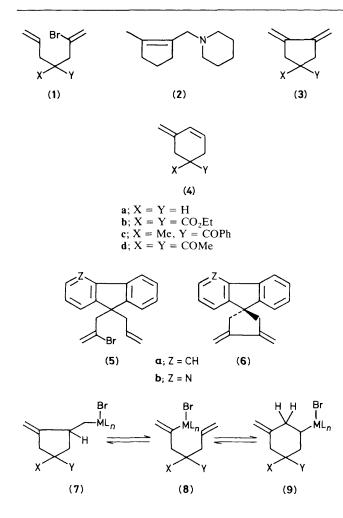
Published on 01 January 1984. Downloaded by Universiteit Utrecht on 28/10/2014 02:40:20.

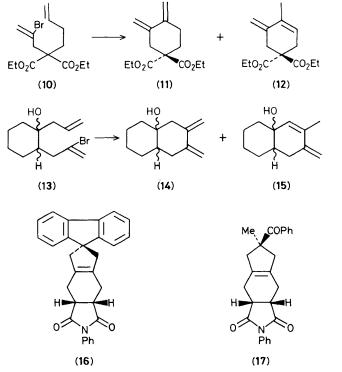
Rhodium- and Palladium-catalysed Formation of Conjugated Mono- and Bis-exocyclic Dienes. 5-*Exo-Trig versus* 6-*Endo-Trig* Cyclisations

Ronald Grigg,* Paul Stevenson, and Tanachat Worakun

Department of Chemistry, Queen's University, Belfast BT9 5AG, Northern Ireland

2-Bromo-1,6-dienes are catalytically cyclised to give conjugated 5-membered bis-exocyclic dienes and 6-membered mono-exocyclic dienes by rhodium and palladium catalysts, the specificity for a 5- or 6-membered ring being a function of substrate, catalyst, and added base; 2-bromo-1,7-dienes cyclise regiospecifically to give 6-membered rings.


The palladium-catalysed vinylation of aryl, heteroaryl, vinyl, or benzyl halides (Heck reaction)¹ has proved to be a valuable method for carbon–carbon bond formation in the appropriate synthetic context. A few examples of the use of intramolecular Heck reactions for the preparation of 5—7-membered benzoheterocycles have been reported² but, in general, little


synthetic use has been made of the intramolecular version of the reaction. Two recent papers³ on the palladium(II)catalysed cyclisation of 1- or 2-bromo-1, ω -dienes in the presence of piperidine to give cyclic allylic amines [*e.g.* (1a) \rightarrow (2)] prompts us to summarise our contrasting results with similar substrates. Table 1. Regioselectivity of catalytic cyclisations of 2-bromo-1,6-dienes in acetonitrile at 80 °C.ª

Su

ıbstrate	Catalyst (mole %)	Time/h	% Yield ^b	Ratio (3) : (4) ^c
(1b)	$Pd(OAc)_{2}(2), PPh_{3}(4)$	1	67	5:4
(1b)	$Pd(PPh_3)_4(3)$	4	74	1:10
(1b)	$RhCl(PPh_3)_3(5)$	6	63	5:1
(1c)	$Pd(OAc)_{2}(5), PPh_{3}(10)$	35	73	2.5:1
(1c) ^d	$Pd(OAc)_2(10), PPh_3(20)$	48	81	1:2.5
(1c)	$Pd(PPh_3)_4(5)$	6	81	1:1
(1c)	$RhCl(PPh_3)_3(5)$	43	45e	6:1
(1d)	$RhCl(PPh_3)_3(5)$	24	55f	10:1
(1d)	$Pd(OAc)_{2}(5), PPh_{3}(10)$	2.5	74¢.g	2.8:1
(1d)	$Pd(PPh_3)_4(5), PPh_3(10)$	1.25	64 ^{c,h}	1.5:1

^a Reactions in the presence of K_2CO_3 (2 mol. equiv.) as base except where otherwise indicated. ^b Isolated yield. ^c Estimated by n.m.r. (250 MHz). ^d In the presence of NEt₃ (2 mol. equiv.) as base. ^e Plus 50% starting material. ^f Estimated by g.l.c. (2 m, 5% SGR). ^g Ca. 15% of double bond isomers of (**3d**) and (**4d**) also formed. ^h Ca. 34% of double bond isomers of (**3d**) and (**4d**) also formed.

The Diels–Alder reaction is a process of wide ranging synthetic utility with the capacity for creating four chiral centres in a single step, *i.e.* a process in which there is a substantial increase in complexity.⁴ Thus the combination of consecutive metal-catalysed creation of Diels–Alder precursors (diene and/or dienophile) with Diels–Alder cycloadditions is an attractive goal in synthetic methodology. One partial solution to this problem has been reported involving a molybdenum(0)-catalysed double bond isomerisation in a bis-allylic acetate.⁵ We now report the successful catalytic creation of conjugated dienes and an interesting and potentially useful variation of product with catalyst.

Reaction of the 2-bromo-1,6-dienes $(Ib-d)^6$ with $Pd(OAc)_2$, $Pd(PPh_3)_4$, or $RhCl(PPh_3)_3$ in boiling acetonitrile in the presence of 2 equivalents of base leads to the formation of mixtures of cyclic dienes (3) and (4) (Table 1).[†]

The diene (3) is the product of a 5-exo-trig cyclisation whilst (4) arises from a 6-endo-trig cyclisation.⁷ For substrate (1b), RhCl(PPh₃)₃ favours the 5-exo-trig product (3) whilst Pd⁰ favours the 6-endo-trig product (4) (Table 1). The results (Table 1) with (1c) and (1d) illustrate the sensitivity of the cyclisation to substrate structure, catalyst, and base. In contrast to (1b-d) the fluorene derivatives (5a) and (5b)‡

[†] All new compounds reported have microanalytical and spectroscopic data in accord with their structures.

[‡] Compounds (5a) and (5b) were prepared by sequential treatment of the parent fluorene and azafluorene with allyl bromide and 2,3dibromopropene using t-butyl-lithium as base. Compound (10) was prepared from diethyl butenylmalonate, sodium ethoxide, and 2,3-dibromopropene in dry ethanol. Compound (13) was prepared by the addition of allylmagnesium bromide to 2-allylcyclohexanone.

undergo a regiospecific 5-*exo-trig* cyclisation (70–90%) to give (**6a**) and (**6b**) respectively with both palladium and rhodium catalysts; *e.g.* (**5a**) cyclises [5 mole % RhCl(PPh₃)₃, K_2CO_3 (2 equiv.), MeCN, 80 °C, 2.5 h] to give a (**6a**) (80%). The use of Rh^I complexes for Heck-type reactions has not been previously reported.

The varying ratio of 5-*exo-trig* (3) to 6-*endo-trig* product (4) (Table 1) could be accounted for by the equilibria $(7) \rightleftharpoons (8) \rightleftharpoons$ (9). Irreversible β -hydride elimination (due to presence of base) from (7) and (9) then leads to (3) and/or (4). Experiments are in hand to test the hypothesis that (3) is the kinetically controlled product and (4) the thermodynamically controlled product.

Extension to 2-bromo-1,7-dienes has been briefly investigated. The bromo-1,7-diene (10) \ddagger cyclises [10 mole % Pd(OAc)₂, 20 mole % PPh₃, K₂CO₃ (2 equiv.), MeCN, 80 °C, 4 h] regiospecifically *via* a 6-*exo-trig* process to give a 4:1 mixture (86%) of (11) and (12). G.l.c. monitoring of the reaction clearly showed that (12) was derived from (11) by a regiospecific isomerisation. No 7-membered ring product could be detected. The bromo-1,7-diene (13) (isomer mixture) \ddagger undergoes an analogous cyclisation [5 mole % Pd(OAc)₂, 10 mole % PPh₃, 80 °C, 23 h] to give a 2:1 mixture (67%) of (14) and (15).

All the bis-exocyclic dienes (3), (6), (11), and (14) undergo Diels-Alder reactions under mild conditions (25–60 °C) with *N*-phenylmaleimide (NPM) to give the corresponding cycloadducts in high yield. Thus (6a) and NPM (C_6H_6 , 25 °C, 6 1075

h) give the adduct (16) (94%) whilst (3c) and NPM react (CHCl₃, 60 °C, 15 min) stereospecifically to give (17) (90%).\$

Further studies of the scope of these reactions are in progress. We thank the Department of Education, Northern Ireland, the S.E.R.C., and Queen's University for support.

Received, 8th May 1984; Com. 620

References

- 1 R. F. Heck, Org. React., 1982, 27, 345.
- M. O. Terpko and R. F. Heck, J. Am. Chem. Soc., 1979, 101, 5281;
 M. Mori and Y. Ban, Tetrahedron Lett., 1979, 1133; M. Mori, S. Kudo, and Y. Ban, J. Chem. Soc., Perkin Trans. 1, 1979, 771.
- 3 C. K. Narula, K. T. Mak, and R. F. Heck, J. Org. Chem., 1983, 48, 2792; L. Shi, C. K. Narula, K. T. Mak, L. Kao, Y. Xu, and R. F. Heck, *ibid.*, 1983, 48, 3894.
- 4 S. H. Bertz, J. Am. Chem. Soc., 1981, 103, 3599; 1982, 104, 5801.
- 5 B. M. Trost and M. Lautens, *J. Am. Chem. Soc.*, 1983, 105, 3343.
 6 Compounds (1b-d) were prepared by sequential allylation and 2-bromoallylation of the corresponding β-dicarbonyl compounds by the method of A. W. Johnson, E. Markham, and R. Price, *Org. Synth.*, Coll. Vol. 5, p. 785.
- 7 J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734.

§ Stereochemistry assigned on the basis of nuclear Overhauser enhancement difference spectroscopy.