

Inorganica Chimica Acta 265 (1997) 127-138

Inorganica Chimica Acta

Formation of platinum allyl and propargyl complexes from protonation of platinum enyne and diyne complexes

Charles P. Casey *, Steven Chung, Yunkyoung Ha, Douglas R. Powell

Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA

Received 13 March 1997; accepted 9 May 1997

Abstract

Protonation of $(Ph_3P)_3Pt[\eta^2-HC \equiv CC(CH_3) = CH_2]$ (2a) with excess $HBF_4 \cdot Et_2O$ produced the π -allyl complex $(Ph_3P)_2Pt[\eta^3-H_2C \equiv CC(CH_3) = CH_2]$ + BF_4^- (3a-BF₄) instead of a π -propargyl complex. Reaction of excess CF_3CO_2H with 2a initially produced the analogous π -allyl complex 3a-CF_3CO₂ which then added CF₃CO₂H across the vinylidene unit of 3a-CF₃CO₂ to give the π -allyl complex $(Ph_3P)_2Pt[\eta^3-CH_3C(CF_3CO_2O_2)C(CH_3)CH_2]$ + $CF_3CO_2^-$ (5a). Protonation of the platinum diyne complex $[(p-CH_3-C_6H_4)_3P]_2Pt(\eta^2-CH_3C \equiv CC \equiv CCH_3)$ (7b) with HBF₄ · Et₂O at $-73^{\circ}C$ initially produced the platinum hydride complex $trans - [(p-CH_3-C_6H_4)_3P]_2Pt(\eta^3-CH_4C^2-CH_3C \equiv CC \equiv CCH_3)$ + BF_4^- (9), which rearranged to the platinum π -propargyl complex $[(p-CH_3-C_6H_4)_3P]_2Pt[\eta^3-(CH_3CH=)-CC \equiv CCH_3]$ + BF_4^- (11) at $-28^{\circ}C$. © 1997 Elsevier Science S.A.

Keywords: Crystal structures; Platinum complexes; Allyl complexes; Propargyl complexes

I. Introduction

 π -Propargyl metal complexes [1] are the triple bond analogs of π -allyl metal complexes, which have been used extensively in organic synthesis. π -Propargyl complexes have been proposed as transient intermediates in catalytic cycles [2] and recently a number of stable π -propargyl complexes have been synthesized [3–6]. Because of their similarity, synthetic routes to π -propargyl and π -allyl complexes are often analogous. Examples include protonation of η^2 -propargyl or η^2 -allyl alcohol complexes [3a,7], hydride abstraction from η^2 -alkyne or η^2 -alkene complexes [3,8] and reaction of propargyl or allyl Grignard reagents with metal halides [4,9] (Scheme 1).

We set out to explore protonation of platinum enyne and diyne complexes as a new route to π -propargyl complexes. Similar routes to π -allyl complexes from protonation of metal η^4 -diene complexes [7] have been reported, and we recently observed the formation of the π -allyl complex Cp*(CO)₂Re-[η^3 -CH₂=CHC(CH₃)₂] *BF₄⁻ upon protonation of the η^2 diene complex Cp*(CO)₂Re[η^2 -CH₂=CHC(CH₃)=CH₂] with HBF₄·Et₂O [10]. Hill and co-workers successfully employed the protonation of a ruthenium diyne complex to synthesize a ruthenium π -propargyl complex [6a]. Here we report that protonation of a platinum enyne complex produced a cationic π -allyl platinum complex at room temperature instead of a π -propargyl complex. However, protonation of platinum diyne complexes led to the corresponding π -propargyl platinum complexes which were observable at low temperature. These π -propargyl platinum complexes are similar to compounds previously synthesized [5].

2. Results and discussion

2.1. Synthesis of platinum enyne complexes

The known complex $(Ph_3P)_2Pt|\eta^2-HC \equiv CC(CH_3) = CH_2|$ (2a) needed as a starting material for these protonation studies was prepared in 60% yield by reaction of $(Ph_3P)_2$ -Pt $(\eta^2-H_2C=CH_2)$ (1a) with the conjugated enyne HC \equiv CC-(CH_3)=CH_2. Previously, 2a had been prepared by reaction of *cis*-(PPh_3)_2PtCl_2 with HC \equiv CC(CH_3) = CH_2 and N_2H_4 [11]. A characteristically high frequency ¹H NMR resonance for the alkyne hydrogen at δ 7.14 ($J_{PtH} = 23$ Hz) and two vinyl hydrogen resonances at δ 4.97 and 4.85 for the uncoordinated isopropenyl group established coordination of the alkyne in 2a. If the alkene had been coordinated to Pt, then both the vinyl and acetylenic resonances would have appeared at substantially lower frequency. The observation

^{*} Corresponding author.

^{0020-1693/97/\$17.00 (© 1997} Elsevier Science S.A. All rights reserved P/I \$0020-1693(97)05640-5

of two ³¹P NMR resonances at δ 31 (d, $J_{PP} = 35$ Hz, $J_{PtP} = 3080$ Hz) and 27 (d, $J_{PP} = 35$ Hz, $J_{PtP} = 3440$ Hz) is consistent with in-plane coordination of the alkyne in **2a** and slow rotation about the platinum alkyne bond. The analogous compound [$(p-CH_3-C_6H_4)_3P$]₂Pt[η^2 -HC \equiv CC(CH₃)=CH₂] (**2b**) was made by a similar route in 57% yield.

2.2. π -Allyl complex formation from HBF₄ addition to a platinum enyne complex

Protonation of $(Ph_3P)_2Pt[\eta^2-HC\equiv CC(CH_3)=CH_2]$ (2a) with excess $HBF_4 \cdot Et_2O$ produced the π -allyl complex $(Ph_3P)_2Pt[\eta^3-H_2C\equiv CC(CH_3)=CH_2]$ * BF_4 (3a- BF_4) (Scheme 2), which was isolated as an orange solid in 69% yield. The spectra of **3a-BF**₄ were very similar to those of the analogous PF_6 salt (**3a-PF**₆) previously prepared by Green and co-workers via chloride abstraction from a σ -2-butadienyl platinum complex [12]. Key features of the ¹H NMR spectrum of **3a-BF**₄ include resonances for the vinyl hydrogens at δ 5.63 and 4.10 and for the allyl hydrogens at δ 3.71 and 3.35.

The π -allyl complex **3a-BF**₄ results from protonation of **2a** at the triple bond and subsequent coordination of the double bond. Protonation at the double bond would have produced a π -propargyl complex whose *gem*-dimethyl group would have been easily detected by NMR spectroscopy.

Similarly, addition of excess CF₃CO₂H to **2a** in CD₂Cl₂ gave the unstable π -allyl complex (Ph₃P)₂Pt[η^3 -H₂C=-CC(CH₃)=CH₂] + CF₃CO₂ (**3a-CF₃CO₂**) in 93% yield (NMR internal standard). The analogous tolyl phosphine complex [(*p*-CH₃-C₆H₄)₃P]₂Pt[η^3 -H₂C=CC(CH₃)=CH₂] +- CF_3CO_2 (**3b-CF_3CO_2**) was prepared by a similar procedure in 84% NMR yield.

2.3. σ -2-Butadienyl complex from addition of trifluoroacetic acid

Surprisingly, addition of only one equivalent of CF₃CO₂H to a solution of 2a in CD₂Cl₂ produced the neutral σ -2-butadienyl complex trans-(Ph₃P)₂(CF₃CO₂)Pt[η^1 -H₂C=CC- $(CH_3) = CH_2$ (4) (Scheme 3). Since 4 decomposed upon attempted isolation, it was characterized spectroscopically. Use of an internal NMR standard showed that 4 was formed in 77% yield. The 'H NMR spectrum of 4 was very similar to that of the corresponding chloride which had been previously synthesized by Villa and co-workers [11] from addition of $HC = CC(CH_1) = CH_2$ to a dilute solution of cis-(PPh₃)₂PtCl₂ and N₂H₄, and by Green and co-workers [12] from addition of 2-chloro-1,3-butadiene to a solution of 1a. Key features of the ¹H NMR spectrum of 4 include resonances for four vinyl hydrogens at δ 5.76, 5.24, 4.75 and 4.34. The observation of a single ³¹P NMR resonance at δ 23 $(J_{Pup} = 3280 \text{ Hz})$ provides evidence for the *trans* relationship of the phosphines.

The formation of 4 results from protonation of the coordinated alkyne and coordination of trifluoroacetate to platinum. As in the case of protonation with HBF_4 , no evidence for protonation at the uncomplexed alkene was obtained.

Addition of a second equivalent of CF_3CO_2H to σ -2-butadienyl complex 4 led to the formation of the π -allyl complex **3a-CF_3CO_2**. We suggest that hydrogen bonding between excess trifluoroacetic acid and trifluoroacetate anion shifts

the equilibrium away from the neutral complex 4 and towards the ionic complex **3a-CF₃CO₂**. The observation that excess triflouroacetic acid reacts with **2a** in THF-d₈ (instead of CD₂Cl₂) to form the neutral σ -2-butadienyl complex 4 in 73% NMR yield is consistent with this hypothesis. Hydrogen bonding between the excess acid and THF frees trifluoroacetate anion for addition to platinum.

2.4. Addition of CF₃CO₂H across the vinylidene unit of 3a

The π -allyl complex **3a-CF₃CO₂** reacted with excess CF₃CO₂H slowly at room temperature to add CF₃CO₂H across the vinylidene double bond of **3a** (Scheme 3). After 1.5 h, the resonances for **3a-CF₃CO₂** began to disappear and a new compound **5a** began to form. After 4 h, a third compound **6a** with a spectrum similar to that of **5a** appeared; the ratio of **5a:6a** was 2:1. After 16 h, **3a-CF₃CO₂** had completely disappeared and the ratio of **5a:6a** was 1:1.8. The combined yield of **5a** and **6a** was 62% as determined by ¹H NMR spectroscopy. The tris(*p*-tolyl)phosphine analogs **5b** and **6b** were similarly formed in 77% combined yield.

The ¹H and ³¹P NMR spectra of **5a** and **6a** are consistent with their formulation as the *sym* and *anti* π -allyl isomers of (Ph₃P)₂Pt[η^3 -CH₃C(CF₃CO₂)C(CH₃)CH₂]⁺CF₃CO₂⁻. The kinetic isomer **5a** is assigned a structure with a *sym* methyl group on the π -allyl ligand. The appearance of two methyl resonances for **5a** at δ 2.06 (J_{PtH} = 54 Hz, CH₂CCH₃) and 1.22 (J_{PH} = 3, 7.5 Hz, J_{PtH} = 24 Hz, CH₃C(CF₃CO₂)) and for **6a** at $\delta 2.03$ ($J_{PtH} = 62$ Hz, CH_2CCH_3) and 1.12 ($J_{PH} = 4.5$ Hz, $J_{PtH} = 6$ Hz, $CH_3C(CF_3CO_2)$) played a key role in the structural assignments. The π -allyl hydrogens of **5a** appeared at δ 3.4 and 2.9, while those of **6a** appeared at δ 3.3 and 2.9. The chemical shifts and coupling patterns for the methyl groups of **5a** and **6a** are similar to those of the methyl groups in Stang's π -allyl complex $(PPh_3)_2Pt[\eta^3-(CH_3)_2CC-(CH_3)CH_2]^+O_3SCF_3^-$ [13]. The *anti* assignment of the $CH_3(CF_3CO_2)C$ methyl group of **6a** is based on the observation of larger J_{MePt} and J_{McP} coupling constants for **6a** compared with **5a**.

A similar addition across the *exo*-methylene group of an *exo*-methylene π -allyl complex was observed by Green and co-workers [14]. Reaction of Cp*(CO)₂Mo(η^3 -CH₂-CHC=CH₂) with CF₃SO₃H followed by addition of PPh₃ produced the phosphine substituted allyl complex Cp^{*}-(CO)₂Mo[η^3 -CH₂CHC(Me)PPh₃] + BF₄⁻.

There are two plausible routes for addition of CF_3CO_2H across the exomethylene unit of **3a**. The first involves nucleophilic attack of trifluoroacetate at the π -allyl unit to give the η^2 -diene complex **A** which then undergoes protonation of the uncomplexed alkene to form π -allyl complexes **5a** and **6a**. Alternatively, the σ -2-butadienyl complex **4** which is likely to be in equilibrium with **3a** might undergo protonation to form cationic carbene complex **B**. Addition of trifluoroacetate to the carbene carbon, followed by ionization of the Pt-bound trifluoroacetate could then lead to the formation of **5a** and **6a** (Scheme 4).

2.5. Reaction of $[(p-CH_3-C_6H_4)_3P]_2Pt [\eta^2 \cdot HC \equiv CC(CH_3) \equiv CH_2](2b)$ with CF_3CO_2D

This reaction was studied to gain information concerning the stereochemistry and mechanism of formation of **3b**. If initial deuteration occurred at platinum followed by deuteride transfer to the alkyne carbon, then deuterium would be found *cis* to Pt in **3b**. Direct deuteration of the alkyne carbon could lead to deuterium *trans* to Pt in **3b**. These deuterium studies also reveal whether reversible π -propargyl cation formation is occurring via protonation at the remote alkene carbon. Reversible formation of π -propargyl complex C could lead to deuterium incorporation into the π -allyl group of **3b** (Scheme 5).

The tris(*p*-toly1) phosphine complex **2b** was used in these studies since the *p*-tolyl methyl group provided a useful internal standard for ¹H NMR integration. After 6 min, ¹H NMR analysis of the reaction of **2b** with excess CF₃CO₂D in CD₂Cl₂ showed 84% conversion to π -allyl cation **3b**; 47% deuterium incorporation into the vinyl site *cis* to platinum was observed and no deuterium was detected (< 5%) at other sites ⁻¹. ²H NMR also showed exclusive deuterium incorporation at the *cis* vinyl site.

After 1.5 h, 36% of π -allyl cation **3b** and 36% of *endo*methyl π -allyl complex **5b** were observed by ¹H NMR integration; none of the *exo*-methyl π -allyl complex **6b** was detected. Deuterium was now seen in both vinyl sites of **3b**: 60% deuterium incorporation at the *cis* site and 58% at the *trans* site. The only site of incorporation of deuterium into the trifluoroacetic acid addition product **5b** was the *endo*methyl group which had 1.6 D per methyl group. ²H NMR showed deuterium incorporation into both the *cis* and *trans* vinyl sites of **3b** but no deuterium at other sites.

After 4.5 h, only 12% **3b** remained and 19% **5b** and 39% **6b** had formed with 58% deuterium incorporation of the methyl groups on the terminal carbon. The methyl groups on the terminal π -allyl carbon of **5b** and **6b** had 1.6 D per methyl group.

The absence of deuterium in the allyl positions and in the methyl group of **3b** at 0.1 and 1.5 h rules out rapid and

reversible formation of π -propargyl complex **C** from **2b** prior to formation of **3b**. The fact that no deuterium gets incorporated into either the π -allyl sites or the methyl group on the central allylic carbon provides evidence that there is no reversible equilibrium between **5b** or **6b** and the π -propargyl complex **C**.

Selective deuterium incorporation into the vinyl site *cis* to Pt in **3b** at short times is consistent with deuteration at Pt followed by transfer of deuteride from Pt to the complexed alkyne. Deuterium incorporation into the vinyl site *trans* to platinum in **3b** at longer times can be explained by the reversible formation of **5b**, which allows deuterium to move between *cis* and *trans* sites of **3b**. At short times, **5b** is the kinetic product of addition of CF_3CO_2H to **3b**. At longer times, the equilibration of **5b** with **3b** allows the eventual buildup of the thermodynamic addition product **6b**.

2.6. Protonation of platinum diyne complexes

Our attempts to prepare π -propargyl platinum compounds by protonation of the uncomplexed double bond of platinum η^2 -enyne complexes **2a** and **2b** failed due to competing protonation of the complexed triple bond which produced π allyl complexes. We initiated studies of platinum η^2 -diyne complexes since protonation of either the complexed or uncomplexed triple bond would produce a π -propargyl complex. Previously, Hill and co-workers successfully employed this strategy to synthesize ruthenium π -propargyl complexes [6a].

2.7. Synthesis of platinum diyne complexes

Reaction of $[(p-CH_3-C_6H_4)_3P]_2Pt(\eta^2-H_3C=CH_2)$ (1b) with the diyne $CH_3C=CC=CCH_3$ gave $[(p-CH_3-C_6H_4)_3P]_2Pt(\eta^2-CH_3C=CC=CCH_3)$ (7b) as a yellow solid in 68% yield. Similarly, the η^2 -diyne complex $[(p-CH_3-C_6H_4)_3P]_2Pt[\eta^2-(CH_3)_3SiC=CC=CSi(CH_3)_3]$ (8) was obtained in 58% yield from reaction of 1b with the corresponding diyne. Previously, $[(C_6H_5)_3P]_2Pt(\eta^2-CH_3-C=CC=CCH_3)$ (7a) and $[(C_6H_5)_3P]_2Pt(\eta^2-M_3SiC=CC=CSiMe_3)$ were synthesized by similar routes [15].

In the ¹H NMR spectrum of **7b**, a doublet at δ 2.44 ($J_{\text{PH}} = 6.4$ Hz, $J_{\text{PH}} = 40$ Hz) was assigned to the methyl

¹ The low deuterium incorporations are attributed to adventitious H sources in these small scale reactions.

group on the coordinated alkyne due to its higher frequency chemical shift and larger platinum and phosphorus couplings compared with the doublet at $\delta 1.78$ ($J_{PH} = 3.4$ Hz, $J_{PtH} = 20$ Hz), which was assigned to the methyl group on the uncoordinated alkyne. In the ³¹P NMR spectrum of **7b**, the observation of two doublets at $\delta 28$ (d, $J_{PP} = 34$ Hz, $J_{PtP} = 3390$ Hz) and 26 (d, $J_{PP} = 34$ Hz, $J_{PtP} = 3610$ Hz) requires a significant barrier to alkyne rotation and to migration of Pt between the two alkynes.

2.8. Protonation of platinum diyne complexes with $HBF_4 \cdot Et_2O$

Reaction of the yellow platinum diyne complexes with $HBF_4 \cdot Et_2O$ in CD_2Cl_2 at room temperature produced dark purple mixtures of intractable decomposition products. However, when protonation was carried out at low temperature, ¹H and ³¹P NMR observation at low temperature provided evidence for initial formation of metal hydride intermediates that rearranged to π -propargyl complexes upon slow warming.

When the reaction of $[(p-CH_3-C_6H_4)_3P]_2Pt(\eta^2-CH_3C=$ $CC = CCH_3$ (7b) with HBF₄ · Et₂O in CD₂Cl₂ at - 73°C was monitored by low temperature NMR spectroscopy, evidence was obtained for protonation at platinum to produce the platinum hydride complex trans-[(p-CH₃-C₆H₄)₃P]₂PtH- $(\eta^2 - CH_3C = CC = CCH_3)^+ BF_4^-$ (9) (Scheme 6). In the ¹H NMR spectrum at -73° C, a metal hydride resonance was observed at $\delta = 9.13$ (4, $J_{\rm PH} = 9.7$ Hz, $J_{\rm Put} = 1390$ Hz). The small J_{P1} coupling is that expected for a hydride *cis* to two equivalent phosphines; cis J_{PH} couplings are usually less than 10 Hz, while *trans* $J_{\rm PH}$ couplings are normally greater than 100 Hz [16]. The observation of a single p-methyl resonance at δ 2.47 provided evidence for equivalent *trans* (*p*-CH₃- C_6H_4)₃P ligands. The observation of two methyl singlets at δ 1.65 and 2.30 (s, $J_{P01} \approx 45$ Hz) for the alkyne methyl groups provides evidence for an η^2 -diyne complex with the alkyne ligand perpendicular to the plane of the platinum complex. Alkynes are known to coordinate perpendicular to the plane of Pt(II) complexes [17]. The observation of a single resonance at δ 30 (J_{PP} = 2750 Hz) in the ³¹P NMR spectrum at -73° C also supports the structure assigned to 9.

Low temperature protonation of diyne complex **8** also produced the platinum hydride complex *trans*-[(*p*-CH₃-C₆H₄)₃P]₂PtH(η^2 -SiMe₃C=CC=CSiMe₃)⁺BF₄⁻⁻⁻⁻(10),

which was characterized by low temperature NMR spectroscopy.

When a solution of the platinum hydride complex trans- $[(p-CH_3-C_6H_4)_3P]_2PtH(\eta^2-CH_3C\equiv CC\equiv CCH_3)^+BF_4$ (9) was warmed to -28° C, conversion to the π -propargyl complex $[(p-CH_{3}-C_{6}H_{4})_{3}P]_{2}Pt[\eta^{3}-(CH_{3}CH_{2})CC\equiv C$ CH_3] + BF_4 (11) was observed by NMR spectroscopy. Decomposition of 11 occurred slowly over a day at -18° C. In the ¹H NMR spectrum of 11, the appearance of a vinyl multiplet at δ 3.9 coupled to a methyl group at δ 1.7 (d, J = 6.5 Hz) provided evidence for an *exo*-ethylidene group; a broad singlet at δ 1.54 was assigned to the methyl group of the π -propargyl unit and methyl singlets at δ 2.40 and 2.33 were assigned to the inequivalent tris(p-tolyl)phosphine ligands. We are uncertain about the stereochemistry of the exo-ethylidene group but only a single isomer was seen. In the ³¹P NMR spectrum, doublets at δ 14 ($J_{\rm PP}$ = 18 Hz, $J_{PtP} = 4480 \text{ Hz}$) and $\delta 13 (J_{PP} = 18 \text{ Hz}, J_{PtP} = 3330 \text{ Hz})$ were assigned to the inequivalent phosphine ligands. The synthesis of a number of π -propargyl platinum complexes and their reactions with nucleophiles have been reported [5].

Similarly, the platinum hydride complex *trans*-[(p-CH₃-C₆H₄)₃P]₂PtH(η^2 -SiMe₃C=CC=CSiMe₃) + BF₄⁻⁻ (10) rearranged to the π -propargyl complex [(p-CH₃-C₆H₄)₃P]₂-Pt[η^3 -(Me₃SiCH=)CC=CSiMe₃] + BF₄⁻⁻ (12) at - 28°C.

2.9. Protonation of platinum diyne complexes with CF₃CO₂H

Addition of excess CF₃CO₂H to a yellow solution of diyne complex $[(C_6H_5)_3P]_2Pt(\eta^2-CH_3C=CC=CCH_3)$ (7a) in CD₂Cl₂ produced an orange solution of the σ -propargyl complex *trans*-(Ph₃P)₂(CF₃CO₂)Pt[η^1 -(*E*-CH₃CH=)CC=C-CH₄] (13) (60% yield by NMR internal standard method), which decomposed upon attempted isolation (Scheme 7).

The structure of 13 was assigned spectroscopically. In the ³¹P NMR spectrum, a single resonance at $\delta 23.6 (J_{POP} = 3280 \text{ Hz})$ was assigned to the equivalent *trans* phosphines. In the ¹H NMR spectrum, a methyl singlet at $\delta 1.4 (J_{POH} = 23 \text{ Hz})$ was assigned to the =CCH₃ group and a doublet of triplets at $\delta 0.9 (\text{dt}, J_{HH} = 6.5 \text{ Hz}, J_{PH} = 2.5 \text{ Hz})$ and a quartet at $\delta 4.4 (J_{HH} = 6.5, J_{POH} = 75 \text{ Hz})$ were assigned to the =CHCH₃ unit. The 75 Hz Pt-C=C-H coupling is consistent with a configuration with Pt *cis* to H; typically *trans* couplings are ~135 Hz while *cis* couplings are ~70 Hz [18].

The fact that protonation of the enyne complex 2a with excess CF₃CO₂H produced the ionic π -allyl complex 3a, while protonation of diyne complex 7a produced the neutral σ -propargyl complex 13, is a reflection of the lower stability of π -propargyl complexes relative to π -allyl complexes.

2.10. In situ trapping of a π -propargyl complex by chloride

Addition of excess LiCl to a solution of σ -propargyl complex 13 containing excess CF₃CO₂H led to the isolation of

trans-(Ph₃P)₂ClPt[η^1 -C(=CHCH₃)C(Cl)=CHCH₃] (14) as a white solid. The isotope pattern of the molecular ion in the mass spectrum provided definitive evidence for the addition of two equivalents of HCl to 7a in the formation of 14. The observation of a single resonance in the ³¹P NMR spectrum of 14 at δ 23.5 (J_{PtP} = 3000 He) catablished the presence of equivalent trans phosphines. Evidence for two different =CHCH₃ units in 14 was obtained from ¹H NMR spectroscopy: one vinyl resonance at δ 6.9 (q, J=6.5 Hz) was coupled to a methyl resonance at δ 1.41 (d, J=6.5 Hz) while another vinyl resonance at δ 5.5 (q, J=6.5 Hz, $J_{Pt,s}$ = 100 Hz) was coupled to a methyl resonance at δ 1.40 (d, J=6.5 Hz).

While 14 is the formal product of the addition of HCl across the triple bond of 13 and replacement of the platinum bound trifluoroacetate by chloride, it is difficult to explain the regiochemistry of HCl addition across the triple bond by a simple addition to the alkyne. The formation of the σ -2butadienyl complex 14 can be explained by invoking π -propargyl intermediate **D** as shown in Scheme 7. We suggest that σ -propargyl complex 13 may be in equilibrium with the ionic π -propargyl intermediate **D**. Nucleophilic attack of chloride at the central carbon of the propargyl unit would produce the metallacyclobutene intermediate E. We have previously observed addition of soft nucleophiles to the central carbon of rhenium π -propargyl complexes [3b]; more recently, the addition of nucleophiles to the central carbon of π -propargyl palladium and platinum complexes has been observed [5]. Protonation of the metallacycle to produce π -allyl cation F, followed by chloride attack at platinum completes the route to σ -2-butadienyl complex 14.

2.11. In situ trapping of a π -propargyl complex by water

When excess CF₃CO₂H was condensed into a yellow CH₂Cl₂ solution of **7a** in the presence of wet methanol, an orange solution of *trans*-(Ph₃P)₂(CF₃CO₂)Pt[η^1 -C(Z=CHCH₃)COCH₂CH₃] (15) was produced (Scheme 8). Since attempts to isolate 15 led to decomposition, only spectral characterization was possible. ³¹P NMR spectroscopy provided evidence for a single major species with equivalent *trans* phosphines (δ 22.7, J_{PiP} = 3180 Hz). ¹H NMR provided evidence for an ethyl group with a CH₂ quartet at δ 1.76 (q, J = 7 Hz) and a CH₃ triplet at δ 0.43 (t, J = 7 Hz) and for an ethylidene group with a vinyi resonance at δ 6.23 (J_{IIII} = 7

Fig. 1. X-ray crystal structure of *trans*-(Ph,P)₂ClPt(η^1 -C(Z-=CHCH₁)-COCH₂CH₁} (16). Phenyl groups are omitted for clarity. Selected bond lengths (Å) and angles (°) for 16: Pt-C(39), 2.038(8); C(38)-C(39), 1.339(13); C(39)-C(40), 1.477(13); C(40)-O, 1.221(11); Pt-C(39)-C(40), 115.1(6); Pt-C(39)-C(38), 123.4(8); C(39)-C(\approx)-O, 118.4(8).

Hz, $J_{P11} = 2$ Hz, $J_{P11} = 110$ Hz) and a methyl doublet at $\delta 1.45$ (J = 7 Hz).

While protonation of platinum alkyne complexes normally produces *cis* Pt-C=C-H units, the Pt-C=C-H unit of 15 clearly has a *trans* geometry. We suggest that the *cis* isomer may be formed initially and then rearranged to the observed *trans* configuration by reversible protonation of the vinyl group of H. A similar reversible protonation was invoked to explain scrambling of deuterium into both the *cis* and *trans* positions of the vinylidene of π -allyl complex 3a (Scheme 5).

Exchange of chloride with the platinum bound trifluoroacetate of 15 led to the isolation of the platinum chloride complex <u>trans</u>-(Ph,P)₂CIPt[η^1 -C(Z CHCH₃)COCH₂-CH₃] (16) in 10% yield after purification by thin layer chromatography on silica gel. The ¹H and ³¹P NMR spectra of 16 were similar to those of the trifluoroacetate analog 15. A ¹³C NMR resonance at δ 186 and an IR band at 1653 cm ⁻¹ provided evidence for a ketone carbonyl. The X-ray crystal structure of 16 confirmed the structural assignment (Fig. 1).

The proposed mechanism for formation of 15 starts with nucleophilic attack on the π -propargyl intermediate by residual water to form metallacyclobutene complex G, followed by proton transfer to produce hydroxy-allyl complex H. It has been shown previously that protic nucleophiles add across platinum π -propargyl complexes to form similar π -allyl complexes [5]. Subsequent attack of trifluoroacetate at platinum would produce the σ -2-butadienyl complex I. Finally tautomerization of the enol of I to a ketone gives 15.

3. Conclusions

Attempts to prepare π -propargyl platinum complexes by protonation of platinum(0) enyne complexes led instead to *exo*-vinylidene π -allyl complexes. Unstable π -propargyl

complexes were successfully made by protonation of platinum(0) diyne complexes and products resulting from nucleophilic attack at the central carbon of the π -propargyl unit were obtained.

4. Experimental

4.1. General

Manipulations of air-sensitive compounds were performed either in a nitrogen atmosphere glovebox or by standard highvacuum line techniques. Hexane, THF, THF- d_8 , C_6H_6 , C_6D_6 and diethyl ether were distilled from sodium and benzophenone. CH₂Cl₂ and CD₂Cl₂ were distilled from calcium hydride. Trifluoroacetic acid was distilled from phosphorus pentoxide.

¹H NMR spectra were obtained on a Bruker WP 200, WP 270, AC 250, AC 300 or AM 500 spectrometer. Yields were determined from ¹H NMR spectra using hexamethylbenzene as an internal standard. ¹³C{¹H} NMR spectra were obtained on a Bruker AM 500 spectrometer operating at 126 MHz. ³¹P{¹H} spectra were obtained on a Bruker AC 300 spectrometer operating at 121 MHz or a Bruker AC 300 spectrometer operating at 202.5 MHz. IR spectra were measured on Mattson Genesis or Mattson Polaris FT-IR spectrometers. Mass spectra were determined on a VG AutoSpec M mass spectrometer. Elemental analyses were performed by Desert Analytics.

4.2. $[(p \cdot CH_1 - C_0 H_1)_1 P]_2 Pt(\eta^2 \cdot H_2 C = CH_2) (Ib)$

This complex was prepared by the procedure reported for the preparation of 1a [19]. A solution of K₂PtCl₄ (375 mg, 0.90 mmol) in 10 ml of H₂O was added dropwise to a refluxing solution of $P(C_0H_1, p, CH_1)$, (500 mg, 1.64 mmol) in 15 ml ethanol. After 2 h at reflux, the resulting solid was filtered, washed with H₂O (15 ml), EtOH (25 ml) and Et₂O (10 ml) to give $[(p-CH_3-C_0H_4)_3P]_2P(CI_2)$ as an off-white solid (650 mg, 90%). The solid was dissolved in CH_2Cl_2 (12 ml) and EtOH (12 ml) at 0°C and ethylene was bubbled through the solution for 30 min. Addition of excess NaBH₄ (200 mg, 5.3 mmol) suspended in EtOH (30 ml) resulted in gas evolution and formation of a precipitate. The precipitate was tiltered, washed with H2O (30 ml), EtOH (10 ml) and cold Et₂O (3 ml) to give 1b (490 mg, 80%) as a gray solid. ¹L NMR (C₀D₀, 200 MHz): δ7.60 (m, H_a), 6.83 (m, H_m), 2.72 (d. $J_{PH} = 3$ Hz, $J_{PH} = 60$ Hz, $H_2C = CH_2$), 1.98 (s. p-CH₄).

4.3. $(Ph_{3}P)_{2}Pt[\eta^{2}-HC \equiv CC(CH_{3})=CH_{2}](2a)$

A solution of $(Ph_3P)_2Pt(\eta^2-H_2C=CH_2)$ (1a) (150 mg, 0.2 mmol) and excess 2-methyl-1-buten-3-yne (0.05 ml, 0.5 mmol) in benzene (2 ml) was stirred for 3 h. The solution was concentrated to 0.2 ml under vacuum, and hexane (20 ml) was added. The resulting precipitate was filtered and

washed with hexane (10 ml) to give **2a** (95 mg, 60%) as an off-white solid; m.p. (dec.) 130°C. ¹H NMR (C_6D_6 , 200 MHz): δ 7.57 (dm, H_a), 7.14 (s, $J_{PtH} = 23$ Hz, \equiv CH), 6.91 (br d, H_a and H_p), 4.97, 4.85 (br s, =CH₂), 2.22 (br s, CH₃). ³¹P{¹H} NMR (CD₂Cl₂, 202.5 MHz): δ 31 (d, $J_{PP} = 35$ Hz, $J_{PtP} = 3080$ Hz), 27 (d, $J_{PP} = 35$ Hz, $J_{PtP} = 3440$ Hz). MS (FAB): calc. (obs.) for C₄₁H₃₆P₂Pt 786 (786). *Anal.* Calc. for C₄₁H₃₆P₂Pt: C, 62.67; H, 4.62. Found C, 62.28; H, 4.51%.

4.4. $[(p-CH_3-C_6H_4)_3P]_2Pt[\eta^2-HC\equiv CC(CH_3)=CH_2](2b)$

Reaction of excess 2-methyl-1-buten-3-yne (1 mmol) with **1b** (210 mg, 0.25 mmol) in 5 ml THF for 3 h followed by evaporation of solvent and washing with 20 ml of hexane gave **2b** as a white solid (126 mg, 57%); m.p. (dec.) 146°C. ¹H NMR (CD₂Cl₂, 300 MHz): δ 7.25 (dd, $J_{\rm PH}$ = 5 Hz, $J_{\rm HH}$ = 4 Hz, H_o), 7.15 (dd, $J_{\rm PH}$ = 5 Hz, $J_{\rm HH}$ = 4 Hz, H_o), 7.15 (dd, $J_{\rm PH}$ = 5 Hz, $J_{\rm HH}$ = 4 Hz, H_o), 6.91 (d, J = 4 Hz, $H_{a'}$), 6.75 (dd, $J_{\rm PH}$ = 11.5, 5 Hz, $J_{\rm PHH}$ = 26 Hz), 4.67 (br s, $\omega_{1/2}$ = 3.5 Hz, =CHH), 4.30 (br s, $\omega_{1/2}$ = 3.5 Hz, =CHH), 2.30 (s, p-CH₃), 2.28 (s, p-CH₃'), 1.99 (s, CH₃). ³¹P{¹H} NMR (CD₂Cl₂, 121 MHz): δ 28.6 (d, $J_{\rm PP}$ = 33 Hz, $J_{\rm PH}$ = 3540 Hz), 24.7 (d, $J_{\rm PP}$ = 33 Hz, $J_{\rm PH}$ = 3440 Hz). MS (FAB): calc. (obs.) for C₄₇H₄₈P₂Pt + H 870.3 (870.2).

$4.5. \quad (Ph_{1}P)_{2}Pt(\eta^{2}-CH_{3}C \equiv CC \equiv CCH_{3}) (7a)$

2.4-Hexadiyne (200 mg, 2.6 mmol) and 1a (380 mg, 0.44 mmol) in 10 ml THF were stirred overnight and the solvent was evaporated. The yellow residue was dissolved in 2 ml THF and 20 ml hexane were added to give 7a (140 mg, 41%) as a yellow solid; m.p. (dec.) $153^{\circ}C$. ¹H NMR (C₆D₆, 300 MHz): δ 6.8=7.7 (Ph), 2.4 (d, $J_{PH} = 8$ Hz, $J_{PH} = 38$ Hz, CH_4), 1.8 (d. $J_{PH} = 3 Hz$, $J_{PH} = 18 Hz$, CH_4), ³⁴P{¹H} NMR $(CD_2CI_2, 202.5 \text{ MHz})$: δ 28.6 (d, $J_{PP} = 33 \text{ Hz}, J_{PP} = 3576$ Hz), 27.4 (d, $J_{pp} = 33$ Hz, $J_{pp} = 3280$ Hz), ¹³C{¹H} NMR $(CD_2Cl_2, 126 \text{ MHz})$: δ 128-135 (m, Ph), 134.8 (d, $J_{PC} = 12.5$ Hz, C_c), 125.3 (dd, $J_{PC} = 72$, 6 Hz, C_b), 100.6 (dd, $J_{PC} = 72$, 9 Hz, C_a), 95.5 (d, $J_{PC} = 5$ Hz, $J_{PIC} = 25$ Hz, C_d), 12.0 (m, $J_{Put} = 37$ Hz, $C = CCH_3$, bound alkyne), 5.6 (s. $C \equiv CCH_1$, free alkyne) (see Scheme 7 for assignments of C_a , etc.). MS (FAB): calc. (obs.) for $C_{41}H_{36}P_2P_1$ 786 (786).

4.6. $[(p \cdot CH_3 - C_6H_4)_3P]_2Pt(\eta^2 \cdot CH_3C \equiv CC \equiv CCH_3)$ (7b)

Reaction of **1b** (55 mg, 0.066 mmol) and 2.4-hexadiyne (8 mg, 0.1 mmol) in THF (3 ml) for 3 h, followed by evaporation of solvent, and washing with pentane (10 ml) gave **7b** (40 mg, 68%) as a white-yellow solid. ¹H NMR (C_0D_0 , 200 MHz): δ 7.8-7.5 (m, H_o), 6.9-6.7 (m, H_m), 2.44 (d, $J_{PH} = 6.4$ Hz, $J_{PH} = 40$ Hz, CH₃), 2.00, 1.97 (s, p-CH₃s); 1.78 (d, $J_{PH} = 3.4$ Hz, $J_{PH} = 20$ Hz, CH₄). ¹¹P{¹H} NMR (CD₂Cl₂, 202.5 MHz): δ 28 (d, $J_{PP} = 34$ Hz, $J_{PH} = 3390$ Hz), 26 (d, $J_{PP} = 34$ Hz, $J_{PH} = 3610$ Hz). MS (FAB): calc. (obs.) for C₄₂H₃₆P₂Pt 797.2 (797.1).

4.7. $[(p-CH_3-C_6H_4)_3P]_2Pt[\eta^2-(CH_3)_3SiC\equiv CC\equiv CSi-(CH_3)_3](8)$

Reaction of **1b** (50 mg, 0.06 mmol) and $(CH_3)_3Si-C \equiv CC \equiv CSi(CH_3)_3$ (15 mg, 0.077 mmol) in THF (2 ml) for 3 h, followed by evaporation of solvent, and washing with hexane (1 ml) gave **8** as a yellow solid (35 mg, 58%). ¹H NMR (CD₂Cl₂, 200 MHz): δ 7.25 (m, H_o), 6.97 (m, H_m), 2.31 (s, *p* CH₃s), 0.11, -0.15 (s, Si(CH₃)₃s). ³¹P{¹H} NMR (CD₂Cl₂, 202.5 MHz): δ 27 (d, J_{PP} =35 Hz, J_{PiP} =3670 Hz), 26 (d, J_{PP} =35 Hz, J_{PiP} =3720 Hz). MS (FAB): calc. (obs.) for C₅₂H₆₀P₂PtSi₂ 998 (998). *Anal.* Calc. for C₅₂H₆₀P₂PtSi₂: C, 62.57; H, 6.06. Found: C, 62.92; H, 6.05%.

4.8. $(Ph_3P)_2Pt[\eta^3 - H_2C = CC(CH_3) = CH_2]'BF_4 = (3a - BF_4)$

Addition of excess HBF₄·Et₂O (0.05 ml, 85%, 0.30 mmol) to a benzene solution of **2a** (20 mg, 0.025 mmol) gave a red-orange solution. Addition of Et₂O gave a pale orange precipitate, which was filtered and washed with Et₂O (10 ml) to give **3a-BF₄** (15 mg, 69%) as a pale yellow solid. ¹H NMR (CD₂Cl₂, 200 MHz): δ 7.6–7.0 (m, C₆H₅S), 5.63 (dm, H_d), 4.10 (m, J_{PH} = 11.1 Hz, J_{PHI} = 31.1 Hz, H_c), 3.71 (br s, H_b), 3.35 (m, J_{PH} = 7.8 Hz, J_{PHI} = 33.0 Hz, H_a), 2.18 (s. J_{PH} = 66.5 Hz, CH₃) (see Scheme 2 for assignments of H_a, etc.). ³¹P{¹H} NMR (CD₂Cl₂): δ 23 (d. J_{PP} = 11 Hz, J_{PH} = 4190 Hz), 15 (d. J_{PP} = 11 Hz, J_{PH} = 3300 Hz). MS (FAB): calc. (obs.) for C₄₁H₄₂P₂PtBF₄ – BF₄ 786 (786). *Anal.* Calc. for C₄₁H₄₂P₂PtBF₄: C, 56.37; H, 4.27. Found: C, 56.09; H, 4.04%.

4.9. $(Ph_3P)_2Pt|\eta^1 - H_2C = CC(CH_3) = CH_2|^1 CF_3CO_2$ (3a-CF_3CO_2)

CF₃CO₂H (0.02 mmol) was added to an NMR tube containing a CD₂Cl₂ solution of **2a** (10 mg, 0.013 mmol) and C₆Mc₆ (internal NMR integration standard) to give a purple solution of **3a-CF₃CO₂** (93% NMR yield). ¹H NMR (CD₂Cl₂, 300 MHz): δ 7.1–7.8 (Ph), 5.61 (ddd, $J_{\rm PH}$ = 17, 7 Hz, $J_{\rm HH}$ = 3 Hz, $J_{\rm PH}$ = 24 Hz, H_a), 4.10 (dt, $J_{\rm PH}$ = 11, 3 Hz, $J_{\rm HH}$ = 3 Hz, $J_{\rm PH}$ = 22 Hz, H_c), 3.70 (br s. $\omega_{1/2}$ = 8 Hz, H_b), 3.34 (d, $J_{\rm PH}$ = 8 Hz, $J_{\rm PH}$ = 34 Hz, H_a), 2.17 (s, $J_{\rm PH}$ = 66 Hz, CH₃) (see Scheme 3 for assignments of H_a, etc.). ³¹P{¹H} NMR (CD₂Cl₂, 121 MHz): δ 23 (d, $J_{\rm PP}$ = 11 Hz, $J_{\rm PH}$ = 4140 Hz), 15 (d, $J_{\rm PP}$ = 11 Hz, $J_{\rm PH}$ = 3270 Hz).

4.10. $[(p-CH_3-C_6H_4), P]_2Pt[\eta^3-H_2C=CC(CH_3)=CH_2]^3 - CF_3CO_2 - (3b-CF_3CO_2)$

CF₃CO₂H (0.02 mmol) was added to an NMR tube containing a CD₂Cl₂ solution of **2b** (10 mg, 0.013 mmol) and C₆Me₆ (internal NMR integration standard) to give a purple solution of **3b-CF₃CO₂** (84% NMR yield). ¹H NMR (CD₂Cl₂, 300 MHz): δ 7.0–7.5 (*o*, *m*-tolyl), 5.59 (ddd, $J_{\rm PH}$ = 17, 7 Hz, $J_{\rm HH}$ = 3 Hz, $J_{\rm PH}$ = 25 Hz, H_d), 4.10 (d, $J_{PH} = 12 \text{ Hz}, J_{PtH} = 24 \text{ Hz}, \text{H}_c$), 3.63 (br s, $\omega_{1/2} = 8 \text{ Hz}, \text{H}_b$), 3.30 (d, $J_{PH} = 8 \text{ Hz}, J_{PtH} = 34 \text{ Hz}, \text{H}_a$), 2.37 (s, *p*-CH₃s), 2.13 (s, $J_{PtH} = 66 \text{ Hz}, \text{CH}_3$) (see Scheme 5 for assignments of H_a, etc.). ³¹P{¹H} NMR (CD₂Cl₂, 121 MHz): δ 21.3 (d, $J_{PP} = 11$ Hz, $J_{PtP} = 4160 \text{ Hz}$), 13.7 (d, $J_{PP} = 11 \text{ Hz}, J_{PtP} = 3290 \text{ Hz}$).

4.11. Trans- $(Ph_3P)_2(CF_3CO_2)Pt[\eta'-H_2C=CC(CH_3)=CH_2]$ (4)

CF₃CO₂H (0.06 mmol) was added to an NMR tube containing a THF-d₈ solution of **2a** (20 mg, 0.026 mmol) and C₆Me₆ (internal NMR integration standard) to give a yellow solution of **4** (73% NMR yield). ¹H NMR (THF-d₈, 300 MHz): δ 7.2–7.8 (Ph), 5.77 (d, J₁₁₁₁ = 3 Hz, H_a), 5.18 (s, J_{P111} = 122 Hz, H_d), 4.71 (s, J_{P111} = 68 Hz, H_c), 4.27 (br s, $\omega_{1/2} = 9$ Hz, H_b), 1.11 (s, CH₃) (see Scheme 3 for assignments of H_a, etc.). ³¹P{¹H} NMR (THF-d₈, 121 MHz): δ 27 (s, J_{P11} = 3290 Hz). ¹³C{¹H} NMR (THF-d₈, 126 MHz): δ 159.6 (q, J_{CF} = 38 Hz, CF₃CO₂), 148.4 (s, CCH₃), 138.0 (t, J_{PC} = 9 Hz, PtC), 135–128 (m, Ph), 120.7 (s, J_{P1C} = 60 Hz, PtC=CH₂), 118.5 (q, J_{CF} = 195 Hz, J_{P1C} = 44 Hz, CF₃CO₂), 118.0 (s, C(CH₃)=CH₂), 20.2 (s, CH₃).

CF₃CO₂H (0.03 mmol) was added to an NMR tube containing a CD₂Cl₂ solution of **2a** (20 mg, 0.026 mmol) and C₆Me₆ (internal NMR integration standard) to give an orange solution of 4 (77% NMR yield). ¹H NMR (CD₂Cl₂, 300 MHz): δ 7.2–7.8 (Ph), 5.76 (d, J_{HH} = 3 Hz, H_a), 5.24 (s, J_{PHI} = 122 Hz, H_a), 4.75 (s, J_{PHI} = 68 Hz, H_c), 4.34 (br s, $\omega_{1/2}$ = 9 Hz, H_b), 1.12 (s, CH₃) (see Scheme 3 for assignments of H_a, etc.). ⁴¹P{¹H} NMR (CD₂Cl₂, 121 MHz): δ 23 (s, J_{PHP} = 3280 Hz).

4.12. (Ph₃P)₂P1[η^t=CH₃C(CF₃CO₂)C(CH₃)CH₂]⁺ = CF₃CO₂ (5a and 6a)

CF₃CO₅H (0.02 mmol) was added to an NMR tube containing a CD₂Cl₂ solution of **2a** (10 mg, 0.013 mmol) and C₆Me₆ (internal NMR integration standard). After 16 h, a 1:1.8 mixture of 5a and 6a (62% combined NMR yield) was observed. Anti-CH₃ isomer 5a: ¹H NMR (CD₂Cl₂, 300 MHz): δ 7.2-7.8 (Ph), 3.4 (m, H_b), 2.9 (d, $J_{PH} = 9$ Hz, $J_{P01} = 36 \text{ Hz}, \text{ H}_a$), 2.06 (s, $J_{P01} = 54 \text{ Hz}$, central CH₃), 1.22 $(dd, J_{PH} = 7.5, 3 Hz, J_{PHI} = 24 Hz, anti-CH_3)$ (see Scheme 4 for assignments of H_a, etc.). ³¹P{¹H} NMR (CD₂Cl₂, 202.5 MHz): δ 17.5 (d, $J_{\rm PP} = 13$ Hz, $J_{\rm PP} = 3930$ Hz), 14.7 (d, $J_{\rm PP} = 13$ Hz, $J_{\rm PuP} = 3580$ Hz). Syn-CH₃ isomer 6a: ¹H NMR $(CD_2Cl_2, 300 \text{ MHz})$: δ 7.2–7.8 (Ph), 3.3 (m, H_b), 2.9 (d, $J_{PH} = 9$ Hz, $J_{PtH} = 36$ Hz, H_a) 2.03 (s, $J_{PtH} = 62$ Hz, central CH₃), 1.12 (d, $J_{\text{PH}} = 4.5$ Hz, $J_{\text{PH}} = 6$ Hz, syn-CH₃) (see Scheme 4 for assignments of H_a, etc.). ³¹P{¹H} NMR $(CD_2Cl_2, 202.5 \text{ MHz}): \delta 17.6 \text{ (d}, J_{PP} = 12.1 \text{ Hz}, J_{PuP} = 3810$ Hz), 14.7 (d, $J_{PP} = 12.1$ Hz, $J_{PtP} = 3580$ Hz).

4.13. $[(p-CH_3-C_6H_4)_3P]_2Pt[\eta^3-CH_3C(CF_3CO_2)-C(CH_3)CH_2]^+CF_3CO_2^- (5b and 6b)$

CF₃CO₂H (0.02 mmol) was added to an NMR tube containing a CD₂Cl₂ solution of **2b** (10 mg, 0.013 mmol) and C_6Me_6 (internal NMR integration standard). After 24 h, a 1:2 mixture of 5b and 6b (77% combined NMR yield) was observed. Anti-CH₃ isomer 5b: ¹H NMR (CD₂Cl₂, 300 MHz): δ 7.0–7.4 (*m*, *o*-tolyl), 3.30 (m, H_b), 2.90 (dd, $J_{PH} = 9,3 \text{ Hz}, J_{PtH} = 36 \text{ Hz}, H_a), 2.380 (s, p-tolyl CH_3), 2.375$ (s, *p*-tolyl CH₃'), 2.02 (s, $J_{PtH} = 57$ Hz, central CH₃), 1.20 $(dd, J_{PH} = 8, 3 Hz, J_{PtH} = 14 Hz, anti-CH_3)$ (see Scheme 5 for assignments of H_a, etc.). ³¹P{¹H} NMR (CD₂Cl₂, 121 MHz): δ 16.5 (d, J_{PP} = 13.5 Hz, J_{PtP} = 3930 Hz), 12.8 (d, $J_{\rm PP} = 13.5 \,\text{Hz}, J_{\rm PP} = 3580 \,\text{Hz}$). Syn-CH₃ isomer **6b**: ¹H NMR (CD₂Cl₂, 300 MHz): δ7.0–7.4 (*m*, *o*-tolyl), 3.30 (m, H_b), 2.84 (dd, $J_{PH} = 9$, 3 Hz, $J_{PiH} = 36$ Hz, H_a), 2.39 (s, *p*-tolyl CH₃), 2.36 (s, *p*-tolyl CH₃'), 1.98 (s, $J_{PtH} = 60$ Hz, central CH₃), 1.18 (d, $J_{PH} = 4$ Hz, $J_{PH} = 7$ Hz, syn-CH₃) (see Scheme 5 for assignments of H_a , etc.). ³¹P{¹H} NMR $(CD_2Cl_2, 121 \text{ MHz})$: \$ 15.9 (d, $J_{PP} = 12.6 \text{ Hz}, J_{P1P} = 3950$ Hz), 12.7 (d, $J_{\rm PP} = 12.6$ Hz, $J_{\rm PrP} = 3610$ Hz).

4.14. Trans-[$(p-CH_3-C_6H_4)_3P$]₂PtH-(η^2 -CH₃C \equiv CCE = CCH₃)⁺BF₄⁻ (9) and [$(p-CH_3-C_6H_4)_3P$]₂-Pt[η^3 -(CH₃CH=)CC \equiv CCH₃]⁺BF₄⁻ (11)

HBF₄·Et₂O (5 μ l, 85%, 0.030 mmol) was added by syringe to a concentrated solution of 7b (20 mg, 0.023 mmol) containing C₆Me₆ (internal NMR integration standard) in CD_2Cl_2 (0.3 ml) at $-78^{\circ}C$. The resulting purple solution of 9 was analyzed by ¹H NMR in a probe pre-cooled to -73° C. Upon warming to -28° C in the NMR probe, conversion of 9 to 11 occurred. For 9: ¹H NMR (CD_2Cl_2 , ~73°C, 500 MHz): δ 7.5–7.2 (m, H₀ and H_m), 2.47 (s, p-CH₃), 2.30 (s, $J_{\text{PH}} = 45 \text{ Hz}, \text{CH}_3$, 1.65 (s, CH₃), -9.13 (t, $J_{\text{PH}} = 9.7 \text{ Hz}$, $J_{Pull} = 1390 \text{ Hz}$). ³¹P{¹H} NMR (CD₂Cl₂, -73°C, 202.5 MHz): δ 30 (br s, $J_{PiP} = 2750$ Hz). For 11: ¹H NMR (CD₂Cl₂, -28°C, 500 MHz): δ 7.5-6.9 (m, H_o and H_m), 3.9 (m, =CHCH₃), 2.40 (s, p-CH₃), 2.33 (s, p-CH₃), 1.74 $(d, J = 7.6 \text{ Hz}, = \text{CHCH}_3), 1.54 \text{ (br s, } C \equiv \text{CCH}_{31}, {}^{31}\text{P}\{{}^{1}\text{H}\}$ NMR (CD₂Cl₂, -33° C, 202.5 MHz): δ 14 (d, $J_{PP} = 18$ Hz, $J_{\text{PtP}} = 4480 \text{ Hz}$), 13 (d, $J_{\text{PP}} = 18 \text{ Hz}$, $J_{\text{PtP}} = 3330 \text{ Hz}$).

4.15. Trans- $[(p-CH_3-C_0H_4)_3P]_2PtH^ (\eta^2-SiMe_3C \equiv CC \equiv SiMe_3)^+ BF_4^- (10) and [(p-CH_3-C_0H_4)_3P]_2^ Pt[\eta^3-(Me_3SiCH=)CC \equiv CSiMe_3]^+ BF_4^- (12)$

HBF₄·Et₂O (5 μ l, 85%, 0.030 mmol) was added by syringe to a concentrated solution of 8 (20 mg, 0.020 mmol) containing C₆Me₆ (internal NMR integration standard) in CD₂Cl₂ (0.3 ml) at -78°C. The resulting dark brown solution of 10 was analyzed by ¹H NMR in a probe pre-cooled to -73°C. Upon warming to - 28°C in the NMR probe, conversion of 10 to 12 occurred. For 10: ¹H NMR (CD₂Cl₂, -73°C, 500 MHz): δ 7.6-6.9 (m, H_o and H_m), 2.37 (s, pCH₃), -0.12, -0.41 (s, Si(CH₃)₃s), -9.24 (t, $J_{PH} = 7.6$ Hz, $J_{PtH} = 1450$ Hz). ³¹P{¹H} NMR (CD₂Cl₂, -73° C, 202.5 MHz): δ 26 (br s, $J_{PtP} = 2770$ Hz). For 12: ¹H NMR (CD₂Cl₂, -23° C, 500 MHz): δ 7.4–6.8 (m, H_o and H_m), 4.25 (m, =CH), 2.35, 2.33 (s, *p*-CH₃s), 0.04, -0.31 (s, Si(CH₃)₃s). ³¹P{¹H} NMR (CD₂Cl₂, -23° C, 202.5 MHz): δ 16 (d, $J_{PP} = 20$ Hz, $J_{PtP} = 4950$ Hz), 12 (d, $J_{PP} = 20$ Hz, $J_{PtP} = 3030$ Hz).

4.16. Trans- $(Ph_3P)_2(CF_3CO_2)Pt$ - $[\eta'-(E-CH_3CH=)CC\equiv CCH_3]$ (13)

CF₃CO₂H (0.04 mmol) was added to an NMR tube containing a CD₂Cl₂ solution of **7a** (10 mg, 0.013 mmol) and C₆Me₆ (internal NMR integration standard) to give an orange solution of **13** (60% NMR yield). ¹H NMR (CD₂Cl₂, 300 MHz): δ 7.0–7.5 (Ph), 4.4 (q, J_{HH} = 6.5 Hz, J_{PtH} = 75 Hz, =CH), 1.4 (s, J_{PtH} = 23 Hz, =CCH₃), 0.9 (dt, J_{HH} = 6.5 Hz, J_{PH} = 2.5 Hz, =CCH₃). ³¹P{¹H} NMR (CD₂Cl₂, 121 MHz): δ 23.6 (s, J_{PtP} = 3280 Hz).

4.17. Trans- $(Ph_3P)_2ClPt[\eta'-C(=CHCH_3)C(Cl)=CHCH_3]$ (14)

CF₃CO₂H (0.04 mmol) was added to a yellow solution of 7a (100 mg, 0.13 mmol) in 5 ml CH₂Cl₂. After 10 min, excess LiCl (100 mg, 2.4 mmol) was added. Solvent was evaporated under vacuum to give a brown residue. Thin layer chromatography (silica gel, CH₂Cl₂) gave 14 (5 mg, 5%) as white crystals. ¹H NMR (CD₂Cl₂, 300 MHz): δ 7.0–7.7 (Ph), 6.9 (q, J₁₁₁₄ = 6.5 Hz, CCl=CHMe), 5.5 (q, J₁₁₁₄ = 6.5 Hz, J_{P014} = 100 Hz, PtC=CHMe), 1.410 (d, J = 6.5 Hz, CH₃), 1.402 (d, J = 6.5 Hz, CH₃). ³¹P{¹H} NMR (CD₂Cl₂, 121 MHz): δ 23.5 (s, J_{P0P} = 3000 Hz). HRMS (FAB): cale. (obs.) for C₄₂H₃₈Cl₂P₂Pt 870.1474 (870.1467).

4, 18, Trans-(Ph₃P)₂(CF₃CO₂)Pt[η¹-C(Z-=CHCH₃)-COCH₂CH₃] (**15**)

CF₃CO₂H (1 mmol) was added to a yellow solution of **7a** (100 mg, 0.13 mmol) in 5 ml CH₂Cl₂ and 5 ml MeOH. After 3 h, solvent was evaporated to give **15** as a solid. ¹H NMR (CD₂Cl₂, 300 MHz): δ 7.2–7.8 (Ph), 6.23 (qt, J_{HH} = 7 Hz, J_{PH} = 2 Hz, J_{PH} = 110 Hz, =CHMe), 1.76 (q, J = 7 Hz, CH₂Me), 0.43 (t, J = 7 Hz, CH₂CH₃), 1.45 (d, J = 7 Hz, =CHCH₃). ³¹P{¹H} NMR (CD₂Cl₂, 121 MHz): δ 22.7 (s, J_{PP} = 3180 Hz).

4.19. Trans- $(Ph_{3}P)_{2}C[Pt[\eta' - C(Z - CHCH_{3})COCH_{2}CH_{3}]$ (16)

 CF_3CO_2H (1 mmol) was added to a yellow solution of **7a** (100 mg, 0.13 mmol) in 5 ml CH_2Cl_2 and 5 ml MeOH. After 3 h, LiCl (50 mg, 1.2 mmol) was added and solvent was evaporated under vacuum to give a brown residue. Thin layer chromatography (silica gel, 1:1 hexane:ether) gave 16 (10

Table 1			
Crystal data	and structure	refinement	for 16

	والمراجع والمتحدين الشريفي المتعادي والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمحد والمحد والمح	
Empirical formula	C42H39ClOP2Pt	
Crystal color, habit	yellow prism	
Crystal size	0.40×0.40×0.10 mm	
Crystal system	monoclinic	
Space group	P21/c	
Unit cell dimensions		
a (Å)	11.9062(2)	
$b(\mathbf{A})$	18.4314(4)	
c (Å)	18.0104(3)	
B(°)	107.907(2)	
Volume (Å ³)	37.60.88(12)	
Peaks to determine cell	8192	
θ Range of cell peaks (°)	2.5-26.0	
Temperature (K)	296(2)	
Wavelength (Å)	0.71073	
7	4	
Formula weight	852.21	
Density (calc.) (Mg m^{-3})	1.505	
Absorption coefficient (mm^{-1})	3.918	
F(000)	1696	
$R(F)^{*}(\%)$	5.15	
$wR(F^2)^*(\%)$	13.81	

^a R factors are defined as follows: $R(F) = \{\sum F_o - kF_c\} / \sum F_o; wR(F^2) = (\{\sum w(F_o^2 - F_c^2)^2\} / \sum [w(F_o^2)^2])^{1/2}.$

mg, 10%) as white crystals. ¹H NMR (CD₂Cl₂, 300 MHz): δ 7.2–7.8 (Ph), 6.25 (q, $J_{HH} = 7$ Hz, $J_{PtH} = 112$ Hz, =CHMe), 1.65 (d, $J_{HH} = 7$ Hz, $J_{PtH} = 12$ Hz, =CHCH₃), 1.4 (q, J = 7 Hz, CH_2CH_3), 0.4 (t, J = 7 Hz, CH_2CH_3). ³¹P{¹H} NMR (CD₂Cl₂, 121 MHz): δ 23.9 (s, $J_{PtP} = 3120$ Hz). ¹³C{¹H} NMR (CD₂Cl₂, 126 MHz): δ 186 (C=O), 144 (CH=C), 128=135 (Ph), 107 (PtC=C), 30.0 (CH₂), 21.4 (C=CCH₃), 8.7 (CH₂CH₃).

4.20. X-ray crystallography of trans-(Ph₃P)₂ClPt-[η^{1} -C(Z-=CHCH₃)COCH₂CH₃] (16)

Crystals of 16 suitable for X-ray analysis were obtained by slow evaporation of a CD_2Cl_2 solution. A yellow prismshaped crystal of dimensions 0.40×0.40×0.10 mm was selected for structural analysis. The X-ray diffraction study was performed with a Siemens SMART ccd area detector mounted on a Siemens P4 diffractometer equipped with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). With the sample at $\chi = 40^\circ$, the intensity data were measured as a series of 1210 ϕ -oscillation frames each of 0.3°/frame for 30 s/frame. The detector was positioned 5.26 cm from the sample. Cell parameters were determined from a nonlinear least-squares fit to the settings angles of 8192 peaks in the range $2.5 < \theta < 25^{\circ}$. Standard reflections for each data set showed no significant decrease in intensity throughout acquisition. A total of 13672 data was measured to $\theta_{max} = 26.08^{\circ}$. A semi-empirical absorption correction was applied that gave minimum and maximum transmittances of 0.596 and 0.958, respectively. The data were merged to form a set of 5907 independent data with $R_{int} = 0.0510$. The space group $P2_1/c$ was determined by systematic absences and statistical tests,

Table 2 Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² × 10³) for 16

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<i>x</i>	у	2	Ueq ª
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt(1)	422(1)	6084(1)	7585(1)	48(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Cl(1)	- 259(3)	4915(1)	7028(1)	72(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(1)	2263(2)	5802(1)	7513(1)	47(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(2)	-1365(2)	6288(1)	7782(1)	45(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C (1)	2370(8)	5615(4)	6546(5)	49(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	1378(9)	5590(5)	5908(5)	55(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(3)	1436(11)	5452(5)	5160(5)	74(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	2516(12)	5338(5)	5063(6)	73(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)	3532(11)	5354(5)	5681(6)	75(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)	3463(9)	5506(5)	6429(5)	57(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(7)	2783(9)	4999(5)	8091(5)	58(2)
$\begin{array}{cccccc} C(9) & 3006(17) & 4346(7) & 9288(7) & 131(7) \\ C(10) & 3493(16) & 3775(6) & 9014(8) & 112(5) \\ C(11) & 3648(12) & 3808(5) & 8308(7) & 84(3) \\ C(12) & 3287(10) & 4419(5) & 7841(6) & 64(3) \\ C(13) & 3443(8) & 6471(5) & 7883(5) & 522(2) \\ C(14) & 4349(10) & 6385(6) & 8548(6) & 75(3) \\ C(15) & 5221(12) & 6931(8) & 8813(7) & 99(4) \\ C(16) & 5114(13) & 7569(8) & 8398(8) & 99(4) \\ C(17) & 4197(12) & 7655(6) & 7731(7) & 81(3) \\ C(18) & 3347(9) & 7110(5) & 7463(5) & 62(2) \\ C(19) & -1443(8) & 7041(5) & 8434(4) & 49(2) \\ C(20) & -1372(9) & 6923(5) & 9205(5) & 65(3) \\ C(21) & -1318(11) & 7511(7) & 9691(6) & 84(3) \\ C(22) & -1307(10) & 8213(7) & 9432(6) & 80(3) \\ C(23) & -1372(10) & 8329(6) & 8677(7) & 77(3) \\ C(24) & -1453(10) & 7745(5) & 8173(6) & 64(3) \\ C(25) & -2584(8) & 6484(4) & 6897(4) & 46(2) \\ C(26) & -3607(9) & 6794(4) & 6930(5) & 53(2) \\ C(27) & -4512(9) & 6915(5) & 6268(5) & 59(2) \\ C(28) & -4425(10) & 6735(5) & 5537(5) & 63(2) \\ C(29) & -3384(9) & 6420(5) & 5514(5) & 65(3) \\ C(30) & -2452(9) & 6289(5) & 6178(5) & 612(2) \\ C(31) & -1848(8) & 5511(4) & 8242(5) & 50(2) \\ C(32) & -2999(11) & 5361(6) & 8136(7) & 82(3) \\ C(33) & -3324(14) & 4812(7) & 8564(8) & 111(5) \\ C(34) & -2472(14) & 4413(6) & 9076(7) & 91(4) \\ C(35) & -1345(13) & 4547(6) & 9183(6) & 84(4) \\ C(39) & 1012(8) & 7071(5) & 8075(5) & 77(3) \\ C(39) & 1012(8) & 7071(5) & 8055(5) & 50(2) \\ C(40) & 1542(10) & 7078(5) & 8912(6) & 64(3) \\ O(40) & 1589(10) & 6508(4) & 9266(4) & 109(3) \\ C(41) & 1937(11) & 7754(6) & 9345(6) & 81(3) \\ C(41) & 1937(11) & 7754(6) & 9345(6) & 81(3) \\ C(41) & 1937(11) & 7754(6) & 9345(6) & 81(3) \\ C(41) & 1937(11) & 7754(6) & 9345(6) & 81(3) \\ C(41) & 1937(11) & 7754(6) & 9345(6) & 81(3) \\ C(41) & 1937(11) & 7754(6) & 9345(6) & 81(3) \\ C(41) & 1937(11) & 7754(6) & 9345(6) & 81(3) \\ C(41) & 1589(10) & 6508(4) & 9266(4) & 109(3) \\ C(41) & 1937(11) & 7754(6) & 9345(6) & 81(3) \\ C(41) & 1937(11) & 7754(6) & 9345(6) & 81(3) \\ C(41) & 1589(10) & 6508(4) & 9266(4) & 109(3) \\ C(41) & 1589(10) & 6508(4) & 9266(4) & 109(3) \\ $	C(8)	2636(14)	4955(6)	8828(6)	106(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)	3006(17)	4346(7)	9288(7)	131(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)	3493(16)	3775(6)	9014(8)	112(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)	3648(12)	3808(5)	8308(7)	84(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	3287(10)	4419(5)	7841(6)	64(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	3443(8)	6471(5)	7883(5)	52(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)	4349(10)	6385(6)	8548(6)	75(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	5221(12)	6931(8)	8813(7)	99(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	5114(13)	7569(8)	8398(8)	99(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17)	4197(12)	7655(6)	7731(7)	81(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)	3347(9)	7110(5)	7463(5)	62(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19)	- 1443(8)	7041(5)	8434(4)	49(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)	- 1372(9)	6923(5)	9205(5)	65(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	- 1318(11)	7511(7)	9691(6)	84(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	- 1307(10)	8213(7)	9432(6)	80(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23)	1372(10)	8329(6)	8677(7)	77(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(24)	- 1453(10)	7745(5)	8173(6)	64(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25)	-2584(8)	6484(4)	6897(4)	46(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(26)	- 3607(9)	6794(4)	6930(5)	53(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(27)	-4512(9)	6915(5)	6268(5)	59(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(28)	-4425(10)	6735(5)	5537(5)	63(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(29)	- 3384(9)	6420(5)	5514(5)	65(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(30)	= 2452(9)	6289(5)	6178(5)	61(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(31)	1848(8)	5511(4)	8242(5)	50(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(32)	2999(11)	5361(6)	8136(7)	82(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(33)	- 3324(14)	4812(7)	8564(8)	111(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(34)	- 2472(14)	4413(6)	9076(7)	91(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(35)	- 1345(13)	4547(6)	9183(6)	84(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(36)	- 988(11)	5089(6)	8776(5)	77(3)
C(38) 879(12) 7682(7) 7635(7) 88(4) C(39) 1012(8) 7071(5) 8055(5) 50(2) C(40) 1542(10) 7078(5) 8912(6) 64(3) O(40) 1589(10) 6508(4) 9266(4) 109(3) C(41) 1937(11) 7754(6) 9345(6) 81(3)	C(37)	329(15)	7775(9)	6820(8)	131(6)
C(39) 1012(8) 7071(5) 8055(5) 50(2) C(40) 1542(10) 7078(5) 8912(6) 64(3) O(40) 1589(10) 6508(4) 9266(4) 109(3) C(41) 1937(11) 7754(6) 9345(6) 81(3)	C(38)	879(12)	7682(7)	7635(7)	88(4)
C(40) 1542(10) 7078(5) 8912(6) 64(3) O(40) 1589(10) 6508(4) 9266(4) 109(3) C(41) 1937(11) 7754(6) 9345(6) 81(3)	C(39)	1012(8)	7071(5)	8055(5)	50(2)
O(40) 1589(10) 6508(4) 9266(4) 109(3) C(41) 1937(11) 7754(6) 9345(6) 81(3)	C(40)	1542(10)	7078(5)	8912(6)	64(3)
C(41) 1937(11) 7754(6) 9345(6) 81(3)	O(40)	1589(10)	6508(4)	9266(4)	109(3)
	C(41)	1937(11)	7754(6)	9345(6)	81(3)
C(42) 2314(15) 7645(6) 10210(7) 116(5)	C(42)	2314(15)	7645(6)	10210(7)	116(5)

* U_{eq} is defined as one third of the trace of the orthogonalized U_{g} tensor.

and confirmed by subsequent refinement. The structure was solved by direct methods and refined by full-matrix leastsquares methods on F^2 [20]. A total of 424 parameters was refined against 5906 data to give $wR(F^2) = 0.1381$ and S = 1.191 using weights of $w = 1/[\sigma^2(F^2) + (0.0601P)^2 +$ 7.6831P], where $P = [F_0^2 + 2F_c^2]/3$. The final R(F) was 0.0515 for the 4697 observed $(I > 2\sigma(I))$ data. The largest shift/e.s.d. was -0.014 in the final refinement cycle. The final difference map had maxima and minima of 1.416 and -1.021 e Å⁻¹, respectively. Crystallographic data are given in Table 1. Atomic coordinates are given in Table 2.

5. Supplementary material

The atomic positional parameters for 16 have been deposited with the Cambridge Crystallographic Data Centre.

Acknowledgements

Financial support from the National Science Foundation is gratefully acknowledged.

References

- [1] (a) S. Doherty, J.F. Corrigan, A.J. Carty and E. Sappa, Adv. Organomet. Chem., 37 (1995) 39; (b) A. Wojcicki, New. J. Chem., 18 (1994) 61.
- [2] (a) E. Keinan and E. Bosch, J. Org. Chem., 51 (1986) 4006; (b) Y. Wakatsuki, H. Yamazaki, N. Kumegawa, T. Satoh and J.Y. Satoh, J. Am. Chem. Soc., 113 (1991) 9604; (c) J. Tsuji, H. Watanabe, I. Minami and I. Shimizu, J. Am. Chem. Soc., 107 (1985) 2196; (d) I. Minami, M. Yuhara, H. Watanabe and J. Tsuji, J. Organomet. Chem., 334 (1987) 225.
- [3] (a) C.P. Casey, A.D. Selmeczy, J.R. Nash, C.S. Yi, D.R. Powell and R.K. Hayashi, J. Am. Chem. Soc., 118 (1996) 6698; (b) C.P. Casey and C.S. Yi, J. Am. Chem. Soc., 114 (1992) 6597.
- [4] P.W. Blosser, J.C. Gallucci and A. Wojcicki, J. Am. Chem. Soc., 115 (1993) 2994.
- [5] (a) P.W. Blosser, D.G. Schimpff, J.C. Gallucci and A. Wojcicki, Organometallics, 12 (1993) 1993; (b) T.-M. Huang, J.-T. Chen, G.-H. Lee and Y. Wang, J. Am. Chem. Soc., 115 (1993) 1170; (c) P.J. Stang, C.M. Crittell and A.M. Arif, Organometallics, 12 (1993) 4799; (d) M.W. Baize, P.W. Blosser, V. Plantevin, D.G. Schimpff, J.C. Gallucci and A. Wojcicki, Organometallics, 15 (1996) 164; (e) T.-M. Huang, R.-H. Hsu, C.-S. Yang, J.-T. Chen, G.-H. Lee and Y. Wang, Organometallics, 13 (1994) 3657.
- [6] (a) N.W. Alcock, A.F. Hill, R.P. Melling and A.R. Thompsett, Organometallics, 12 (1993) 641; (b) V.V. Krivykh, E.S. Taits, P.V. Petrovskii, Y.T. Struchkov and A.I. Yanovskii, Mendeleev Commun., (1991) 103; (c) S. Ogoshi, K. Tsutsumi and H. Kurosawa, J. Organomet. Chem., 493 (1995) C19; (d) W. Weng, A.M. Arif and J.A. Gladysz, Angew. Chem., Int. Ed. Engl., 32 (1993) 891; (e) J. Gotzig, H. Otto and H. Werner, J. Organomet. Chem., 287 (1985) 247; (f) A. Hills, D.L. Hughes, M. Jimenez-Tenorio, G.J. Leigh, C.A. McGeary, A.T. Rowley, M. Bravo, C.E. McKenna and M.-C. McKenna, J. Chem. Soc., Chem. Commun., (1991) 522; (g) A.K. McMullen, J.P. Selegue and J.-G. Wang, Organometallics, 10 (1991) 3421; (h) G. Jia, A.L. Rheingold and D.W. Meek, Organometallics, 8 (1989) 1378; (i) L.D. Field, A.V. George and T.W. Hambley, Inorg. Chem., 29 (1990) 4565; (j) Y. Wakatsuki, H. Yamazaki, N. Kumegawa, T. Satoh and J.Y. Satoh, J. Am. Chem. Soc., 113 (1991) 9604; (k) C. Bianchini, C. Bohanna, M.A. Esteruelas, P. Frediana, A. Meli, L.A. Oro and M. Peruzzini, Organometallics, 11 (1992) 3837; (1) C. Bianchini, M. Peruzinni, F. Zanobini, P. Frediani and A. Albinati, J. Am. Chem. Soc., 113 (1991) 9604; (m) G. Albertin, P. Amendola, S. Antoniutti, S. Ianelli, G. Pelizzi and E. Bordignon, Organometallics, 10 (1991) 2876; (n) Y. Wakatsuki, H. Yamazaki, Y. Maruyama and I. Shimizu, J. Chem. Soc., Chem. Commun., (1991)

261; (o) D.L. Hughes, M. Jimenez-Tenorio, G.J. Leigh and A.T. Rowley, J. Chem. Soc., Dalton Trans., (1993) 3151.

- [7] (a) C. Elschenbroich and A. Salzer, Organometallics: a Concise Introduction, VCH, New York, 2nd edn., 1992, p. 283; (b) V.V. Krivykh, O.V. Gusev and M.I. Rybinskaya, Bull. Acad. Sci. USSR, 32 (1983) 583.
- [8] C.P. Casey and C.S. Yi, Organometallics, 9 (1990) 2413.
- [9] G. Wilke, B. Bogdanovic, P. Hardt, P. Heimbach, W. Keim, M. Kroner,
 W. Oberkirch, K. Tanaka, E. Steinrucke, D. Walter and H. Zimmermann, Angew. Chem., Int. Ed. Engl., 5 (1966) 151.
- [10] C.P. Casey and S. Chung, unpublished results.
- [11] A. Furlani, M.V. Russo, A.C. Villa, A.G. Manfredotti and C. Guastini, J. Chem. Soc., Dalton Trans., (1977) 2154.
- [12] S.A. Benyunes, L. Brandt, M. Green and A.W. Parkins, Organometallics, 10 (1991) 57.
- [13] Z. Zhong, R.J. Hinkle, A.M. Arif and P.J. Stang, J. Am. Chem. Soc., 113 (1991) 6196.
- [14] S.A. Benyunes, R.J. Deeth, A. Fries, M. Green, M. McPartlin and C.B.M. Nation, J. Chem. Soc., Dalton Trans., (1992) 3453.

- [15] (a) J.B.B. Heyns and F.G.A. Stone, J. Organomet. Chem., 160 (1978) 337; (b) G. Butler, C. Eaborn and A. Pidcock, J. Organomet. Chem., 210 (1981) 403.
- [16] (a) H.C. Clark and H. Kurosawa, J. Organomet. Chem., 36 (1972) 399; (b) R.L. Brainard, T.M. Miller and G.M. Whitesides, Organometallics, 5 (1986) 1481; (c) M. Hackett and G.M. Whitesides, J. Am. Chem. Soc., 110 (1988) 1449.
- [17] (a) N.W. Alcock, T.J. Kemp, P.G. Pringle, P. Bergamini and O. Traverso, J. Chem. Soc., Dalton Trans., (1987) 1659; (b) J.R. Berenguer, J. Fornies, E. Lalinde, F. Martinez, E. Urriolabeitia and A.J. Welch, J. Chem. Soc., Dalton Trans., (1994) 1291; (c) B.W. Davies and N.C. Payne, Can. J. Chem., 51 (1973) 3477; (d) V.W.-W. Yam, L.-P. Chan and T.-F. Lai, Organometallics, 12 (1993) 2197.
- [18] B.E. Mann, B.L. Shaw and N.I. Tucker, J. Chem. Soc. A, (1971) 2667.
- [19] F.R. Hartley, Organomet. Chem. Rev. A, 6 (1970) 119.
- [20] G.M. Sheldrick, SHELXTL, Reference Manual, Version 5, Siemens Analytical X-ray Instruments, Madison, WI, 1994.