-C(15) 1.536(10) C(14)-Si(3) 1.799(8) C(15)-C(16) 1.476(12) C(16)-C(17) 1.453(12) O(2)-K(1)-O(1) 109.2(2) O(2)-K(1)-C(5) 119.0(2) O(1)-K(1)-C(3) 118.4(2) O(2)-K(1)-C(5) 119.0(2) O(1)-K(1)-C(13) 118.4(2) O(2)-K(1)-C(5) 119.0(2) O(1)-K(1)-C(13) 118.4(2) O(2)-K(1)-C(5) 119.0(2) O(1)-K(1)-C(13) 118.4(2) O(2)-K(1)-C(5) 119.0(2) O(1)-K(1)-C(6) 124.1(2) O(1)-K(1)-C(5) 93.48(19) O(2)-K(1)-C(14) 120.2(2) <t< td=""><td></td><td></td><td></td><td>()</td></t<>				()
$\begin{array}{llllllllllllllllllllllllllllllllllll$. , . ,			
$\begin{array}{c} K(2)-C(17) \\ C(4)-C(9) \\ C(4)-C(9) \\ 1.520(10) \\ C(5)-C(6) \\ C(6)-C(7) \\ 1.510(9) \\ C(7)-C(8) \\ C(8)-C(9) \\ 1.533(13) \\ C(12)-C(13) \\ 1.381(9) \\ C(14)-C(15) \\ 1.498(9) \\ C(13)-C(14) \\ 1.381(9) \\ C(14)-C(15) \\ 1.536(10) \\ C(14)-Si(3) \\ C(15)-C(16) \\ 1.476(12) \\ C(16)-C(17) \\ 1.453(12) \\ C(16)-C(17) \\ 1.453(12) \\ C(16)-C(16) \\ 1.476(12) \\ C(16)-C(17) \\ 1.453(12) \\ C(16)-C(17) \\ 1.453(12) \\ C(16)-C(16) \\ 1.476(12) \\ C(16)-C(17) \\ 1.453(12) \\ C(16)-C(17) \\ 1.453(12) \\ C(16)-C(13) \\ 0(1)-K(1)-C(13) \\ 0(1)-K(1)-C(13) \\ 0(1)-K(1)-C(5) \\ 09.1(2) \\ 0(1)-K(1)-C(12) \\ 0(2)-K(1)-C(12) \\ 142.0(2) \\ 0(1)-K(1)-C(12) \\ 0(2)-K(1)-C(12) \\ 0(2)-K(1)-C(12) \\ 0(2)-K(1)-C(6) \\ 08.68(17) \\ 0(2)-K(1)-C(6) \\ 08.68(17) \\ 0(2)-K(1)-C(6) \\ 08.68(17) \\ 0(2)-K(1)-C(4) \\ 01.0(2) \\ 0(1)-K(1)-C(4) \\ 01.0(2) \\ 0(1)-K(1)-C(14) \\ 112.7(2) \\ 0(1)-K(1)-C(14) \\ 112.7(2) \\ 0(1)-K(1)-C(14) \\ 0(2)-K(1)-C(14) \\ 0(1)-K(1)-C(14) \\ 0(1)-K(1)-C(14) \\ 0(1)-K(1)-C(14) \\ 0(1)-K(1)-C(14) \\ 0(2)-K(1)-C(14) \\ 0(1)-K(1)-C(14) \\ 0(1)-K(1)-C(14$. , . ,			
C(4)-C(9) 1.520(10) C(5)-C(6) 1.380(9) C(6)-C(7) 1.510(9) C(7)-C(8) 1.493(12) C(8)-C(9) 1.533(13) C(12)-C(13) 1.374(8) C(12)-C(17) 1.498(9) C(13)-C(14) 1.381(9) C(14)-C(15) 1.536(10) C(14)-Si(3) 1.799(8) C(15)-C(16) 1.476(12) C(16)-C(17) 1.453(12) O(2)-K(1)-O(1) 109.2(2) O(2)-K(1)-C(13) 116.1(2) O(1)-K(1)-C(13) 118.4(2) O(2)-K(1)-C(5) 119.0(2) O(1)-K(1)-C(5) 99.1(2) C(13)-K(1)-C(5) 93.48(19) O(2)-K(1)-C(12) 142.0(2) O(1)-K(1)-C(5) 93.48(19) O(2)-K(1)-C(12) 25.86(16) C(5)-K(1)-C(12) 78.53(17) O(2)-K(1)-C(6) 124.1(2) O(1)-K(1)-C(6) 115.6(2) O(1)-K(1)-C(6) 58.20(18) O(2)-K(1)-C(4) 95.9(2) O(1)-K(1)-C(4) 101.0(2) C(13)-K(1)-C(4) 13.00(17) C(5)-K(1)-C(4) 245.22(16) O(2)-K(1)-C(14) 13.20(17) O(1)-K(1)-C(4)	. , . ,			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				()
C(8)-C(9) 1.533(13) C(12)-C(13) 1.374(8) C(12)-C(17) 1.498(9) C(13)-C(14) 1.381(9) C(14)-C(15) 1.536(10) C(14)-Bi(3) 1.799(8) C(15)-C(16) 1.476(12) C(16)-C(17) 1.453(12) O(2)-K(1)-O(1) 109.2(2) O(2)-K(1)-C(13) 116.1(2) O(1)-K(1)-C(13) 118.4(2) O(2)-K(1)-C(5) 119.0(2) O(1)-K(1)-C(5) 99.1(2) C(13)-K(1)-C(5) 93.48(19) O(2)-K(1)-C(12) 142.0(2) O(1)-K(1)-C(5) 93.48(19) O(2)-K(1)-C(12) 142.0(2) O(1)-K(1)-C(12) 99.8(2) C(13)-K(1)-C(12) 124.1(2) O(1)-K(1)-C(12) 99.8(2) C(13)-K(1)-C(6) 68.68(17) C(5)-K(1)-C(6) 115.6(2) C(13)-K(1)-C(6) 58.20(18) O(2)-K(1)-C(4) 95.9(2) O(1)-K(1)-C(4) 101.0(2) C(13)-K(1)-C(4) 113.00(17) C(5)-K(1)-C(4) 24.56(16) C(12)-K(1)-C(4) 102.29(17) C(6)-K(1)-C(4) 24.56(16) C(12)-K(1)-C(14) 102.29(17) <				()
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				\ /
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. , . ,	()
C(15)-C(16) 1.476(12) C(16)-C(17) 1.453(12) O(2)-K(1)-O(1) 109.2(2) O(2)-K(1)-C(13) 116.1(2) O(1)-K(1)-C(13) 118.4(2) O(2)-K(1)-C(5) 119.0(2) O(1)-K(1)-C(5) 99.1(2) C(13)-K(1)-C(5) 93.48(19) O(2)-K(1)-C(12) 142.0(2) O(1)-K(1)-C(12) 78.53(17) O(2)-K(1)-C(6) 124.1(2) O(1)-K(1)-C(6) 115.6(2) C(13)-K(1)-C(6) 68.68(17) C(5)-K(1)-C(6) 25.52(17) C(12)-K(1)-C(6) 58.20(18) O(2)-K(1)-C(4) 95.9(2) O(1)-K(1)-C(4) 101.0(2) C(13)-K(1)-C(4) 95.9(2) O(1)-K(1)-C(4) 24.56(16) C(12)-K(1)-C(4) 95.9(2) O(1)-K(1)-C(4) 45.22(16) O(2)-K(1)-C(4) 102.29(17) C(6)-K(1)-C(4) 45.22(16) O(2)-K(1)-C(14) 102.29(17) C(6)-K(1)-C(14) 112.7(2) C(13)-K(1)-C(14) 24.25(16) C(5)-K(1)-C(14) 117.64(17) C(12)-K(1)-C(14) 24.25(16) C(5)-K(1)-C(14) 12.72 C(13)-K(1)-C(14) 135.31(17)		· /	. , . ,	` '
O(2)-K(1)-O(1) 109.2(2) O(2)-K(1)-C(13) 116.1(2) O(1)-K(1)-C(13) 118.4(2) O(2)-K(1)-C(5) 119.0(2) O(1)-K(1)-C(5) 99.1(2) C(13)-K(1)-C(5) 93.48(19) O(2)-K(1)-C(12) 142.0(2) O(1)-K(1)-C(12) 99.8(2) C(13)-K(1)-C(12) 78.53(17) O(2)-K(1)-C(6) 124.1(2) O(1)-K(1)-C(6) 115.6(2) C(13)-K(1)-C(6) 124.1(2) O(1)-K(1)-C(6) 155.6(2) C(13)-K(1)-C(6) 58.20(18) O(2)-K(1)-C(6) 25.52(17) C(12)-K(1)-C(6) 58.20(18) O(2)-K(1)-C(4) 95.9(2) O(1)-K(1)-C(4) 101.0(2) C(13)-K(1)-C(4) 102.29(17) C(5)-K(1)-C(4) 45.22(16) O(2)-K(1)-C(4) 99.6(2) O(1)-K(1)-C(14) 112.7(2) C(13)-K(1)-C(14) 12.7(2) C(13)-K(1)-C(14) 45.23(17) C(6)-K(1)-C(14) 17.64(17) C(12)-K(1)-C(14) 45.23(17) O(2)-K(1)-Si(2) 146.48(19) O(1)-K(1)-Si(2) 103.91(18) C(13)-K(2)-C(14) 26.34(16) C(13)-K(2)-C(12) 25.52(16) C(14)-K(2)-C(12) 47.05(18) C(13)-K(2)-C(12) 25.52(16) C(14)-K(2)-C(12) 47.05(18) C(13)-K(2)-C(15) 44.93(19) C(14)-K(2)-C(17) 52.46(19) C(12)-K(2)-C(17) 25.46(16) C(15)-K(2)-C(17) 43.2(2) C(5)-C(4)-K(1) 100.8(4) Si(1)-C(4)-K(1) 101.0(3) C(6)-C(5)-C(4) 130.6(7) C(6)-C(5)-K(1) 93.5(4) C(5)-C(6)-K(1) 91.5(2) 103.95(1) C(4)-C(5)-K(1) 101.9(5) Si(2)-C(6)-K(1) 91.5(2) C(13)-K(2)-C(17) 43.2(2) C(5)-C(6)-K(1) 101.0(3) C(6)-C(5)-C(6) 113.4(7) C(7)-C(6)-K(1) 91.5(2) Si(2)-C(6)-K(1) 91.5(2) C(13)-C(12)-K(1) 101.2(5) C(13)-C(12)-K(2)-C(15) 153.3(8) C(4)-C(5)-K(1) 101.9(5) Si(2)-C(6)-K(1) 101.2(5) C(13)-C(12)-K(2) E(1) 101.2(5) C(13)-C(12)-K(2) E(13)-C(14) 101.0(6) C(12)-C(12)-K(2) E(13)-C(14) 101.0(6) C(12)-C(12)-K(2)-C(13)-K(1) 101.2(5) C(13)-C(12)-K(2) E(13)-C(14) 101.0(6) C(12)-C(13)-K(1) 101.0(6) C(12)-C(12)-K(2) E(13)-C(14) 101.0(6) C(12)-C(13)-K(1) 101.2(5) C(13)-C(12)-K(2) E(13)-C(14) 101.0(6) C(12)-C(13)-K(1) 101.0(6) C(12	. , . ,	` '	. , . ,	` '
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)–C(16)	1.476(12)	C(16)–C(17)	1.453(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(2)-K(1)-O(1)	109 2(2)	O(2)-K(1)-C(13)	116 1(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· /		` '
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· /		` '
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· /		. ,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· /		` '
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. , . , . ,	()	. , . , . ,	. ,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		()		()
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. , . , . ,		. , . , . ,	(/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. , . , . ,	()		()
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· /		. ,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		` /		. ,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		` /		` '
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· /		. ,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		` /	. , . , . ,	. ,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		` /	. , . , . ,	. ,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		` /		. ,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. , . , . ,	` /	. , . , . ,	. ,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		\ /		` '
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{lllll} C(9)-C(4)-K(1) & 100.8(4) & Si(1)-C(4)-K(1) & 101.0(3) \\ C(6)-C(5)-C(4) & 130.6(7) & C(6)-C(5)-K(1) & 87.8(4) \\ C(4)-C(5)-K(1) & 93.5(4) & C(5)-C(6)-K(1) & 66.7(4) \\ C(7)-C(6)-K(1) & 101.9(5) & Si(2)-C(6)-K(1) & 91.2(2) \\ C(8)-C(7)-C(6) & 113.4(7) & C(7)-C(8)-C(9) & 115.3(8) \\ C(4)-C(9)-C(8) & 110.5(7) & C(6)-Si(2)-K(1) & 59.2(2) \\ C(13)-C(12)-K(1) & 68.5(4) & C(17)-C(12)-K(1) & 101.2(5) \\ C(13)-C(12)-K(2) & 67.7(4) & C(17)-C(12)-K(2) & 88.5(4) \\ K(1)-C(12)-K(2) & 135.1(2) & C(12)-C(13)-C(14) & 130.6(6) \\ C(12)-C(13)-K(1) & 85.6(4) & C(14)-C(13)-K(1) & 95.1(4) \\ \end{array}$		()		
$\begin{array}{lllll} C(6)-C(5)-C(4) & 130.6(7) & C(6)-C(5)-K(1) & 87.8(4) \\ C(4)-C(5)-K(1) & 93.5(4) & C(5)-C(6)-K(1) & 66.7(4) \\ C(7)-C(6)-K(1) & 101.9(5) & Si(2)-C(6)-K(1) & 91.2(2) \\ C(8)-C(7)-C(6) & 113.4(7) & C(7)-C(8)-C(9) & 115.3(8) \\ C(4)-C(9)-C(8) & 110.5(7) & C(6)-Si(2)-K(1) & 59.2(2) \\ C(13)-C(12)-K(1) & 68.5(4) & C(17)-C(12)-K(1) & 101.2(5) \\ C(13)-C(12)-K(2) & 67.7(4) & C(17)-C(12)-K(2) & 88.5(4) \\ K(1)-C(12)-K(2) & 135.1(2) & C(12)-C(13)-C(14) & 130.6(6) \\ C(12)-C(13)-K(1) & 85.6(4) & C(14)-C(13)-K(1) & 95.1(4) \\ \end{array}$	C(15)-K(2)-C(17)	· /		` '
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· /		` '
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· /		` '
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. , . , . , , ,	· /	. , . , . ,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. , . , . , , ,	· /		
$\begin{array}{cccccccc} C(13)-C(12)-K(1) & 68.5(4) & C(17)-C(12)-K(1) & 101.2(5) \\ C(13)-C(12)-K(2) & 67.7(4) & C(17)-C(12)-K(2) & 88.5(4) \\ K(1)-C(12)-K(2) & 135.1(2) & C(12)-C(13)-C(14) & 130.6(6) \\ C(12)-C(13)-K(1) & 85.6(4) & C(14)-C(13)-K(1) & 95.1(4) \\ \end{array}$. , . , . , . ,	· /		
C(13)–C(12)–K(2) 67.7(4) C(17)–C(12)–K(2) 88.5(4) K(1)–C(12)–K(2) 135.1(2) C(12)–C(13)–C(14) 130.6(6) C(12)–C(13)–K(1) 85.6(4) C(14)–C(13)–K(1) 95.1(4)				
K(1)–C(12)–K(2) 135.1(2) C(12)–C(13)–C(14) 130.6(6) C(12)–C(13)–K(1) 85.6(4) C(14)–C(13)–K(1) 95.1(4)				
C(12)-C(13)-K(1) 85.6(4) $C(14)-C(13)-K(1)$ 95.1(4)				
K(1)–C(13)–K(2) 167.2(2) K(2)–C(14)–K(1) 130.6(2)				()
	K(1)-C(13)-K(2)	167.2(2)	K(2)-C(14)-K(1)	130.6(2)

Experimental

All reactions were performed under argon using standard Schlenk techniques. The thf and diethyl ether were dried using sodium-benzophenone, hexane and pentane using sodiumpotassium alloy. The compound ButMe2SiF was prepared according to a published procedure. 32 Allyltrimethylsilane was purchased from Aldrich. The NMR spectra were recorded on AC-P250, WM-360 and AMX-500 instruments, and the solvent resonances were used as the internal references for ¹H and ¹³C spectra; LiCl (1 mol dm⁻³ aqueous solution) was the external reference for ⁷Li NMR spectra. The IR spectra were recorded on a Perkin-Elmer 1720 FT spectrometer as liquid films or Nujol mulls using KBr windows. The GC-MS data were recorded on a MD800 apparatus: EI, 70 eV. Elemental analyses were carried out by Medac Ltd., Brunel University. Melting points were determined under argon in sealed capillaries on an electrothermal apparatus and were uncorrected.

Preparations

Bu^tMe₂SiCH₂CH=CH₂ 1a. Allylmagnesium bromide (0.25 mol), prepared from CH₂=CHCH₂Br (30.25 g, 0.25 mol) and magnesium turnings (6.5 g, 0.27 mol) in diethyl ether (150 cm³), was mixed with tert-butyldimethylsilyl fluoride (25 g, 0.187 mol) and the mixture refluxed for 15 h. After cooling, water (100 cm³) was added. The organic layer was separated and dried (CaCl₂); diethyl ether was then removed in vacuo and the residue distilled to give the colourless oil 1a (26.0 g, 90%), bp 150– 155 °C. ¹H NMR (298 K, CDCl₃): δ –0.03 (s, 6 H, SiMe₂), 0.91 $(s, 9 \text{ H}, \text{SiBu}^{t}), 1.56 (d, 2 \text{ H}, J = 8.3 \text{ Hz}), 4.82-4.90 (m, 2 \text{ H})$ and 5.76–5.88 (m, 1 H). GC-MS: m/z = 156 (M^+). IR (liquid film): $\tilde{v}_{\text{max}}/\text{cm}^{-1}$ 3079w, 2955vs, 2930vs, 2884s, 2858s, 1632m, 1471m, 1392w, 1363w, 1253s, 1155m, 1039w, 1008w, 992w, 893s, 838s, 750w and 658m.

 $RMe_2SiCH=CHCH_2SiMe_2Bu^t$ (R = Bu^t 2a or Me 2b). n-Butyllithium (26.5 cm³ of a 1.6 mol dm⁻³ solution in hexane, 42.4 mmol) was added dropwise at 0 °C with stirring to a solution of tert-butyldimethylsilylpropene (6.5 g, 41.7 mmol) and tmen (6.3 cm³, 41.8 mmol) in hexane (50 cm³), and stirred overnight at room temperature. tert-Butyldimethylsilyl fluoride (5.6 g, 41.8 mmol) was added at room temperature. The mixture was stirred for 1 h and then heated at 75-80 °C for 6 h. The tmen was removed by column chromatography and the eluent distilled under vacuum to obtain colourless crystals of compound 2a (11.3 g, 91%) (Found: C, 66.2; H, 12.7. C₁₅H₃₄Si₂ requires C, 66.6; H, 12.7%), mp 52.5–54 °C. ¹H NMR (298 K, C₆D₆): $\delta - 0.04$ (s, 6 H, SiMe₂), 0.10 (s, 6 H, SiMe₂), 0.88 (s, 9 H, SiBu^t), 0.99 (s, 9 H, SiBu^t), 1.65 (d, 2 H, J = 7.9, CH₂), 5.54 (d, 1 H, J = 17.6 Hz, CH) and 6.08–6.18 (m, 1 H, CH). ¹³C NMR (298 K, CDCl₃): δ -6.46, -5.92, 16.61, 16.81, 24.69, 26.50, 26.58, 125.06 and 145.43. IR (Nujol): $\tilde{v}_{\text{max}}/\text{cm}^{-1}$ 2953vs, 2926vs, 2855vs, 1604m, 1463m, 1377w, 1251w, 1143w, 1007w, 989w, 938w, 840w, 823w, 806w, 752vw and 723vw.

Compound 2b was prepared similarly. Trimethylsilylallyllithium [prepared from trimethylsilylpropene (3.6 g, 31.6 mmol), tmen (4.8 cm³, 31.8 mmol) and LiBuⁿ (20 cm³ of a 1.6 mol dm⁻³ solution in hexane, 32 mmol)] was treated with tertbutyldimethylsilyl fluoride (4.3 g, 32.1 mmol). The resultant solution was distilled, after removing tmen by column chromatography, to produce the colourless oil 2b (5.84 g, 81%) (Found: C, 62.1; H, 12.0. C₆H₁₄Si requires C, 63.1; H, 12.4%), bp 50–52 °C (0.5 Torr). NMR (298 K, CDCl₃): 1 H, δ –0.02 (s, 6 H, SiMe₂), 0.07 (s, 9 H, SiMe₃), 0.93 (s, 9 H, SiBut), 1.68 (d, $2 \text{ H}, J = 6.8, \text{CH}_2$, 5.47 (d, 1 H, J = 18.4 Hz, CH) and 6.01–6.11 (m, 1 H, CH); 13 C, $\delta - 6.45$, -0.97, 16.90, 24.56, 26.63, 128.11and 144.11. GC-MS: $m/z = 228 (M^+)$. IR (liquid film): \tilde{v}_{max}/cm^{-1} 2954vs, 2929vs, 2897vs, 2858vs, 1605s, 1471s, 1464s, 1402w, 1363w, 1251vs, 1143s, 1005w, 987w, 938vw, 873vs, 840vs, 766w, 749m, 720w, 692s, 667w and 633w.

[Li{CH(CHSiMe₂Bu^t)₂}(tmen)] 3a. n-Butyllithium (5 cm³ of a 1.6 mol dm⁻³ solution in hexane, 8 mmol) was added dropwise with stirring to a solution of 1,3-bis(tert-butyldimethylsilyl)propene (2.1 g, 7.78 mmol) and tmen (1.2 cm³, 7.96 mmol) in hexane (25 cm 3) at -78 °C. The mixture was allowed to warm to room temperature, stirred overnight and then filtered. The filtrate was concentrated to ca. 3 cm³ to yield colourless crystals of complex 3a (2.8 g, 92%) (Found: C, 66.6; H, 13.0; N, 6.67. C₂₁H₄₉LiN₂Si₂ requires C, 64.2; H, 12.6; N, 7.13%), mp 83–85 °C. NMR (298 K, C_6D_6): ¹H, δ 0.14 (s, 6 H, SiMe₂), 0.29 (s, 6 H, SiMe₂), 1.22 (s, 18 H, SiBu^t), 1.59 (s, 4 H, tmen), 1.81 (s, 12 H, tmen), 2.83 (d, 2 H, J = 16, CH) and 7.04 (t, 1 H, J = 16Hz, CH); 13 C, δ -4.21, -2.58, 18.62, 27.46, 46.15, 56.56, 64.53 and 156.52; 7 Li, $\delta - 0.22$; 29 Si, $\delta - 3.20$.

[Li{CH(CHSiMe₂Bu^t)(CHSiMe₃)}(tmen)] 3b. Complex 3b was synthesized using a similar method as that for 3a. A mixture of 3-tert-butyldimethylsilyl-1-trimethylsilylpropene (3.3 g, 14.5 mmol) and tmen (2.2 cm³, 14.6 mmol) in pentane (30 cm³) was treated with LiBuⁿ (9 cm³ of a 1.6 mol dm⁻³ solution in hexane, 14.4 mmol). After work-up the colourless crystalline complex **3b** (4.0 g, 79%) was obtained (Found: C, 61.1; H, 12.8; N, 7.66. C₁₈H₄₃LiN₂Si₂ requires C, 61.7; H, 12.4; N, 7.99%), mp 7072 °C. NMR (298 K, C₆D₆): 1 H, δ 0.13 (s, 6 H, SiMe₂), 0.28 (s, 9 H, SiMe₃), 1.17 (s, 9 H, SiBu^t), 1.64 (s, 4 H, tmen), 1.82 (s, 12 H, tmen), 2.77 (d, 1 H, J = 15.7, CH), 2.90 (d, 1 H, J = 15.7, CH) and 7.03 (t, 1 H, J = 15.7 Hz, CH); 13 C, δ -4.04, -2.49, 2.29, 18.57, 27.53, 46.19, 56.52, 63.76, 69.24 and 155.22; 7 Li, δ -0.22; 29 Si, δ -9.98 and -1.25.

[{K[CH(CHSiMe₂Bu¹)₂]} $_{\infty}$] **4.** Potassium *tert*-butoxide (0.83 g, 7.41 mmol) was added at room temperature with stirring to a hexane (30 cm³) solution of complex **3a** [prepared from **2a** (1.98 g, 7.33 mmol), tmen (1.1 cm³, 7.3 mmol) and LiBu¹ (4.6 cm³ of a 1.6 mol dm⁻³ solution in hexane, 7.36 mmol)]. After several minutes a white precipitate appeared. Stirring was continued for 4 h. The mixture was filtered and the precipitate washed with hexane (2 × 15 cm³) and dried *in vacuo* to afford the white solid **4** (1.95 g, 86%) (Found: C, 56.7; H, 10.7. C₁₅H₃₃KSi₂ requires C, 58.4; H, 10.8%), mp 271–275 °C. NMR (298 K, C₅D₅N): ¹H, δ 0.10 (s, 6 H, SiMe₂), 0.19 (s, 6 H, SiMe₂), 0.91 (s, 9 H, SiBu¹), 1.05 (s, 9 H, SiBu¹), 5.38 (d, 1 H, J = 17.6, CH), 6.08 (d, 1 H, J = 10.8, CH) and 6.97 (dd, 1 H, J = 10.8, 17.6 Hz, CH); ¹³C, δ −5.20, −4.04, 17.22, 19.17, 26.89, 27.30, 113.08, 117.86 and 149.75.

[K{CH(CHSiMe₂Bu¹)₂}(py)] 5a. Pyridine (0.5 cm³) was added to a suspension of complex 4 (0.5 g, 1.62 mmol) in hexane (*ca.* 10 cm³). The complex slowly dissolved and a red-brown mixture was formed. After filtration all volatiles were removed from the filtrate *in vacuo*. The resultant solid was redissolved in hexane (*ca.* 10 cm³) and concentrated *in vacuo*. Crystallisation at room temperature yielded the yellow crystalline complex 5a (0.5 g, 80%) (Found: C, 61.3; H, 9.89; N, 3.54. C₁₈H₄₃LiN₂Si₂ requires C, 62.0; H, 9.88; N, 3.61%), mp 85–88 °C. NMR (298 K, toluene-d*): 1 H, δ 0.11 (s, 12 H, SiMe₂), 1.00 (s, 18 H, SiBu¹), 2.92 (d, 2 H, J = 16, CH), 6.89 (t, 1 H, J = 16 Hz, CH), 6.67–6.71 (m, 2 H, py), 6.94–6.96 (m, 1 H, py) and 8.43–8.45 (m, 2 H, py); 13 C, δ –2.51, 18.38, 28.03, 67.30, 123.81, 137.46, 149.96 and 157.28; 29 Si, δ –4.21.

[K{CH(CHSiMe₂Bu')₂}(thf)] 5b. Tetrahydrofuran (*ca.* 0.5 cm³) was added to a suspension of complex 4 (0.9 g, 2.92 mmol) in hexane (*ca.* 10 cm³). The solid slowly dissolved and a colourless solution was formed. After filtering off a small precipitate the filtrate was concentrated *in vacuo*. Crystallisation at room temperature yielded colourless crystals of complex 5b (0.93 g, 84%) [Found: C, 58.5; H, 10.6. $C_{15}H_{33}KSi_2$ (the co-ordinated thf was lost during elemental analysis) requires C, 58.4; H, 10.8%], mp 138–140 °C. NMR (298 K, C_6D_6): ¹H, δ 0.19 (s, 12 H, SiMe₂), 1.08 (s, 18 H, SiBu'), 1.39 (m, 4 H, thf), 2.75 (d, 2 H, J = 16.4, CH), 3.55 (m, 4 H, thf) and 6.89 (t, 1 H, J = 16.4 Hz, CH); ¹³C, δ –2.24, 18.87, 28.37, 25.76, 67.95, 66.30 and 157.57.

CH=CHCH(SiMe₃)(CH₂)₂CH₂ 6. Magnesium (2.8 g, 0.117 mol) in Et₂O (ca. 15 cm³) was treated with a few particles of I₂ until the brown colour was discharged. The compound Me₃SiCl (13 cm³, 0.103 mol) was added. A solution of 3-bromocyclohexene (15 g, 0.093 mol) in Et₂O (ca. 60 cm³) was slowly added into the stirred mixture during 12 h at ice-bath temperature. The mixture was carefully hydrolysed with crushed ice. The organic phase was collected and dried (CaCl₂). Distillation under reduced pressure gave 6 (8.7 g, 61%), bp 64–66 °C (20 Torr). ¹H NMR (298 K, CDCl₃): δ 0.01 (s, 9 H, SiMe₃), 1.55 (m, 3 H), 1.73 (m, 2 H), 1.96 (m, 2 H) and 5.64 (s, 2 H).

[Li{C(SiMe₃)(CH₂)(CH₂)₂CH₂}(tmen)] 7. The compound tmen (3 cm³, 20.31 mmol) and LiBuⁿ (10 cm³ of a 2 mol dm⁻³ solution in hexane, 20 mmol) were added to a solution of 6 (3.1 g, 20.31 mmol) in hexane (*ca.* 30 cm³) at room temperature. The mixture was stirred for 12 h and then concentrated and

Table 4 Crystallographic data for complexes 3a, 9 and 11^c

	3a	9	11
Empirical formula Formula weight	C ₂₁ H ₄₉ LiN ₂ Si ₂ 392.8	C ₁₈ H ₄₁ Li ₂ Si ₂ 348.65	C ₃₂ H ₆₂ K ₂ O ₃ Si ₃ 657.3
Crystal system	Monoclinic	Orthorhombic	Orthorhombic
Space group	$P2_1/n$ (no. 14)	Pna2 ₁ (no. 33)	Pna2 ₁ (no. 33)
a/Å	11.295(3)	19.325(4)	17.298(1)
b/Å	21.365(3)	8.660(2)	20.032(1)
c/Å	12.254(4)	14.750(3)	11.727(1)
β/°	103.33(2)	_	
$V/Å^3$	2877(1)	2468.5(9)	4064(2)
Z	4	4	4
$D_{\rm c}/{\rm g~cm^{-3}}$	0.910	0.938	1.074
μ/mm^{-1}	0.13	0.145	0.348
Reflections collected	5478	4366	5680
Independent, $n(R_{int})$	5217 (0.02)	2263 (0.17)	5680 (0.06)
Observed, n $[I > 2\sigma(I)]$	1780	614	5179
No. parameters, p	235	203	362
$R1 [I > 2\sigma(I)]$	0.094	0.0482	0.0989
$wR2^a$ or wR^b	0.083	0.1019	0.2606

 a For $I > 2\sigma(I)$ (complexes 9 and 11). b For complex 3a. c All data were collected at 293 K.

crystallised at -78 °C to give white crystals of 7 (5.0 g, 90%). 1 H NMR (298 K, C_6D_6): δ 0.37 (s, 9 H, SiMe₃), 1.66 (s, 4 H, tmen), 1.81 (s, 12 H, tmen), 2.01 (br, 3 H), 2.43 (br, 1 H), 2.85 (br, 2 H), 3.94 (m, 1 H) and 6.62 (d, 1 H).

C(SiMe₃)CHC(SiMe₃)(CH₂)₂CH₂ 8. A solution of complex 7 in hexane ($ca. 20 \text{ cm}^3$) [prepared from tmen (2.25 cm³, 14.94 mmol), LiBuⁿ (9.7 cm³ of a 1.4 mol dm⁻³ solution in hexane, 13.58 mmol) and 6 (2.3 g, 14.94 mmol)] was added dropwise to a solution containing an equimolar portion of Me₃SiCl in hexane ($ca. 10 \text{ cm}^3$) at −78 °C. The mixture was warmed to room temperature and stirred for 4 h, then hydrolysed and the organic phase separated. After drying (CaCl₂) it was distilled to give 8 (2.6 g, 77%), bp 49–50 °C (1 Torr). ¹H NMR (298 K, CDCl₃): δ −0.01 (s, 9 H, SiMe₃), 0.03 (s, 9 H, SiMe₃), 1.40 (m, 2 H), 1.54 (m, 1 H), 1.69 (m, 2 H), 1.93 (m, 2 H) and 5.91 (m, 1 H).

[Li{C(SiMe₃)CHC(SiMe₃)(CH₂)₂CH₂}(tmen)] 9. Employing a procedure similar to that for complex 7, 8 (1.9 g, 8.39 mmol), tmen (1.26 cm³, 8.39 mmol) and LiBuⁿ (5.43 cm³ of a 1.54 mol dm⁻³ solution in hexane, 8.36 mmol) in pentane (*ca.* 20 cm³) gave white crystals of 9 (2.6 g, 89%). ¹H NMR (298 K, C₆D₆): δ 0.31 (s, 18 H, SiMe₃), 1.52 (s, 4 H, tmen), 1.77 (s, 12 H, tmen), 2.05 (m, 4 H), 2.78 (m, 2 H) and 6.82 (s, 1 H).

[K{C(SiMe₃)CHC(SiMe₃)(CH₂)₂CH₂}] 10. The compound tmen (0.86 cm³, 5.7 mmol) and LiBuⁿ (3.7 cm³ of a 1.54 mol dm⁻³ solution in hexane, 5.7 mmol) were added to a solution of **8** (1.30 g, 5.7 mmol) in hexane (*ca.* 30 cm³) at room temperature. The mixture was stirred for 12 h and then KOBu^t (0.64 g, 5.71 mmol) was added. An additional 12 h of stirring yielded a yellow precipitate of complex **10** (0.90 g, 60%). ¹H NMR (298 K, C_6D_6 -pyridine-d⁵ 2:1): δ -0.05, 0.05 (s, 6 H, SiMe₃), 0.94, 0.20 (s, 12 H, SiMe₃), 1.70 (m, 3 H), 2.05, 2.15, 2.37, 2.56 (m, 3 H), 6.05 (m, 1/3 H) and 6.58 (s, 2/3 H).

[{ $K_2[(\eta^3-C_6H_4SiMe_3-6)_2SiMe_2](thf)_3$ }_∞] 11. A solution of complex 7 (3.00 g, 10.87 mmol) in hexane (*ca.* 40 cm³) was added dropwise to the solution of Me_2SiCl_2 (0.66 cm³, 5.44 mmol) in hexane (*ca.* 10 cm³) at -78 °C. The mixture was warmed to room temperature stirred for 12 h and then filtered. The compound tmen (1.63 cm³, 10.87 mmol) and LiBuⁿ (5.4 cm³ of a 2.0 mol dm⁻³ solution in hexane, 10.8 mmol) were added to the filtrate. The mixture was stirred for 12 h and

KOBu^t (1.22 g, 10.89 mmol) added. After 12 h of stirring the yellow precipitate **11** (2.4 g, 99%) was filtered off and crystallised from thf. NMR (298 K, C_6D_6): ¹H, δ 0.28 (s, 18 H, SiMe₃), 0.35 (s, 6 H), 1.84 (br, 4 H), 2.56 (br, 8 H), 6.46 (s, 2 H), 1.39 (m, 6 H, thf) and 3.56 (m, 6 H); ¹³C, δ 0.82, 0.89, 15.31, 26.54, 30.12, 25.76, 28.56, 67.96, 70.60, 77.54, 143.52 and 176.48.

Crystallography

Details are given in Table 4. Single crystals of each of the complexes 3a, 9 and 11 were mounted in Lindemann capillaries under argon. Data were collected on Enraf-Nonius CAD4 (for 3a), Rigaku AFC7R (for 9) or Rigaku Raxis IIc (for 11) diffractometers in the θ -2 θ mode with monochromated Mo-K α radiation. The structure was solved by direct methods (SHELXS 86^{34} or Siemens SHELXSTL plus) and refined by full-matrix least squares on F for 3a or on F^2 for 9 and 11. All non-H atoms were anisotropic. The diffraction for the crystal of 9 was rather weak resulting in a limited data set.

CCDC reference number 186/1314.

See http://www.rsc.org/suppdata/dt/1999/1257/ for crystallographic files in .cif format.

Acknowledgements

We thank the Chinese Government and the British Council for the award of a studentship to Z.-X. W. and EPSRC for other support at Sussex and the Hong Kong Research Grants Council Earmarked Grants CUHK 4126/98P.

References

- J. L. Wardell, in *Comprehensive Organometallic Chemistry*, eds.
 G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, Oxford, 1982, vol. 1, p. 97.
- 2 D. Seyferth and T. F. Jula, J. Organomet. Chem., 1967, 8, P13.
- 3 M. Stähle and M. Schlosser, J. Organomet. Chem., 1981, 220, 277.
- 4 M. Schlosser and M. Stähle, Angew. Chem., Int. Ed. Engl., 1980, 19, 487.
- 5 W. Neugebauer and P. v. R. Schleyer, *J. Organomet. Chem.*, 1980, 198, C1.
- 6 S. Brownstein, S. Bywater and D. J. Worsfold, *J. Organomet. Chem.*, 1980, **199**, 1.
- 7 H. Köster and E. Weiss, Chem. Ber., 1982, 115, 3422.
- 8 U. Schümann, E. Weiss, H. Dietrich and W. Mahdi, J. Organomet. Chem., 1987, 322, 299.

- 9 J. F. Sebastian, J. R. Grunwell and B. Hsu, J. Organomet. Chem., 1974, 78, C1.
- 10 G. Boche, H. Etzrodt, M. Marsch, W. Massa, G. Baum, H. Dietrich and W. Mahdi, Angew. Chem., Int. Ed. Engl., 1986, 25, 104.
- 11 G. Boche, G. Fraenkel, J. Cabral, K. Harms, N. J. R. v. Eikema Hommes, J. Lohrenz, M. Marsch and P. v. R. Schleyer, J. Am. Chem. Soc., 1992, 114, 1562.
- 12 P. Jutzi, Adv. Organomet. Chem., 1986, 26, 217.
- 13 E. Weiss, Angew. Chem., Int. Ed. Engl., 1993, 32, 1501.
- 14 P. West, J. I. Purmort and S. V. McKinley, J. Am. Chem. Soc., 1968, 90, 797.
- 15 D. H. O'Brien, A. J. Hart and C. R. Russell, J. Am. Chem. Soc., 1975, 97, 4410.
- 16 R. Benn and A. Rufinska, J. Organomet. Chem., 1982, 239, C19.
- 17 G. Fraenkel and W. R. Winchester, Organometallics, 1990, 9, 1314.
- 18 G. Fraenkel, A. Chow and W. R. Winchester, J. Am. Chem. Soc., 1990, 112, 1382.
- 19 C. B. Erusalimski and V. H. Kormer, Zh. Org. Khim., 1984, 20, 2028.
- 20 E. R. Tidwell and B. R. Russell, J. Organomet. Chem., 1974, 80, 175.
- 21 G. Decher and G. Boche, J. Organomet. Chem., 1983, 259, 31.
- 22 T. Clark, E. D. Jemmis, P. v. R. Schleyer, J. S. Binkley and J. A. Pople, J. Organomet. Chem., 1978, 15, 1.
- 23 T. Clarke, C. Rhode and P. v. R. Schleyer, *Organometallics*, 1983, 2, 1344.
- 24 R. J. Bushby and M. P. Tytko, J. Organomet. Chem., 1984, 270, 265.
- 25 G. Fraenkel, A. Chow and W. R. Winchester, J. Am. Chem. Soc., 1990, 112, 2582.
- 26 M. Schlosser and J. Hartmann, J. Am. Chem. Soc., 1976, 98, 4674.
- 27 R. B. Bates and W. A. Beavers, J. Am. Chem. Soc., 1974, 96, 5001.
- 28 P. B. Hitchcock, M. F. Lappert and Z.-X. Wang, Chem. Commun., 1996, 1647.
- 29 T. Morita, Y. Okamoto and H. Sakurai, *Tetrahedron Lett.*, 1980, 835.
- 30 C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
- 31 See P. M. Maitlis, P. Espinet and M. J. H. Russell, in *Comprehensive Organometallic Chemistry*, eds. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, Oxford, 1982, vol. 6, p. 406.
- 32 C. Eaborn, P. B. Hitchcock, K. Izod, A. J. Jaggar and J. D. Smith, Organometallics, 1994, 13, 753.
- 33 E. J. Corey and A. Venkateswarlu, J. Am. Chem. Soc., 1972, 94, 6190; N. S. Marans, L. H. Sommer and F. C. Whitmore, J. Am. Chem. Soc., 1951, 73, 5127.
- 34 G. M. Sheldrick, SHELXS 86, a package for the solution of crystal structures, University of Göttingen, 1986.

Paper 8/06870D