Convenient Synthesis and Conversion of a (*Z*)- α , β -Didehydroornithine Derivative to α , β -Didehydrokyotorphin

Yasuchika Yonezawa, Takako Hirosaki, Takashi Hayashi, Chung-gi Shin*

Laboratory of Organic Chemistry, Faculty of Technology, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan

Fax +81(45)4917915; E-mail:shin@cc.kanagawa-u.ac.jp Received 16 June 1999; revised 9 September 1999

Abstract: Hydrogenolysis of the azido group of methyl (*Z*)-2-(*N*-Cbz)amino-5-azidopent-2-enoate, derived by selective reduction and azidation of the side chain carboxyl group of *N*-protected (*Z*)- Δ Glu-OMe, gave (*Z*)- α , β -didehydroornithine derivative (**7**). The formed **7** was further converted to the basic (*Z*)- α , β -didehydroarginine and the acid containing (*Z*)- α , β -didehydrokyotorphin.

Key words: amines, azides, peptides, condensations, coupling, reductions, didehydroamino acids, didehydroornithine

In previous papers,^{1–3} we have reported the convenient synthesis of *N*-benzyloxycarbonyl-(*Z*)- α , β -didehydroglutamic acids [Cbz- Δ Glu(OR)-OR (**1**); **a**: R = H; **b**; R = Me] by the direct condensation of α -oxoglutaric acids with benzyl carbamate (Cbz-NH₂). Meanwhile, the synthesis of Cbz- Δ Glu-OMe (**1c**) was reported by Baldwin et al.⁴ and we have also reported briefly a useful synthetic method for **1c** by the selective enzymatic hydrolysis of the γ -ethyl ester of **1b** using esterase α -chymotrypsin.⁵ The structurally unique α , β -didehydroglutamate **1c** is thought to be most applicable to various syntheses of other useful (*Z*)- α , β -didehydroamino acids (Δ AA) and heterocycles.¹

In this paper, we wish to report the convenient synthesis of 2-amino-5-hydroxypent-2-enoate derivative **2** from **1c** and the facile conversion of **2** to two kinds of basic ΔAA , such as (Z)- α , β -didehydroornithine (ΔOrn) and (Z)- α , β -didehydroarginine (ΔArg). Furthermore, in connection with the study on the structure-bioactivity relationship of analgesic dipeptide kyotorphin,⁶ the synthesis of various convertible (Z)- α , β -didehydrokyotorphins (Tyr- ΔArg) from Tyr- Δ Orn derivative was first achieved.

Selective reduction of the side chain carboxyl group of 1c with NaBH₄ in the presence of BF₃•OEt₂ in THF proceeded smoothly to give the expected methyl (*Z*)-2-(*N*-Cbz)amino-5-hydroxypent-2-enoate (**2**) in 86% yield (Scheme 1). In order to examine the azidation of the hydroxy group, mesylation or tosylation of **2** with methanesulfonyl chloride (MsCl) or toluenesulfonyl chloride (TosCl) in the presence of pyridine was attempted to give the corresponding 5-mesyloxy **3** and 5-tosyloxy **4** derivatives, respectively. Subsequent azidation of **3** with NaN₃ in DMF in the presence of catalytic 15-crown-5 was performed to give the corresponding 5-azidopent-2-enoate derivative **5**. Unfortunately, the yield was found to be markedly low (44%). On the other hand, the azidation of **4** with NaN₃ proceeded smoothly to give **5** almost quantitatively (Scheme 1).

Attempts to reduce only the azide group of 5 directly by using reducing agents, such as LiAlH₄ and NaBH₄, were unsuccessful, because of further hydrogenation of the C=C bond and the methyl ester. Therefore, after conversion of the 5-azido group to a 5-triphenylphosphinimino group, subsequent syntheses of two basic ΔAA were effected successfully. Reaction of 5 with Ph₃P proceeded readily to give methyl 5-triphenylphosphiminopent-2enoate (6), which was then treated with water in THF^7 to give the expected $Cbz-(Z)-\Delta Orn-OMe$ (7). Since the formed 7 was slightly unstable, one-pot reaction with Boc₂O was carried out, without complete isolation, to give Cbz-(Z)- Δ Orn(Boc)-OMe (8)^{8,9} in 58% yield in two steps. On the other hand, the reaction of 7 with CbzCl in the presence of Et₃N gave Cbz-(Z)- Δ Orn(Cbz)-OMe (9) in 60% yield. Furthermore, guanidylation of 7 with (Boc-NH)₂CS in the presence of HgCl₂, according to the reported method,¹⁰ gave first the expected Cbz-(Z)- Δ Arg(Boc₂)-OMe (10) in 59% yield, as shown in Scheme 1.

Hydrolysis of the methyl ester of 9 with 1 M LiOH, followed by cyclization of the resulting $Cbz-(Z)-\Delta Orn(Cbz)$ -OH (11) with SOCl₂ in diethyl ether gave N-carboxy- α , β didehydroornithine anhydride [Cbz-(Z)- Δ OrnNCA] (12) in 93% yield, according to the method reported previously.⁸ Subsequently, facile coupling of **12** with Boc-l-Tyr(MOM)-OH using dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMAP) in CH₂Cl₂ gave the protected Boc-l-Tyr(MOM)- Δ Orn(Cbz)-OMe (13) in 62% yield. Then, selective deprotection of the Cbz group of 13 with triethylsilane and PdCl₂ in the presence of Et₃N,¹¹ followed by guanidylation of the formed intermediate as for 10, gave the desired protected Boc-l-Tyr(MOM)-(Z)- Δ Arg(Boc₂)-OMe (14) in 62% yield. Finally, deprotection of all the protecting groups of 14 with 1 M LiOH in MeOH and then trifluoroacetic acid (TFA) in CH₂Cl₂ were effected successfully to give the expected H-l-Tyr-(Z)- Δ Arg-OH (15) in 65% yield (Scheme 2).

In conclusion, a convenient synthetic method for basic ΔAA and the acid containing didehydrokyotorphin has been developed. Further investigation on the various reactions of ΔOrn and ΔArg derivatives is currently under way in our laboratory.

 $\label{eq:reagents} \textit{Reagents and conditions: a) NaBH_4/BF_3.OEt_2, -10^{\circ}C, 3 min, 86\%; b) 3/MsCl/pyridine/CH_2Cl_2, r.t., 5 h, 74\%; c) 4/TosCl/pyridine/CH_2Cl_2, 6 h, 93\%; d) NaN_3/15-crown-5/DMF, r.t., 2 h, 44\% from 3, 94\% from 4; e) Ph_3P/THF, r.t. 3 h; f) H_2O/THF, r. t., 6 h; g) 8/Boc_2O/THF, r.t. 51\%; h) 9/CbzCl/TEA/THF, r.t., 3 h, 60\%; i) (BocNH)_2CS/HgCl_2/TEA/DMF, r.t. 3 h$

Scheme 1

Melting points were determined with Yamato Mp-21 micro melting points apparatus, and are uncorrected. The IR spectra in KBr were recorded on a Hitachi 270-30 spectrometer. The ¹H NMR spectra were measured with a JEOL FX 200 spectrometer in $CDCl_3$ solution with TMS as the internal standard.

Methyl (Z)-2-(N-Cbz)Amino-5-hydroxypent-2-enoate (2)

To a stirred solution of NaBH₄ (2.10 g, 55.5 mmol) in THF (100 mL) was added **1c** (10.00 g, 34.0 mmol) at -10° C. After stirring for 2 min, BF₃•OEt₂ (9.0 mL, 71.0 mmol) was added slowly over 2 h and then the mixture was poured into a chilled, satd aq NaHCO₃ (150 mL). After removal of THF in vacuo, the aqueous layer was extracted with EtOAc (3 × 100 mL). The combined organic extracts were successively washed with satd aq NH₄Cl (3 × 100 mL), satd aq NaHCO₃ (3 × 100 mL), brine (3 × 100 mL), and then dried (Na₂SO₄). Concentration in vacuo gave crude crystals, which were

recrystallized from a mixture of Et₂O and pentane to give **2** as colorless needles; yield: 8.21 g (86%); mp 63–64°C.

IR: v = 3508, 3290, 3004, 2995, 1720, 1689, 1510 cm⁻¹.

¹H NMR: $\delta = 2.45$ (dt, 2 H, J = 5.9, 7.8 Hz, 4-H), 2.96 (br s, 1 H, OH), 3.75 (s, 3 H, CO₂CH₃), 3.78 (t, 2 H, J = 5.9 Hz, 5-H), 5.13 (s, 2 H, *CH*₂Ph), 6.65 (t, 1 H, J = 7.8 Hz, 3-H), 6.81 (br s, 1 H, NH), 7.35 (s, 5 H, C₆H₅).

Anal. Calcd for $C_{14}H_{17}NO_5\!\!:$ C, 60.20; H, 6.14; N, 5.02. Found: C, 59.69; H, 6.18; N, 5.30.

Methyl (Z)-2-(N-Cbz)Amino-5-mesyloxypent-2-enoate (3)

To a stirred solution of **2** (1.50 g, 5.4 mmol) in CH₂Cl₂ (30 mL) was added pyridine (0.9 mL, 10.7 mmol) and MsCl (0.60 mL, 7.8 mmol) at 0°C. After stirring at r.t. for 6 h, the mixture was poured into H₂O (30 mL) and then the resulting solution was extracted with CHCl₃ (3 × 10 mL). The organic layer was washed with 1 M HCl (3 × 10

Reagents and conditions: a) 1 M LiOH/dioxane, r. t., 3 h; b) SOCl₂/Et₂O, r. t., 1.5 h; c) (i) BocTyr(MOM)-OH/DCC/DMPA/CH₂Cl₂, -5° C to r. t., 1.5 h; (ii) MeOH/TEA, r. t., 2 h; d) (i) Et₃SiH/PdCl₂/TEA/CH₂Cl₂, r.t., 2 h; (ii) TBAF/(Boc)₂CS/HgCl₂/TEA/DMF, r.t. 3 h; e) (i) 1 M LiOH/MeOH, r.t., 2 h, (ii) TFA/CH₂Cl₂, r. t. 1 h

Scheme 2

mL), satd aq NaHCO₃ (3×10 mL), brine (3×10 mL), and then dried (Na₂SO₄). Concentration in vacuo gave crude crystals, which were recrystallized from a mixture of EtOAc and hexane to give **3** as colorless needles; yield: 1.41 g (74%); mp 66–67°C.

IR: v = 3454, 3316, 1758, 1725, 1695, 1515 cm⁻¹.

¹H NMR: $\delta = 2.68$ (dt, 2 H, J = 6.4, 7.3 Hz, 4-H), 3.01 (s, 3 H, SO₃CH₃), 3.79 (s, 3 H, CO₂CH₃), 4.36 (t, 2 H, J = 6.4 Hz, 5-H), 5.14 (s, 2 H, CH_2 Ph), 6.45 (br s, 1 H, NH), 6.60 (t, 1 H, J = 7.3 Hz, 3-H), 7.37 (s, 5 H, C_6 H₅).

Anal. Calcd for $C_{15}H_{19}NO_7S$: C, 50.42; H, 5.36; N, 3.92. Found: C, 50.32; H, 5.40; N, 4.12.

Methyl (Z)-2-(N-Cbz)Amino-5-tosyloxypent-2-enoate (4)

Reaction of 2 (1.51 g, 5.4 mmol) with TosCl (1.30 g, 6.8 mmol) was carried out analogous to the mesylation of 3 as above and worked up to give 4 as a colorless syrup; yield: 2.20 g (93%).

IR: v = 3634, 3496, 3354, 3064, 3028, 2950, 2926, 2854, 2254, 1725, 1665, 1599, 1503 cm⁻¹.

¹H NMR: δ = 2.44 (s, 3 H, ArCH₃), 2.57 (dt, 2 H, *J* = 6.4, 7.3 Hz, 4-H), 3.77 (s, 3 H, CO₂CH₃), 4.15 (t, 2 H, *J* = 6.4 Hz, 5-H), 5.11 (s, 2 H, CH₂Ph), 6.39 (br s, 1 H, NH), 6.49 (t, 1 H, *J* = 7.3 Hz, 3-H), 7.33

(d, 2 H_{arom}, J = 8.3 Hz), 7.36 (s, 5 H, C₆H₅), 7.78 (d, 2 H_{arom}, J = 8.3 Hz)

Anal. Calcd for $C_{21}H_{23}NO_7S$: C, 58.19; H, 5.35; N, 3.23. Found: C, 58.53; H, 5.38; N, 3.31.

Methyl (Z)-2-(N-Cbz)Amino-5-azidopent-2-enoate (5)

From **3**: To a solution of **3** (1.00 g, 2.8 mmol) in DMF (15 mL) was added NaN₃ (220 mg, 3.4 mmol) and catalytic 15-crown-5 (0.15 mL) at 50°C. After stirring for 2 h, the mixture was poured into H₂O (50 mL) and extracted with EtOAc (3×15 mL). The combined organic extracts were washed with 10% citric acid (2×10 mL), satd aq NaHCO₃ (2×10 mL), H₂O (2×10 mL), and then dried (Na₂SO₄). Concentration in vacuo gave a residual syrup, which was chromatographed on a silica-gel column using a mixture of EtOAc and hexane (2 : 1 v/v) to give **5** as a colorless syrup; yield: 370 mg (44%).

IR: v = 3552, 3360, 2960, 2104, 1838, 1716, 1516 cm⁻¹.

¹H NMR: δ = 2.49 (dt, 2 H, *J* = 6.8, 7.3 Hz, 4-H), 3.44 (t, 2 H, *J* = 6.8 Hz, 5-H), 3.78 (s, 3 H, CO₂CH₃), 5.15 (s, 2 H, *CH*₂Ph), 6.40 (br s, 1 H, NH), 6.58 (t, 1 H, *J* = 7.3 Hz, 3-H), 7.28–7.38 (m, 5 H, C₆H₅).

Anal. Calcd for $C_{14}H_{16}N_4O_4$: C, 55.25; H, 5.31; N, 18.41. Found: C, 55.60; H, 5.22; N, 18.62.

From **4**: A suspension of **4** (1.40 g, 3.20 mmol) and NaN₃ (230 mg, 3.54 mmol) in DMF (20 mL) in the presence of catalytic 15crown-5 (0.15 mL) was stirred at r.t. for 4 h. The mixture was diluted with H₂O (60 mL) and extracted with EtOAc (3×30 mL). The combined extracts were washed with 10% aq citric acid (3×10 mL), satd aq NaHCO₃ solution (3×10 mL), brine (3×10 mL), and then dried (Na₂SO₄). Concentration in vacuo gave a residual syrup, which was purified on a silica gel column using a mixture of EtOAc and hexane (1:10 v/v) to give **5** as a colorless syrup; yield: 915 mg (94%).

Methyl (Z)-2-(N-Cbz)Amino-5-triphenylphosphiminopent-2enoate (6)

A solution of **5** (500 mg, 1.60 mmol) and Ph₃P (431 mg, 1.64 mmol) in benzene (10 mL) was stirred at r.t. for 4 h. Concentration of the mixture in vacuo gave a residual syrup, which was crystallized from hexane. The crude crystals were recrystallized from a mixture of EtOAc and hexane (1:50 v/v) to give **6** as colorless prisms; yield: 800 mg (93 %); mp 69–70°C.

IR: $\nu=3052,\ 2944,\ 2842,\ 2818,\ 2464,\ 2296,\ 2248,\ 2134,\ 2014,\ 1965,\ 1941,\ 1908,\ 1887,\ 1866,\ 1827,\ 1719,\ 1650,\ 1614,\ 1590,\ 1488\ cm^{-1}.$

¹H NMR: $\delta = 2.40-2.56$ (m, 2 H, 4-H), 3.16–3.34 (m, 2 H, 5-H), 3.73 (s, 3 H, CO₂CH₃), 5.08 (s, 2 H, CH₂Ph), 6.36 (t, 1 H, *J* = 7.8 Hz, 3-H), 7.28–7.90 (m, 20 H, $4 \times C_6H_5$), 10.00 (br s, 1 H, NH).

Anal. Calcd for $C_{32}H_{31}N_2O_4P$: C, 71.35; H, 5.81; N, 5.20. Found: C, 71.16; H, 5.78; N, 5.26.

Cbz-(Z)-\Dorn(Boc)-OMe (8)

A solution of **6** (500 mg, 0.93 mmol) in THF (10 mL) and H_2O (1 mL) was stirred at r.t. for 6 h. To the mixture was added Boc_2O (203 mg, 0.93 mmol) and then the resulting solution was continuously stirred for 6 h. Concentration in vacuo gave a residual syrup, which was purified on a silica gel column using a mixture of EtOAc and hexane (1 : 5 v/v) as eluent to give **8** as a colorless syrup; yield: 180 mg (51%).

IR: v = 3323, 2928, 1773, 1653, 1508 cm⁻¹.

¹H NMR: $\delta = 1.44$ (s, 9 H, *t*-C₄H₉), 2.42 (dt, 2H, *J* = 6.4, 7.8 Hz, 4-H), 3.27 (dt, 2 H, *J* = 6.4, 7.8 Hz, 5-H), 3.76 (s, 3 H, CO₂CH₃), 4.90 (br s, 1 H, NH), 5.14 (s, 2 H, CH₂Ph), 5.38 (br s, 1 H, NH), 6.63 (t, 1 H, *J* = 7.8 Hz, 3-H), 7.36 (s, 5 H, C₆H₅).

Anal. Calcd for $C_{19}H_{26}N_2O_6$: C, 60.30; H, 6.93; N, 7.40. Found: C, 60.38; H, 7.15; N, 7.35.

Cbz-(Z)-AOrn(Cbz)-OMe (9)

A solution of **6** (1.08 g, 2.00 mmol) in THF (20 mL) and H₂O (2 mL) was stirred at r. t. for 6 h. To the mixture was added CbzCl (375 mg, 2.20 mmol), Et₃N (202 mg, 2.00 mmol) and then the resulting solution was continuously stirred for 3 h. Concentration in vacuo gave a residual syrup, which was purified on a silica-gel column using a mixture of EtOAc and hexane (1 : 5 v/v) as eluent to give a colorless syrup. The obtained syrup was crystallized from hexane. The crystals were recrystallized from cyclohexane to give **9** as colorless needles; yield: 495 mg (60%); mp 80–82°C.

IR: $v = 3319, 3303, 1735, 1689, 1553, 1505 \text{ cm}^{-1}$.

¹H NMR: δ = 2.45 (dt, 2 H, *J* = 6.5, 7.5 Hz, 4-H), 3.36 (m, 2 H, 5-H), 3.76 (s, 3 H, CO₂CH₃), 5.10 (s, 2 H, *CH*₂Ph), 5.13 (s, 2 H, *CH*₂Ph), 5.24 (br s, 1 H, *CH*₂N*H*), 6.37 (br s, 1 H, NH), 6.58 (t, 1 H, *J* = 7.5 Hz, 3-H), 7.33–7.36 (m, 10 H, 2 × C₆H₅).

Anal. Calcd for $C_{22}H_{24}N_2O_6:$ C, 64.06; H, 5.87; N, 6.79. Found: C, 64.18; H, 5.75; N, 6.55.

Cbz-(Z)- Δ Arg(Boc₂)-OMe (10)

A solution of **6** (500 mg, 0.90 mmol) in THF (10 mL) and H₂O (1 mL) was stirred at r.t. for 6 h. The mixture was concentrated in vacuo to give a residual syrup, which was dissolved in DMF (10 mL). To the resulting solution was added Et₃N (0.43 mL, 3.10 mmol), (BocNH)₂CS (257 mg, 0.90 mmol), and HgCl₂ (277 mg, 1.00 mmol) at 0°C and the mixture was continuously stirred at r.t. for 3 h. After removal of insoluble material, the filtrate was diluted with H₂O (30 mL). The aqueous solution was extracted with EtOAc (3 × 5 mL) and the combined extracts were washed with 10% aq citric acid (3 × 5 mL), satd aq NaHCO₃ (3 × 5 mL), brine (3 × 5 mL), and then dried (Na₂SO₄). Concentration in vacuo gave residual crystals, which were recrystallized from a mixture of EtOAc and hexane to give **10** as colorless needles; yield: 279 mg (59%); mp 128–129°C.

IR: v = 3370, 2974, 1722, 1668, 1596, 1572, 1518 cm⁻¹.

¹H NMR: δ = 1.45 (s, 18 H, 2 × *t*-C₄H₉), 2.51 (dt, 2 H, *J* = 7.3, 7.8 Hz, 4-H), 3.25-3.76 (m, 2 H, 5-H), 3.70 (s, 3 H, CO₂CH₃), 5.06 (AB q, 2 H, *J* = 12.2, 20.0 Hz, CH₂Ph), 6.41 (br s, 1 H, NH), 6.47 (t, 1H, *J* = 7.8 Hz, 3-H), 6.95 (br s, 1 H, NH), 7.22-7.44 (m, 5 H, C₆H₅). 9.45 (br s, 1 H, NH).

Anal. Calcd for $C_{25}H_{36}N_4O_8{:}$ C, 57.68; H, 6.97; N, 10.76. Found: C, 57.95; H, 6.92; N, 11.15.

Cbz-(Z)-AOrn(Cbz)-OH (11)

A solution of **9** (1.00 g, 2.40 mmol) in dioxane (5 mL) and 1 M LiOH (3 mL) was stirred at 20°C for 3 h. To the mixture was added satd aq NaHCO₃ solution (30 ml). After removal of dioxane in vacuo, the residual aqueous layer was washed with Et₂O (3×5 mL) and acidified with 10% aq citric acid to pH 3-4. The aqueous solution was extracted with EtOAc (3×7 mL) and the combined organic extracts were washed with 10% aq citric acid (3×5 mL), brine (3×5 mL), and then dried (Na₂SO₄). Concentration in vacuo gave residual crystals, which were recrystallized from a mixture of CHCl₃ to give **11** as colorless needles; yield: 765 mg (80%), mp 121–123°C.

IR: v = 3424, 1698, 1515, 1404 cm⁻¹.

¹H NMR δ = 1.46 (s, 9 H), 1.49 (d, 3 H, J = 6.4 Hz), 1.65 (s, 6 H), 1.88 (d, 3 H, J = 7.0 Hz, =CHC H_3), 4.05 (d, 1 H, J = 7.5 Hz), 4.38 (dq, 1 H, J = 6.4, 7.5 Hz), 6.57 (q, 1 H, J = 7.5 Hz, =CHCH₃), 8.00 (br s, 1 H, NH), 8.11 (s, 1 H, NH at C-5), 8.54 (br s, 1 H, CO₂H).

Anal. Calcd for $C_{21}H_{22}N_2O_6{:}$ C, 63.31; H, 5.57; N, 7.03. Found: 63.45; H, 5.72; N, 7.25.

(Z)-AOrn(Cbz)NCA (12)

To a stirred suspension of **11** (1.00 g, 2.50 mmol) in Et₂O (10 mL) was added SOCl₂ (10 mL) at 0°C. After stirring at r. t. for 1 h, the mixture was thoroughly concentrated in vacuo to give a residual syrup, which was crystallized from benzene. The crude crystals were recrystallized from benzene to afford **12** as colorless prisms; yield: 675 mg (93%); mp 87–89°C.

IR: v = 3342, 1852, 1806, 1694, 1534, 1315 cm⁻¹.

¹H NMR: δ = 2.48 (q, 2 H, *J* = 7.0 Hz, 4-H), 3.29 (dt, 2 H, *J* = 6.0, 7.0 Hz), 5.12 (s, 2 H, *CH*₂Ph), 5.19 (br s, 1 H, CH₂N*H*), 5.94 (t, 1 H, 3-H), 7.31-7.40 (m, 5 H, C₆H₅), 9.43 (br s, 1H, NH).

Anal. Calcd for $C_{14}H_{14}N_2O_5$: C, 57.93; H, 4.86; N, 9.65. Found: C, 57.95; H, 4.92; N, 9.35.

Boc-l-Tyr(MOM)-(Z)- Δ Orn(Cbz)-OMe (13)

To a stirred solution of Boc-Tyr(MOM)-OH (2.57 g, 7.89 mmol) and DCC (1.78 g, 8.64 mmol) in CH_2Cl_2 (40 mL) was added over 30 min at $-10^{\circ}C$. After stirring for 30 min, **12** (2.18 g, 1.72 mmol) and DMAP (3.00 g, 1.50 mmol) were added over 1.5 h at r. t. Finally, after treating further with MeOH (10 mL) and stirring for 2 h, TEA (1.26 mL, 9.01 mmol) was added to the mixture. After remov-

al of CH₂Cl₂ and MeOH in vacuo, the residue was dissolved in EtOAc (10 mL) and the *N*,*N*⁻dicyclohexylurea separated out was filtered. The filtrate was diluted in EtOAc (10 mL) and the resultant solution was washed successively with 10% aq citric acid (2 x 5 mL), satd aq NaHCO₃ (2 x 5 mL), H₂O (5 mL) and then dried (Na₂SO₄). Concentration in vacuo gave a residual syrup, which was purified on a silica gel column using a mixture of CHCl₃ and acetone (25:1 v/v) to give colorless crystals, which were recrystallized from a mixture of EtOAc and hexane to give **13** as colorless needles; yield: 2.85 g (65%); mp 98–99°C; $[\alpha]_D^{25}$ +1.1 (*c* = 0.97, MeOH).

IR: $\nu=3330,\,3295,\,2951,\,1733,\,1695,\,1684,\,1670,\,1585,\,1525,\,1512\;cm^{-1}.$

¹H NMR: δ =1.41 (s, 9 H, *t*-C₄H₉), 2.27 (dt, 2 H, *J* = 6.5, 7.5 Hz, ΔOrn's 4-H), 3.00 (dd, 1 H, *J* = 7.0, 14.0 Hz, Tyr's 3-H), 3.10 (dd, *J* = 6.5, 14.0 Hz, Tyr's 3-H), 3.32 (dt, 2 H, *J* = 6.0, 6.5 Hz, ΔOrn's 5-H), 3.46 (s, 3 H, OCH₃), 3.74 (s, 3 H, CO₂CH₃), 4.42 (m, 1 H, Tyr's 2-H), 5.01 (br s, 1 H, NH), 5.10 (s, 2 H, *CH*₂Ph), 5.14 (s, 2 H, OCH₂O), 5.47 (t, 1 H, *J* = 6.0 Hz, CH₂N*H*), 6.63 (t, 1 H, ΔOrn's 3-H), 6.96 (d, 2 H, *J* = 8.5 Hz, Tyr's H_{arom}), 7.13 (d, 2 H, *J* = 8.5 Hz. Tyr's H_{arom}), 7.36 (m, 5 H, C₆H₅), 7.55 (br s, 1 H, NH).

Anal. Calcd for $C_{30}H_{39}N_3O_9$: C, 61.53; H, 6.71; N, 7.18. Found: C, 61.75; H, 6.87; N, 7.25.

Boc-l-Tyr(MOM)-(Z)-DArg(Boc₂)-OMe (14)

To a solution of 13 (378 mg, 0.64 mmol) in CH₂Cl₂ (20 mL) was added Et₃SiH (0.4 mL, 3.44 mmol), Et₃N (0.17 mL. 0.77 mmol), and PdCl₂ (10 mg, 0.06 mmol). The resultant solution was heated under reflux for 20 min. The mixture was concentrated in vacuo to give a residual syrup, to which a solution of Bu₄NF (TBAF, 1 M solution in THF, 0.7 mL) in DMF (15 mL) was added with stirring over 5 min at r. t. To the resulting solution was added Et₃N (0.43 mL, 3.1 mmol), (BocNH)₂CS (257 mg, 0.90 mmol), and HgCl₂ (277 mg, 1.0 mmol) at 0°C and then the mixture was continuously stirred at r. t. for 3 h. After removal of insoluble material, the filtrate was diluted with H₂O (30 mL). The aqueous solution was extracted with EtOAc (3×15 mL) and the combined extracts were washed with 10% aq citric acid (3×5 mL), satd aq NaHCO₃ (3×5 mL), brine (3 \times 5 mL), and then dried (Na₂SO₄). Concentration in vacuo gave a residual amorphous, which was recrystallized from a mixture of EtOAc and hexane to give 14 as a colorless amorphous material; yield: 279 mg (62%); mp 68–69°C; $[\alpha]_D^{25}$ –3.4 (*c* = 0.93, MeOH).

IR: $v = 3438, 2979, 2934, 1721, 1680, 1640, 1617, 1511, 1368 \text{ cm}^{-1}$.

¹H NMR: $\delta = 1.42$ (s, 9 H, *t*-C₄H₉), 1.49 (s, 18 H, 2 *t*-C₄H₉), 2.35 (m, 2 H, Δ Arg's 4-H), 3.04 (dd, 1 H, *J* = 6.0, 14.0 Hz, Tyr's 3-H), 3.11 (dd, 1 H, *J* = 7.0, 14.0 Hz, Tyr's 3-H), 3.46 (s, 3 H, OCH₃), 3.51 (dt, 2 H, *J* = 7.0, 5.5 Hz, Δ Arg's 5-H), 3.75 (s, 3 H, CO₂CH₃), 4.43 (m, 1 H, Tyr's 2-H), 5.02 (br s, 1H, NH), 5.14 (s, 2H, OCH₂O), 6.65 (t, 1H, *J*=7.0 Hz, Δ Arg's 3-H), 6.97 (d, 2 H, *J* = 9.0 Hz, Tyr's H_{arom}), 7.15 (d, 2 H, *J* = 9.0 Hz, Tyr's H_{arom}), 7.56 (br s, 1 H, NH), 8.31 (t, 1 H, *J* = 7.0 Hz, CH₂NH), 11.5 (br s, 1 H, guanidino group's NH).

H-l-Tyr-(Z)-ΔArg-OH (15)

A solution of **14** (105 mg, 0.15 mmol) in dioxane (1 mL) was stirred with 1 M LiOH (0.20 mL) at r.t. over 3 h. The mixture was washed with H₂O/Et₂O (15 mL; 2:1 v/v) and the aqueous layer was acidified to pH 3 with 3 M HCl and then extracted with EtOAc (3 × 7 mL). The combined organic layers were concentrated in vacuo. The obtained residue was dissolved in CHCl₃/Et₃N (1.4 mL; 1:1 v/v) and the resulting solution was stirred at r.t. for 3 h. After concentration in vacuo, the crude residue was purified by DOWEX 50W-X18-OH using EtOH as eluent to give a solid, which was recrystallized from EtOH/Et₂O to give **15** as colorless amorphous material; yield: 33 mg (65%); mp 190–195°C; $[\alpha]_D^{25}$ –5.4 (*c* = 0.93, MeOH).

IR: $v = 3438, 2979, 2934, 1721, 1680, 1640, 1617, 1511, 1368 \text{ cm}^{-1}$.

¹H NMR: δ = 2.05 (m, 2 H, ΔArg's 4-H), 3.04 (dd, 1 H, J = 6.5, 14.0 Hz, Tyr's 3-H), 3.13 (dd, 1 H, J = 7.0, 14.0 Hz, Tyr's 3-H), 3.23 (t, 2 H, J = 6.5 Hz, ΔArg's 5-H), 4.12 (m, 1 H, Tyr's 2-H), 6.47 (t, 1 H, J = 7.0 Hz, ΔArg's 3-H), 6.77 (d, 2 H, J = 8.0 Hz, Tyr's H_{arom}), 7.35 (d, 2 H, J = 8.0 Hz, Tyr's H_{arom}).

Anal. Calcd for $C_{15}H_{21}N_5O_4{:}$ C, 53.72; H, 6.31; N, 20.89. Found: C, 53.45; H, 6.05; N, 21.22.

References

- Shin, C.; Yonezawa, Y.; Watanabe, E. *Tetrahedron Lett.* 1985, 26, 85.
- (2) Shin, C.; Takahashi, N.; Seki, M. Bull. Chem. Soc. Jpn. 1991, 64, 3575.
- (3) Shin, C.; Yonezawa, Y.; Unoki, K.; Yoshimura, J. *Tetrahedron Lett.* **1979**, 1049.
- (4) Baldwin, J. E.; Cha, J. K.; Kruse, L. T. *Tetrahedron* 1985, 41, 5241.
- (5) Shin, C.; Seki, M.; Takahashi, N. Chem. Lett. 1990, 2089.
- (6) Kirihata, M.; Kawahara, S.; Ichimoto, I.; Ueda, H. Agric. Biol.Chem. 1990, 54, 753.
- (7) Vaultier, M.; Knougi, N.; Carrie, R. *Tetrahedron Lett.* **1983**, 24, 763.
- (8) Shin, C.; Obara, T.; Segami, S.; Yonezawa, Y. *Tetrahedron Lett.* 1987, 28, 3827.
- (9) Shin, C.; Takahashi, N.; Yonezawa, Y. Chem. Pharm. Bull. 1990, 38, 2020.
- (10) Kim, K. S.; Qian, L. Tetrahedron Lett. 1993, 34, 7677.
- (11) Sakaitani, M.; Ohfune, Y. J. Org. Chem. 1990, 55, 870.

Article Identifier:

1437-210X,E;2000,0,01,0144,0148,ftx,en;F03599SS.pdf