

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 4290-4296

Arylpropanolamines: Selective β_3 agonists arising from strategies to mitigate phase I metabolic transformations

W. N. Washburn,* T. W. Harper, G. Wu, J. D. Godfrey, P. McCann, R. Girotra, C. Shao,
H. Zhang, A. Gavai, A. Mikkilineni, T. Dejneka, S. Ahmed, Y. Caringal, J. Hangeland,
M. Zhang, P. T. W. Cheng, A. D. Russell, S. Skwish, D. A. Slusarchyk, G. T. Allen,
B. H. Frohlich, B. E. Abboa-Offei, M. Cap, T. L. Waldron, R. J. George, B. Tesfamariam,
K. E. Dickinson, A. A. Seymour and P. M. Sher

Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 4000, Princeton, NJ 08543, USA

Received 9 April 2007; revised 7 May 2007; accepted 9 May 2007 Available online 16 May 2007

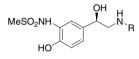
Abstract—Utilization of N-substituted-4-hydroxy-3-methylsulfonanilidoethanolamines 1 as selective β_3 agonists is complicated by their propensity to undergo metabolic oxidative N-dealkylation, generating 0.01–2% of a very potent α_1 adrenergic agonist 2. A summary of the SAR for this hepatic microsomal conversion precedes presentation of strategies to maintain the advantages of chemotype 1 while mitigating the consequences of N-dealkylation. This effort led to the identification of 4-hydroxy-3-methylsulfonanilidopropanolamines 15 for which the SAR for the unique stereochemical requirements for binding to the β adrenergic receptors culminated in the identification of the potent, selective β_3 agonist 15f. © 2007 Elsevier Ltd. All rights reserved.

In prior papers we described the SAR of 4-hydroxy-3methylsulfonoanilidoethanolamines 1 which yielded three selective β_3 adrenergic agonists as clinical candidates for treatment of diabetes and obesity.¹⁻³ Given the uncertainty as to whether adequate depots of brown adipose tissue were present in adult humans to elicit a thermogenic response,⁴ we believed that full β_3 agonists represented the best chance for achieving Proof of Principle. The discovery that, out of 50 different catechol amine surrogates evaluated, only chemotype 1 were full β_3 agonists ensured our commitment to compounds possessing the 4-hydroxy-3-methyl-sulfonanilido moiety found in 1 despite the propensity for liberation of low levels of a potent α_1 adrenergic agonist 2.⁵ This paper, after delineating the SAR for metabolic conversion of 1-2, focuses on our efforts to maintain the advantages of series 1 while mitigating the consequences of phase I metabolic N-dealkylation.

Cytochrome P-450 mediated N-dealkylation of 1 was not unexpected, given the facile cleavage of carbon-

0960-894X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.05.030

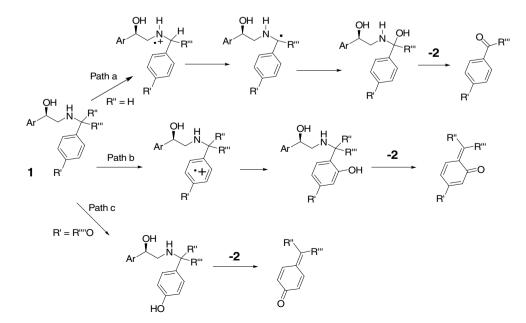
nitrogen bonds.⁶ However, this transformation was a particularly serious problem for chemotype **1** since the N-substituent determined the adrenergic agonist profile. Although β_3 adrenergic agonists containing chemotype **1** have been reported by others, no mention of metabolite **2** exists.⁷ Due to our concerns regarding release of **2**, the safety of compounds **1** was confirmed by iv administration of **1** at 10 mg/kg to mice, which are extremely sensitive to **2**,⁸ prior to administration of **1** to *African green* monkeys (AGM). Our efforts to surmount the formidable challenge posed by 0.01 to ~2% in vivo metabolic conversions of **1**–**2** are described herein.

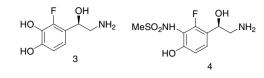

Incubation of representative examples of 1 with human, AGM, and rat hepatic microsomes suggested that the conversions of 1-2 were 3- and 10-fold greater, respectively, for AGM and rat than for human.⁹ The 10,000-fold difference in amounts of 2 released by AGM hepatic microsomal oxidation illustrates the highly structure dependent nature of this metabolic pathway (Table 1).

Keywords: β_3 Agonists; Metabolic oxidative N-dealkylation; Arylpropanolamine; Drug metabolism.

^{*} Corresponding author. E-mail: William.Washburn@bms.com

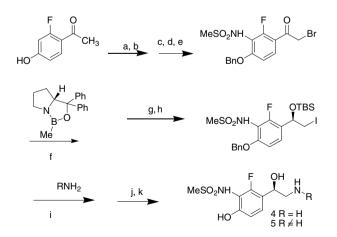
Moreover, the SAR suggested that, depending on 'R', N-dealkylation could occur via one of three different pathways (Scheme 1). Mechanistic studies suggested that N-dealkylation of amines such as **1a**-**1c** for which C_{α} is not quaternary proceeds via oxidative conversion to a carbinolamine with subsequent collapse. As outlined in path 'a', the carbinolamine arises via electron transfer to generate an amine radical cation and subsequent loss of a proton followed by oxygen rebound capture of the benzylic radical to generate a carbinolamine intermediate.^{6a} If C_{α} is quaternary and an adequately stabilized aryl radical cation can be generated, we envisage a second route 'b' liberating **2** could become operative. This pathway entails electron transfer to generate an aryl radical cation that is subsequently


Table 1. % Conversion of 1a–1j to 2 after 3-h incubation at 37 $^\circ C$ with AGM hepatic microsomes 9


Compound ^{1–3}	R	% Conversion in vitro to 2
1a	(S)-CH(Ph-p-OMe)CONPh	0.05
1b	-CH(Ph-p-OCHF ₂) ₂	0.2
1c	(R)-CH(Ph-p-OCHF ₂)CH ₂ Ph	1.1
1d	-CMe ₂ Ph	0.001
1e	-CMe ₂ -Ph-4-OMe	28
1f	-CH(Ph-p-OMe) ₂	5
1g	(R)-CH(Ph- <i>p</i> -OH)CH ₂ (Ph- <i>p</i> -F)	2.2
1h	-CMe(Ph-p-OCHF ₂) ₂	0.1
1i	(S)-CMe(Ph-p-OMe)CONPh	0.57
1j	(S)-CMe(Ph-p-OMe) CONPh-4-PO(OEt) ₂	0.49

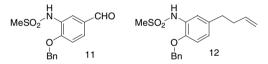
hydroxylated to generate an ortho substituted phenol.6b Conversion of the latter to an ortho quinine methide would simultaneously release 2. Formation of 2 by this pathway would predict a marked dependence on the α -aryl ring substituent(s), since the latter would modulate the oxidation potential. Detection of 10,000-fold more 2 generated from microsomal incubation of 1e than from 1d is consistent with this pathway, as is the 25-fold enhanced formation of 2 from 1f versus 1b. The finding that phenol 1g spontaneously released 2 presumably via the non-enzyme mediated quinone methide route 'c' was particularly noteworthy since the amine substituent 'R' of 1 routinely contained a para phenolic ether attached to C_{α} to enhance β_3 selectivity. This latter pathway, necessitating P450 mediated oxidative O-dealkylation, would account for the inability to totally suppress release of 2 from compounds such as 1i and 1j and possibly **1h** for which the first two pathways would not be expected to be operative. Efforts to further modify 'R' to preclude any formation of 2 were not compatible with maintenance of high β_3 activity and selectivity.¹⁰

Since structural modification of the N-substituent of **1** failed to suppress in vivo N-dealkylation to greater than 99.95% for β_3 agonists of interest, we sought to maintain the hydroxysulfonoanilido/ β_3 receptor interactions conducive to a full agonist response yet modify the structure of **1** to insure that the biological activity of the primary amine metabolic counterpart of **2** would not be of concern. Specifically, our approach was to explore both substitution of the hydroxyanilide moiety of **1** and elongation of the ethanolamine spacer to ascertain whether full β_3 agonist activity would be maintained while ablating the α adrenergic activity of the primary amine metabolite counterpart of **2**.


Scheme 1. Oxidative pathways leading to release of 2.

Prior investigators had reported that the *ortho* fluorine of **3** virtually eliminated the α adrenergic activity of noradrenaline and adrenaline while maintaining β_1 and β_2 activity.¹¹ The abolition of α activity was attributed to the conformational constraints imposed on the ethanolamine side chain due to hydrogen bonding of the benzylic hydroxyl to the aryl fluoride.¹² In our in vitro assays, the β_3 agonist profile of **3** was similar to that of noradrenaline: β_3 affinity of **3** (8100 nM) was twice that of noradrenaline (18,000 nM); moreover, the β_3 intrinsic activities (IA) were 75% and 91%, respectively, for **3** and noradrenaline. Both compounds exhibited similar binding selectivities of 0.05 and 0.3 versus β_1 and β_2 , respectively, where selectivity is defined as the ratio of $\beta_1 K_i$ or $\beta_2 K_i$ to $\beta_3 K_i$.

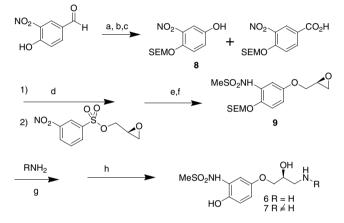
Accordingly, **4**, the *o*-fluoro counterpart of **2**, was prepared (Scheme 2). As expected, **4** was devoid of α agonist activity; however, **4** was a β_3 antagonist exhibiting 10-fold diminished β_3 affinity relative to **2**, although the β_1 and β_2 affinities of **2** and **4** were comparable. In hopes of enhancing β_3 agonist activity, a series of Nsubstituted analogs of **4** were prepared. The 10-fold or greater diminution in β_3 affinity of these fluorinated compounds **5a**–**5d** when compared to a corresponding set of des-fluoro β_3 agonists **1a**, **1c**, **1e**, and **1f** was disappointing (Table 2). In addition, these fluorinated compounds tended to be partial β_3 agonists.


An alternative approach entailing elongation of the spacer between the catechol surrogate and the ethanol-

Scheme 2. Reagents and conditions: (a) HNO₃, AcOH, 50 °C, 25%; (b) NaH, BnBr, DMF, 90%; (c) SnCl₂, EtOH, 89%; (d) MsCl, Pyr, 94%; (e) Br₂, dioxane, 60 °C, 86%; (f) BH₃·Me₂S, THF, 96% (98.2% ee); (g) NaI, acetone, 65 °C, 96%; (h) TBSCl, DMAP, ImH, DMF, 100%; (i) EtN(*i*-Pr)₂, heat, 120 °C, 50–75%; (j) KF, THF; (k) H₂, MeOH, 85% (2 steps).

amine moiety was prompted by the report of Beeley et al. of aryloxypropanolamines exhibiting β_3 agonist activity.¹⁷ Our finding that **6**, the 4-hydroxy-3-methvlsulfonoamidophenoxypropanolamine counterpart of 2. exhibited little α adrenergic activity was sufficiently promising to warrant the synthesis of analogs 7a-7c. The key synthetic step was a Baeyer-Villiger oxidation of a SEM protected 4-hydroxy-3-nitrobenzaldehyde to generate the prerequisite phenol 8 necessary for subsequent transformation to the enantiomerically pure chiral epoxide 9 (Scheme 3). Heating of 9 with an appropriate amine generated 7a-7c. Unlike the aryl ethanolamine counterparts 1c and 1k, N-substitution with (R)-1,2-diarylethyl moieties generated high affinity albeit partial β_3 agonists such as **7b** and **7c** (Tables 2 and 3). However, once the susceptibility of 7a-7c to air oxidation became apparent, SAR delineation ceased for this series.¹⁸

The oxidatively more robust arylbutanolamine counterparts **10a–10c** were briefly examined. Synthesis of arylbutanolamines **10a–10c** entailed conversion of 4hydroxybenzaldehyde to **11**.¹⁹ Sequential treatment of **11** with allyl magnesium Grignard, mesylation, and LiAlH₄ reduction generated 4-(4-benzyloxy-3-methylsulfonamido-phenyl)-1-butene **12** which after epoxidation with MCPBA, condensation with the appropriate amine, and debenzylation yielded compounds **10a–10c**. However, their markedly inferior β_3 affinity and intrinsic activity relative to chemotype **1** discouraged sustained efforts.



The finding that insertion of a two-atom spacer between the ethanolamine moiety and the catechol surrogate abolished α agonist activity of **6** prompted homologation of **2** to generate the corresponding 3-arylpropan-2-ol-1-amine **13**. Diazotization of chiral 3-nitrotyrosine in aq H₂SO₄ proceeded with retention to generate chiral α -hydroxy acid **14**. Conversion of **14** to the primary amine **13** and selected analogs **15** by solution chemistry entailed condensation with an appropriate amine, followed by borane reduction (Scheme 4). However, most N-substituted analogs **15** were prepared combinatorially via solid state synthesis.²⁰

Encouraged by the finding that 13 was devoid of α adrenergic activity, the SAR of this chemotype was further elucidated. All three β receptors exhibited an atypical stereochemical preference for ligands containing homobenzylic alcohols with *S* chirality, which is opposite to the projection of the hydroxyl preferred for arylethanolamines or aryloxypropanol-amines.²¹ In particular, the affinity of the β_3 receptor was 10-fold greater for the *S* configured homobenzylic alcohols **15b** and **15d** than the corresponding *R* isomers **15a** and **15c** (Table 4).

Table 2. β_3 Affinity and intrinsic activity for 2-fluoro4-hydroxy-3-methyl-sulfonoanilidoethanolamines 4 and 5 relative to 1 and 2^{13}

MeSO ₂ NH, N _R HO						
R		$X = H^{16}$			$X = F^{16}$	
	Compound	$\beta_3 K_i (nM)$	β ₃ IA	Compound	$\beta_3 K_i (nM)$	β ₃ IA
Н	2	17,000	93	4	120,000	0
(S)-CH(Ph-p-OMe)CONPh	1a	77	119	5a		58
(R)-CH(Ph-4-OCHF ₂)-CH ₂ Ph	1c	21	107	5b	270	77
-CMe ₂ Ph-4-OMe	1e	7	86	5c	200	88
-CH(Ph-4-OMe) ₂	1f	81	100	5d	1700	24
(R)-CHPh-3,4-(OMe) ₂ -CH ₂ Ph	1k	11	110			

Scheme 3. Reagents and conditions: (a) SEMCl, $EtN(i-Pr)_2$, CH_2Cl_2 , 82%; (b) MCPBA, CH_2Cl_2 ; (c) NaOH/H₂O/MeOH, 19% (2 steps); (d) NaH, DMF, 94%; (e) H₂, EtOAc, PtO₂; (f) Ms₂O, CH_2Cl_2 , 95% (2 steps); (g) excess RNH₂, 100 °C, 65%; (h) TFA, EtOH, 40–70%.

A more complete SAR pattern emerged following characterization of the four diastereomers **15e–15h**. β_3 affinity was enhanced by >5-fold if the chirality of the homobenzylic alcohol was *S* (compare $K_i \beta_3$ of **15f** and **15g** to that of **15e** or **15h**). The *S*,*R* diastereomer **15f** was not only the most potent β_3 agonist of these four diastereomers but also was the only full β_3 agonist.²³ Both β_1 and β_2 affinities were greatest for **15g**, the *S*,*S* diastereomer. In addition, β_1 IA was somewhat reduced for **15f** versus for **15g**; whereas, β_2 IA remained an invariant 100% for both of these diastereomers.²⁴ These fortuitous divergences in the stereochemical preferences for the three β receptors offered additional means to enhance β_3 in vivo selectivity. These findings also underscore the divergence in IA sensitivity to the ligand/receptor interactions, β_1 being the most sensitive, β_2 the least.

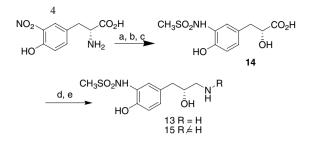

Proper orientation of this ligand in the β_3 receptor appeared dependent on the α -aryl ring being 3,4-disubstituted with oxygen substituents. The diminished affinity and β_3 IA of **15b** or **15d** relative to **15f** underscore the importance of both methoxyls on the α -aryl ring to elicit a strong β_3 agonist response; whereas, only the 4-methoxyl is essential for the corresponding arylethanolamine series **1**.¹ The effect was not steric in origin, since selectivity was ablated upon replacement of both methoxyls with chlorine (**15i**). Reduction in the acceptor hydrogen bonding potential of the phenolic oxygen appendages correlated with loss of selectivity; compare **15f** or **15j**–**15k**.

Table 3. β_3 AR agonist activity and selectivity versus β_1 and β_2 for 4-hydroxy-3-methylsulfonoamidophenoxypropanolamines 6 and 7a–7c, and 4-hydroxy-3-methylsulfonoamidophenoxybutanolamines $10a-10c^{13}$

~ . .

CH ₃ SO ₂ NH K N _R						
R ¹⁶	Compound	$\beta_3 K_i (nM)$	β3 IA (% act)	Selectivit	y ^a versus	
				β_1	β_2	
	X = 0					
Н	6	15,000	47	0.08	0.04	
-CH ₂ Ph-4-OMe	7a	360	46	3	0.4	
(R)-CH(Ph-4-OCHF ₂)-CH ₂ Ph	7b	5	48	66	7	
(R)-CHPh-3,4-(OMe) ₂ -CH ₂ Ph	7c	3	67	120	15	
	X=CH ₂					
-CH ₂ Ph-4-OMe	10a	3700	42	1	1	
(R)-CH(Ph-4-OCHF ₂)-CH ₂ Ph	10b	880	40	38	7	
(R) -CHPh-3,4- $(OMe)_2$ -CH ₂ Ph	10c	160	60	112	27	

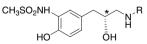
^a Selectivity is defined as the ratio of $\beta_1 K_i$ or $\beta_2 K_i$ to $\beta_3 K_i$.

Scheme 4. Reagents and conditions: (a) NaNO₂, aq H₂SO₄, 0 °C 71%; (b) H₂, 10% Pd/C, MeOH, 95%; (c) MesCl, py 63% (2 steps); (d) RNH₂, EDC, HOAt, DMF, 20 °C; (e) BH₃, THF).

Further modifications of the N-substituent are shown in Table 5. Chlorination of the β -aryl ring to generate **15I–15n** was not beneficial, since β_3 IA decreased compared to **15f**. Deletion of either the β -aryl ring (**15o**) or α -aryl ring (**15p**) severely reduced β_3 affinity and essentially eliminated any selectivity for β_3 . Incorporation of the

two aryl rings in a symmetrical amine substituent was not encouraging; both the 1,1-diarylmethyl substituent **15q** and the 1,3-diaryl-2-propyl moiety **15r** produced a 50-fold decrease in β_3 affinity and loss of selectivity versus β_1 and β_2 receptors.

However, the β adrenergic profile of **16a**, arising from homologation of **15f**, encouraged further SAR elucidation (Table 6). The high β_3 affinity of **16a** was dependent on both methoxyls just as was the case for **15f**. The interaction between the *para* methoxyl and the β_3 receptor appears the more important; compare the 5-fold reduced β_3 selectivity and affinity of **16b** to the 40-fold reduction in β_3 affinity of **16c**. Replacement of the methoxyls with difluoromethoxy (**16d**) reduced β_3 affinity and increased β_1 and β_2 affinity. Substitution of the γ -aryl ring was not promising: an *ortho* (**16e**) or *meta* (**16f**) chlorine enhanced β_1 and β_2 affinity while decreasing that of β_3 , whereas a *para* chlorine (**16g**) produced little effect on β_3 selectivity or affinity.

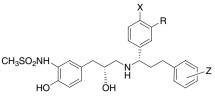

Table 4. SAR for agonist activity for β_3 AR compared to β_1 and β_2 AR for 4-hydroxy-3-methylsulfonoamidophenylpropanolamines $15a-15k^{13}$

/

		CH	HO	ОН	N # R		
Compound ¹⁶	R	Х	Chii	ality	$\beta_3 K_i^a$ (% β_3 IA)	$\beta_1 K_i^a (\% \beta_1 \text{ IA})^{24}$	$\beta_2 K_i^a$
			*	#			
15a	OMe	Н	R	R	1100 (27)	>10,000 (0)	2700
15b	OMe	Н	S	R	110 (44)	3600	350
15c	Н	OMe	R	R	460 (30)	>10,000 (0)	3100
15d	Н	OMe	S	R	53 (65)	6000	510
15e	OMe	OMe	R	R	25 (43)	>10,000 (0)	1500
15f	OMe	OMe	S	R	6 (86)	2600 (60)	66
15g	OMe	OMe	S	S	9 (62)	560 (75)	24
15h	OMe	OMe	R	S	150 (70)	47,000 (48)	820
15i	Cl	Cl	S	R	133 (70)	1500	38
15j	OH	OMe	S	R	8 (70)	3200	1070
15k	OCHF ₂	OCHF ₂	S	R	19 (60)	690 (0)	102

^a Expressed in nM.

Table 5. β_3 AR agonist activity and selectivity versus β_1 and β_2 for 4-hydroxy-3-methylsulfonoamidophenylpropanolamines 151–15 r^{13}



Compound ¹⁶	R	*	$\beta_3 K_i^a$ (% IA)	Selectivity ^b	
				β_1	β_2
151	(R)-CH(Ph-3,4-(OMe) ₂)CH ₂ Ph-2-Cl	S	7 (65)	58	13
15m	(R)-CH(Ph-3,4-(OMe) ₂)CH ₂ Ph-3-Cl	S	6 (68)	52	13
15n	(R)-CH(Ph-3,4-(OMe) ₂)CH ₂ Ph-4-Cl	S	24 (68)	24	6
150	CH ₂ Ph-4-OMe	Rac	1100(50)	2	0.3
15p	$CH_2CH_2Ph-3,4-(OMe)_2$	Rac	7300(35)	0.6	0.1
15q	CH(Ph-4-OCHF ₂) ₂	S	340 (60)	3	0.6
15r	$CH(CH_2Ph-3,4-(OMe)_2)_2$	S	170 (75)	3	0.2

^a Expressed in nM.

^b Selectivity is defined as the ratio of $\beta_1 K_i$ or $\beta_2 K_i$ to $\beta_3 K_i$.

Table 6. SAR for agonist activity for β_3 AR compared to β_1 and β_2 AR for 4-hydroxy-3-methylsulfonoamidophenylpropanolamines 16a–16g¹³

Compound ¹⁶	R	Х	Ζ	$\beta_3 K_i^a (\% \beta_3 IA)$	$\beta_1 K_i^a (\beta_3 \text{ Sel})^b$	$\beta_2 K_i^a (\beta_3 \text{ Sel})^b$
16a	OMe	OMe	Н	9 (84)	1000 (111)	390 (43)
16b	Н	OMe	Н	31 (93)	730 (24)	280 (9)
16c	OMe	Н	Н	390 (44)	570 (1)	200 (0.5)
16d	OCHF ₂	$OCHF_2$	Н	59 (86)	490 (8)	71 (1)
16e	OMe	OMe	2-C1	7 (73)	270 (39)	57 (8)
16f	OMe	OMe	3-C1	29 (57)	420 (14)	26 (1)
16g	OMe	OMe	4-C1	12 (89)	1050 (88)	120 (10)

^a Expressed in nM.

^b Selectivity is defined as the ratio of $\beta_1 K_i$ or $\beta_2 K_i$ to $\beta_3 K_i$.

Table 7. In vivo response of African Green Monkeys

Compound	AGM re	AGM response to 0.1 mg/kg iv dose				
	Δ HR	$\Delta \mathrm{K}^+$	Δ FFA			
1c	+26*	+0.08	1.05*			
5d ^a	+4	-0.49	+0.39			
15f	+24	-0.08	1.06^{*}			
15m	6	-0.55^{*}	0.92^{*}			
16a	$+29^{*}$	-0.25^{*}	0.95*			
16g	32*	-0.32^{*}	0.87^{*}			

^a Administered iv at 0.5 mg/kg.

* P < 0.05.

The in vivo β_3 activity of the more promising compounds was ascertained following iv administration to ketamine sedated African green monkeys (AGM) by monitoring the β_3 induced increase in free fatty acid levels (FFA). A dose-response was determined for those compounds which produced a statistically significant elevation in free fatty acid (Δ FFA) unaccompanied by β_2 mediated decrease in serum K⁺ concentrations²⁶ (Δ K^+) or β_1 or β_2 induced tachycardia (HR). The fluorinated hydroxysulfonanilides 5 produced weak responses consistent with partial β_3 agonist activity (Table 7). For example, 0.5 mg/kg of 5d induced an increase in FFA levels less than that induced by 1c (BMS-196085) at 0.1 mg/kg. The lack of separation between the β_3 and β_2 mediated responses for compounds 15m, 16g, and particularly 16a was disappointing.

Only **15f** offered any promise as a selective thermogenic agent; however the margins between the ED₅₀ dose for lipolysis and the doses inducing the onset of significant β_1 or β_2 mediated events were not superior to that previously determined for the three clinical candidates (Table 8).

Efforts to continue to progress either **15f** or alternatively to identify a superior analog ceased once the inability of **BMS-196085** to induce a persistent thermogenic response in the clinic became apparent.²

Table 8. Dose-response of African Green Monkeys (iv administration)

Compound	Lipolysis ED ₅₀ (mg/kg)	β ₁ margin before onset of tachycardia ^a	β_2 margin before decrease in serum K ^{+a}
15f	0.009	>3 < 11	>55
1b (194449)	0.08	>6 < 12	>60
1c (196085)	0.03	>3 < 5	>25
1j (201620)	0.1	>25	>25

^aThe margin of separation was the ratio of the dose that produced the onset (statistically significant) of a β_1 or β_2 event to the ED₅₀ for lipolysis.

Acknowledgments

We acknowledge the contributions of members of the Bristol-Myers Squibb analytical chemistry department, D. Kirk for a sample of **3**, and D. Strosberg for transfected CHO cells.

References and notes

- Washburn, W. N.; Sher, P. M.; Poss, K.; Girotra, R. N.; McCann, P. J.; Gavai, A. V.; Mikkilineni, A. B.; Mathur, A.; Cheng, P.; Dejneka, T. C.; Sun, C. Q.; Wang, T. C.; Harper, T. W.; Russell, A. D.; Slusarchyk, D. A.; Skwish, S.; Allen, G. T.; Hillyer, D. E.; Frohlich, B. H.; Abboa-Offei, B. E.; Cap, M.; Waldron, T. L.; George, R. J.; Tesfamariam, B.; Ciosek, C. P.; Young, D. A.; Dickinson, K. E.; Seymour, A. A.; Arbeeny, C. M.; Gregg, R. E. *Bioorg. Med. Chem. Lett.* 2001, 11, 3035.
- Gavai, A. V.; Sher, P. M.; Mikkilineni, A. B.; Poss, K. M.; McCann, P. J.; Girotra, R. N.; Fisher, L. G.; Wu, G.; Bednarz, M. S.; Mathur, A.; Wang, T. C.; Sun, C. Q.; Slusarchyk, D. A.; Young, D. A.; Dickinson, K. E.; Seymour, A. A.; Arbeeny, C. M.; Washburn, W. N. *Bioorg. Med. Chem. Lett.* 2001, 11, 3041.
- Washburn, W. N.; Sun, C. Q.; Bisacchi, G.; Wu, G.; Cheng, P.; Sher, P. M.; Ryono, D.; Gavai, A. V.; Poss, K.; Girotra, R. N.; McCann, P. J.; Mikkilineni, A. B.;

Dejneka, T. C.; Wang, T. C.; Merchant, Z.; Morella, M.; Arbeeny, C. M.; Harper, T. W.; Slusarchyk, D. A.; Skwish, S.; Russell, A. D.; Allen, G. T.; Tesfamariam, B.; Frohlich, B. H.; Abboa-Offei, B. E.; Cap, M.; Waldron, T. L.; George, R. J.; Young, D.; Dickinson, K. E.; Seymour, A. A. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 3525.

- Himms-Hagen, J.; Ricquier, D. In *Handbook of Obesity*; Bray, G. A., Bouchard, C., James, W. P. T., Eds.; Marcel Dekher: New York, 1998; p 415.
- Larsen, A. A.; Gould, W. A.; Roth, H. R.; Comer, W. T.; Uloth, R. H. J. Med. Chem. 1967, 10, 462.
- (a) Guengerich, F. P.; Yun, C. H.; Macdonald, T. L. J. Biol. Chem 1996, 271, 27321; (b) Guengerich, F. P. Chem. Res. Toxicol. 2001, 14, 611.
- Hu, B.; Ellingboe, J.; Han, S.; Largis, E.; Mulvey, R.; Oliphant, A.; Sum, F.-W.; Tillet, J. J. Med. Chem. 2001, 44, 1456.
- 8. LD₁₀₀ for mice was 57 µg/kg of **2** administered iv; iv doses of 0.5-5.7 µg/kg produced progressively more pronounced piloerection; 0.05 µg/kg was a no effect dose. This dose dependent response suggested that piloerection following iv administration of 10 mg/kg of **1** during the murine safety screen was indicative of 0.01-0.1% of the dose being converted to **2**. A few compounds, such as **1f**, were lethal at 10 mg/kg but not at 1 mg/kg implying that metabolic conversion to **2** was ~0.1-1%.
- 9. Typically, a 100 μ M solution of compounds of structure 1 was incubated for 3 h in pH 7.4 phosphate buffer (0.1 M) containing *African green* monkey hepatic microsomes (3 mg/mL protein) and 3 mM NADPH whereupon the protein was precipitated by addition of 2 volumes MeCN prior to determination of the conversion to 2 by LC/MS. Since control studies entailing incubation of compounds of structure 1 as described above in the absence of NADPH generated minuscule amounts of 2, solvolytic release of 2 due to chemical instability of 1 after protonation was of minimal importance.
- 10. Subsequently during clinical studies with **BMS-196085** (1c), **BMS-194449** (1b), and **BMS-201620** (1j) dose dependent incidences of sweaty palms, flushing, and piloerection, all classic manifestations of an α adrenergic agonist, as well as detection of trace levels of 2 validated these concerns regarding metabolic liberation of 2.
- (a) Kirk, K. L.; Cantacuzene, D.; Creveling, C. R. Biomed. Aspects Fluorine Chem. 1982, 75; (b) Brasili, L.; Cantalamessa, F.; Picchio, M. T.; Quaglia, W. Eur. J. Pharm. 1987, 144, 141.
- 12. Hieble, J. P.; Hehr, A.; Li, Y.; Ruffolo, R. R. Proc. Western Pharmacol. Soc. 1998, 41, 225.

- 13. Receptor binding assays were run in triplicate with membranes prepared from CHO cells expressing the three cloned human β receptors in the presence of ¹²⁵I-iodocyanopindolol.¹⁴ β_3 AR agonist activity was assessed by measurement of cAMP accumulation levels in CHO membranes expressing human β_3 AR.¹⁵ IA is given as a percentage of the maximal stimulation with isoproterenol.
- 14. All compounds were evaluated using the truncated human β_3 adrenergic receptor reported by Emorine, L. T.; Marullo, S.; Briend-Sutren, M. M.; Patey, G.; Tate, K.; Delavier-Klutchko, C.; Strosberg, A. D. *Science* **1989**, 245, 1118.
- Sher, P. M.; Fisher, L. G.; Skwish, S.; Michel, I. M.; Seiler, S. M.; Washburn, W. N.; Dickinson, K. E. J. Med. Chem. Res. 1997, 7, 109.
- 16. Spectral data were fully consistent with structures.
- Beeley, L. J.; Berge, J. M.; Chapman, H.; Dean, D. K.; Kelly, J.; Lowden, K.; Kotecha, N. R.; Morgan, H. K. A.; Rami, H. K.; Thompson, M.; Vong, A. K. K.; Ward, R. W. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 219.
- 18. In 95% EtOH at 20 °C, $t_{1/2}$ was ~40 min to presumably generate quinones.
- 19. Larson, A. A.; Gould, W. A. US Patent 1,171,477.
- Wu, G.; Cai, Z. W.; Bednarz, M. S.; Kocy, O.; Gavai, A. V.; Godfrey, J. D.; Washburn, W. N.; Sher, P. M. J. Comb. Chem. 2005, 7, 99.
- 21. Stereochemical preferences had not previously been addressed in the few reports concerning arylpropanol-amine as adrenergic ligands.²²
- (a) Fuhrer, W.; Ostermayer, F.; Zimmermann, M.; Meier, M.; Müller, H. J. Med. Chem. 1984, 27, 831; (b) Lövgren, K.; Hedberg, H.; Nilsson, J. L. G. J. Med. Chem. 1981, 24, 451; (c) Alderová, E.; Trčka, V.; Šmejkal, V.; Protiva, M. Collect. Czech. Chem. Commun. 1969, 34, 479; (d) WO 2000/012462; (e) WO 1999/051564.
- 23. Absolute stereochemistry of **15f** assigned by X-ray crystallography.
- 24. β_1 IA was determined by measuring the acceleration in contraction of spontaneously beating guinea pig atria relative to that induced by isoproterenol.²⁵ β_2 IA was determined by measuring relaxation of guinea pig trachea rings submaximally contracted with carbacol relative to that induced by isoproterenol.
- 25. Tesfamariam, B.; Allen, G. T. Br. J. Pharmacol. 1994, 112, 55.
- Lipworth, B. J.; McFarlane, L. C.; Coutie, W. J.; McDevitt, D. *Eur. J. Clin. Pharmacol.* 1989, 37, 297.