Accepted Manuscript

A novel quinazoline-based analog induces G2/M cell cycle arrest and apoptosis in human A549 lung cancer cells *via* a ROS-dependent mechanism

Hailong Shi, Yan Li, Xiaorong Ren, Yaohong Zhang, Zhen Yang, Chenze Qi

PII: S0006-291X(17)30491-6

DOI: 10.1016/j.bbrc.2017.03.034

Reference: YBBRC 37421

To appear in: Biochemical and Biophysical Research Communications

Received Date: 23 February 2017

Accepted Date: 11 March 2017

Please cite this article as: H. Shi, Y. Li, X. Ren, Y. Zhang, Z. Yang, C. Qi, A novel quinazoline-based analog induces G2/M cell cycle arrest and apoptosis in human A549 lung cancer cells *via* a ROS-dependent mechanism, *Biochemical and Biophysical Research Communications* (2017), doi: 10.1016/j.bbrc.2017.03.034.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	A novel quinazoline-based analog induces G2/M cell cycle arrest and
2	apoptosis in human A549 lung cancer cells via a ROS-dependent
3	mechanism
4	
5	Hailong Shi, ¹ Yan Li, ¹ Xiaorong Ren, Yaohong Zhang, Zhen Yang, Chenze Qi*
6	
7	Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process,
8	School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing,
9	Zhejiang Province 312000, China
10	
1	
12	
13	
14	
15	
16	
17	
18	
19	· · · · · · · · · · · · · · · · · · ·
20	*Corresponding author. Fax: +86 575 88345682
21	E-mail: qichenze@usx.edu.cn
2	¹ These authors contributed equally to this work.
3	

24 Abstract

6-amino-4-(4-phenoxyphenylethylamino)quinazoline 25 (ONZ) excellent is an 26 quinazoline-containing NF-kB inhibitor also acting as a novel anticancer agent. Considering both the medicinal significance of quinazoline scaffold and the tunable 27 functionality of Michael acceptor-centric pharmacophores in 28 the electrophilicity-based prooxidant strategy, we designed a novel QNZ-inspired 29 electrophilic molecule QNZ-A by introducing a Michael acceptor unit at position-6 of 30 quinazoline ring in QNZ. Our results identified QNZ-A as a promising selective 31 32 cytotoxic agent against A549 cells. QNZ-A, by virtue of its Michael acceptor unit, induced reactive oxygen species (ROS) accumulation associated with collapse of the 33 redox buffering system in A549 cells. This caused up-regulation of p53-inducible p21 34 35 and down-regulation of redox sensitive Cdc25C along with Cyclin B1/Cdk1, leading to a G2/M cell cycle arrest and final cell apoptosis. By contrast, QNZ-B, a reduction 36 product of QNZ-A lacking the Michael acceptor unit failed to induce ROS generation 37 38 and all these cell cycle-related events. In conclusion, this work provided a successful example of designing **ONZ**-directed anticancer agent by a ROS-promoting strategy 39 and identified QNZ-A as a selective anticancer agent against A549 cells through 40 G2/M cell cycle arrest and apoptosis *via* a ROS-dependent mechanism. 41

42

43 *Keywords:* Reactive oxygen species; Cell cycle; G2/M arrest; Michael acceptor;
44 Quinazoline

45 **1. Introduction**

Reactive oxygen species (ROS) play important roles in cell growth by regulating the 46 47 major mediators in many cell signaling pathways [1]. Cells can balance the production of ROS with their removal by an antioxidant defense system under normal 48 physiological conditions [1]. However, once the intracellular redox equilibrium 49 collapses, the excessive ROS may induce direct cellular damage, in turn causing cell 50 growth inhibition and apoptosis by activating specific redox-sensitive cell death 51 signaling pathways [2]. Cancer cells characterized by mitochondrial defects, 52 53 malignant proliferation and metastatic ability, exhibit greater ROS stress than normal cells, thereby are more susceptible to further ROS production and easier to trigger the 54 critical "toxic threshold" [3, 4]. This intrinsic differences in the redox status between 55 56 cancer cells and normal cells favors an anticancer strategy that selectively kills cancer cells by ROS-promoting and decreasing the antioxidant capacity of cancer cells, 57 whereas is harmless to the normal cells owing to their lower basal level of 58 endogenous ROS and stronger antioxidant capacity [3, 4]. 59

Numerous promising cytotoxic drugs that kill cancer cells by the abrogation of proliferative signals have been reported to possess ROS-generating ability, including certain commonly used chemotherapeutic agents such as commercial anticancer drug 5-fluorouracil [5] and paclitaxel [6]. One of the most exciting findings regarding ROS-based anticancer agents is that much of these drugs contain electrophilic Michael acceptor pharmacophores which can be employed as tools to fine tune biological activity depending on their multiple reactivities [7]. Michael acceptors can

67	form covalent adducts with critical thiol residues in redox-sensitive proteins that
68	regulate celluar redox status such as glutathione and thioredoxin, thereby inducing
69	dramatic oxidative stress in target cancer cells [8, 9]. In this respect, for example,
70	natural products parthenolide [10] and piperlongumine [11]characterized by
71	α , β -unsaturated carbonyl moiety in their molecular structures can preferentially
72	induce apoptosis in human cancer cells via ROS generation over normal cells,
73	vigorously supporting the concept of ROS-based selective cancer killing [3, 4].
74	Quinazoline unit has been found as an important scaffold for many drugs with
75	broad spectrum of biological activities such as anti-inflammatory, antioxidant and
76	anticancer [12]. Recent drug optimization efforts have generated several novel
77	quinazoline-derived compounds exerting potent anti-cancer activity via ROS
78	generation [13]. In this study, our interest was focused on
79	6-amino-4-(4-phenoxyphenylethylamino)quinazoline (QNZ), a
80	quinazoline-containing compound, known for its excellent NF-KB inhibitory activity
81	[14]. Additionally, QNZ also exhibits as a novel anti-cancer reagent [15]. However,
82	the action mechanisms behind are still unclear, and there is as yet scarcely any
83	research related to designing QNZ-inspired anticancer agents based on the
84	ROS-promoting strategy. In this study, we tried to design a QNZ-based prooxidant by
85	introducing a Michael acceptor unit at position-6 of quinazoline ring in QNZ to
86	increase its electrophilicity. To probe the possibility of Michael acceptor-dependent
87	prooxidant mechanism, we synthesized two analogs: QNZ-A with a Michael acceptor
88	unit and its reduction product ONZ-B lacking the Michael acceptor unit. Our results

confirm for the first time that QNZ-A as a novel electrophilic compound can selectively kill human non-small cell lung cancer (A549) cells mainly by ROS-mediated cell cycle arrest and apoptosis. It is worthy of further study for its potentials in the investigation of Michael acceptor-dependent redox intervention related molecular mechanisms and as a possible lead structure to develop new cancer drug.

95 **2. Materials and methods**

96 2.1 Materials

97 RPMI medium 1640, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium
98 bromide (MTT), Propidium iodide (PI), RNAse, 2',7'-Dichlorofluorescin diacetate

99 (DCFH-DA) were purchased from Sigma-Aldrich (St. Louis, MO, USA). The

- antibodies against p53, p21, Cyclin B1, Cdk1 and Cdc25C were from Cell Signaling
- 101 Technology (Beverly, MA, USA). **<u>ONZ, ONZ-A</u>** and **<u>ONZ-B</u>** were synthesized in our
- 102 <u>lab (the details and spectra data shown in the Supplementary Materials).</u>
- 103 2.2. Electrophilicity assessment by NMR
- ¹H NMR spectra of **QNZ-A** (50 mM in *d*6-DMSO) before and after the incubation
- 105 with benzyl mercaptan (75 mM in *d*6-DMSO) at set intervals (3 h, 2 or 5 day) were
- 106 recorded using a Bruker AV 400 (Bruker Biospin Co. Ltd., Switzerland) spectrometer.

107 2.3. Cell Culture

108 A549 cells, human hepatocellular carcinoma (HepG2) cells and human umbilical vein

109	endothelial (HUVEC) cells (Shanghai Institute of Biochemistry and Cell Biology,
110	Chinese Academy of Sciences) were cultured in RPMI-1640 medium supplemented
111	with 10% (v/v) FBS, 2 g/L NaHCO ₃ , 2 mM glutamine, 100 kU/L penicillin and 100
112	kU/L streptomycin at 37 °C in an atmosphere of 5% CO ₂ .
113	2.4. Cytotoxicity assay
114	Cells (3 \times 10 ³ /well) were treated with graded concentrations of test compounds for 48
115	h, and then incubated with MTT (0.5 mg/mL) for 4 h. When necessary, the cells were
116	pretreated with N-acetylcysteine (NAC, 10 mM), dithiothreitol (DTT, 500 μ M) or
117	α -tocopherol (VE, 500 μ M) for 1 h before adding QNZ-A. Then the medium was
118	substituted with DMSO for OD determination using a microplate reader (Model 550,
119	Bio-Rad, CA).

120 2.5. Cell cycle and apoptosis analysis

121 A549 cells $(2 \times 10^5$ cells/well) were treated with test compounds for 24 h (in cell 122 cycle analysis) or 48 h (in cell apoptosis analysis). When necessary, the cells were 123 pretreated with NAC (10 mM) or VE (500 μ M) for 1 h before **QNZ-A** was added. 124 Cells were harvested for cell cycle and apoptosis analysis using a flow cytometer 125 (Becton–Dickinson, San Jose, CA, USA) as described in our previous work [16].

126 2.6. Intracellular ROS assay

127 A549 cells $(3 \times 10^5$ cells/well) treated with test compounds for 4 h or 8 h, with or 128 without pre-incubation with NAC or DTT or VE, were harvested, stained with 129 DCFH-DA and analyzed by flow cytometry (Becton–Dickinson, San Jose, CA, USA)

- 130 [17]. The ROS level in HUVEC cells was also assayed after treated with QNZ-A (15
 131 μM) for 8h.
- 132 2.7. Intracellular glutathione assay
- 133 A549 cells (3×10^5 cells/well) treated with compounds as desired were harvested,
- 134 lysed and centrifugated, the supernatant was used to determine the total glutathione
- 135 (GSH) and glutathione disulfide (GSSG) levels using a GSH and GSSG Assay Kit
- 136 (Beyotime Biotechnology, Jiangsu, China) by an Infinite M200 Pro microplate reader
- 137 (Tecan, USA). The GSH levels were calculated as previously described [17].
- 138 2.8. Real-time quantitative PCR (RT-qPCR) analysis
- 139 A549 cells (2 × 10⁶ cells/dish) treated with QNZ-A (5, 15 μ M) for 24 h with or
- 140 without pre-incubation with NAC were collected and total RNA was extracted using
- 141 Total RNA Extraction Kit (Tiangen Biotech Co., Ltd., Beijing, China). The reverse
- 142 transcription was performed at 42 °C for 1 h and 70 °C for 10 min. RT-qPCR was
- 143 performed using Brilliant II SYBR Green QPCR Master Mix (Agilent technologies,
- 144 Santa Clara, CA, USA) on a Stratagene Mx3005P QPCR System (Agilent
- 145 technologies, Santa Clara, CA, USA). The cycling conditions were: 10 min at 95 °C
- 146 followed by 40 cycles of amplification (30 s at 95 °C and 50 s at 60 °C). All data
- 147 were analyzed by the $\Delta\Delta$ Ct method using GAPDH as the endogenous reference and
- 148 were normalized to the non-treated control. Primer sequences are shown in Table S1
- 149 <u>in Supplementary materials.</u>
- 150 2.9. Western Blot analysis

A549 cells $(3 \times 10^6 \text{ cells/dish})$ were treated with QNZ-A (5, 15 μ M) or QNZ-B (15 μ M) for 24 h with or without pre-incubation with NAC or VE. After cells lysed, the protein lysates were harvested for western blots as previously described [17]. The signals were finally detected using an enhanced ImageQuant chemiluminescence system (GE Healthcare, Pittsburgh, PA, USA).

156 2.10. Statistical Analysis

157 Data are expressed as mean \pm SD of the results obtained from at least three 158 independent experiments. Significant differences (P < 0.05) between the means of two 159 groups were analyzed by Student's t-test using SPSS 17.0 (SPSS Inc., USA).

160 **3. Results**

161 3.1. Synthesis and electrophilicity assay

As is outlined in Fig. 1A, QNZ-A, a novel QNZ analog, was constructed via a 162 nucleophilic acyl substitution reaction between acryloyl chloride and **QNZ**. Its 163 reduction product QNZ-B, was obtained by catalytic hydrogenation of QNZ-A over 164 Pd/C. To clarify whether introduction of Michael acceptor-pharmacophore could 165 increase the electrophilicity of the parent QNZ, the ¹H NMR spectroscopy changes of 166 QNZ-A in presence of the sulfydryl-containing reagent benzyl mercaptan were 167 monitored. After incubating a mixture of QNZ-A and benzyl mercaptan at a molar 168 ratio of 1:1.5 in *d*6-DMSO, the three groups of double doublets of the olefinic protons 169 at δ 5.81, δ 6.31 and δ 6.50 disappeared over time, associating with an appearance of 170 a strong multiplet at $\delta 2.70$ indicative of the conjugate-addition (Fig. 1B). In 171

172	comparision, the addition does not occur for QNZ and QNZ-B under the same
173	conditions (data not shown), implying that QNZ-A is more electrophilic by virtue of
174	its Michael acceptor mojety.

175 3.2. Selective cytotoxicity toward cancer cells in a ROS-dependent fashion

A series of dose-response curves shown in Fig. 1C allowed us to identify QNZ-A 176 $(IC_{50} = 6.7 \ \mu M)$ as the most excellent anti-proliferative agent in A549 cells. In 177 contrast, its reduction product **QNZ-B** (IC₅₀ = 71.1 μ M) with the Michael acceptor 178 unit completely abolished, was even less active than the leading QNZ (IC₅₀ = 41.1 179 µM), suggesting that introduction of the electrophilic Michael acceptor was essential 180 for enhancing the cytotoxicity. The cytotoxicity of QNZ-A against HepG2 cancer 181 cells together with HUVEC normal cells was also tested. Minimal cytotoxicity was 182 183 observed in HUVEC normal cells, revealing that normal cells display greater tolerance to **QNZ-A** compared to cancer cells, in which A549 cells was the most 184 sensitive one (Fig. 1D). Based on the excellent selectivity, all the further studies on 185 186 the cytotoxic mechanisms of QNZ-A were focused on A549 cells.

187 Considering ROS as one of the leading causes of growth inhibition and cell death, 188 three antioxidants including NAC, DTT and VE were employed to clarify the role of 189 ROS in the cytotoxicity induced by **QNZ-A**. As shown in Fig. 1E, pretreatment with 190 NAC or DTT, acting as both a ROS scavenger and a sulfhydryl-containing 191 nucleophile to preferentially react with the Michael donor, almost completely reversed 192 the cytotoxicity induced by **QNZ-A**. A significant reversion effect was also achieved 193 for VE as another important ROS scavenger but with no nucleophilic activity. The

194	above resul	lts clearly	indicate	that	ROS	generation	dramatically	contributes	to	the
195	cytotoxicity	of QNZ-	A , and its	Mic	hael a	cceptor unit	also plays a p	vivotal role.		

196

Fig. 1 here

197 3.3. ROS-dependent G2/M cell cycle arrest and apoptosis

To investigate the possible mechanisms underlying the cytotoxicity, we further 198 analyzed the effects of QNZ-A on cell cycle distribution and apoptosis by flow 199 cytometry. As shown in Fig. 2A, 24 h of treatment with QNZ-A caused a remarkable 200 201 dose-dependent accumulation of cells in G2/M phase. Increasing concentration from 5 202 to 15 µM led to a successive increase of G2/M-phase cell population from 12.57% (control) to 33.69% (15 µM). Additionally, after a longer duration (48 h) treatment, 203 apoptosis of A549 cells was also strikingly triggered by QNZ-A in a 204 concentration-dependent manner (Fig. 2B). In contrast, 15 µM of QNZ-B exhibited 205 an insignificant effect on both the cell cycle arrest and induction of apoptosis (Fig. 2A 206 and B). In addition, pretreatment with NAC or even VE noticeably reversed the cell 207 cycle arrest and apoptosis induced by QNZ-A (Fig. 2A and B), in line with the results 208 obtained by the cytotoxicity assay. 209

210

Fig. 2 here

211 3.4. ROS accumulation and imbalance of cellular redox homeostasis

Based on the above results, we further measured the intracellular ROS levels in A549 cells. As shown in Fig. 3A, treatment with **QNZ-A** caused an obvious intracellular ROS accumulation in a dose- and time-dependent manner. The fluorescence intensity

215	measured in cells treated with QNZ-A (15 μ M) were increased by 4.6-fold relative to
216	the vehicle control at 8 h. In contrast, QNZ-B had almost no ROS-generating ability
217	under the same conditions. As expected, the ROS accumulation induced by QNZ-A
218	was almost completely abolished by pretreating the cells with any one of the
219	antioxidants including NAC, DTT and VE (Fig. 3B). Additionally, compared with the
220	ROS accumulation observed in A549 cells, QNZ-A (15 μ M) only raised the ROS
221	level by no more than 15% in HUVEC normal cells at 8 h, highlighting a ROS-based
222	cancer cell selectivity.
223	We subsequently determined the ratio of GSH/GSSG in A549 cells to ascertain
224	whether the ROS accumulation induced by QNZ-A resulted in an imbalance of
225	intracellular redox state. After exposed to QNZ-A for 4 and 8 h, a dose- and
226	time-dependent decrease and increase for the GSH and GSSG levels in cells was
227	observed, respectively (Fig. 3D and E). Thus the GSH/GSSG ratios calculated based
228	on the measured GSH and GSSG levels were undoubtedly decreased by QNZ-A (Fig.
229	3F). In contrast, QNZ-B was inactive in changing the glutathione levels (Fig. 3D-F).
230	And pretreatment with NAC or VE also abolished these alterations induced by
231	QNZ-A (Fig. 3D-F), supporting that the falling apart of intracellular redox buffering
232	system was associated with ROS generation.

233

Fig. 3 here

234 3.5. Molecular Mechanisms for ROS-Dependent G2/M Cell Cycle Arrest

235 To further clarify the molecular mechanisms by which QNZ-A induced
236 ROS-dependent G2/M cell cycle arrest in A549 cells, the effect of QNZ-A on the

237	redox sensitive G2/M checkpoint regulators was investigated by RT-qPCR and
238	Western blotting (Fig. 4A and B). Upon the treatment with QNZ-A (5 or 15 µM) for
239	24h, an obvious dose-dependent down-regulation of Cdc25C, Cyclin B1 and Cdk1
240	along with up-regulation of p53 and p21 was observed both on levels of mRNA and
241	protein (Fig. 4A and B). However, Fig. 4B shows that QNZ-B (15 µM) barely
242	affected the expression of the above proteins. In addition, pretreatment with NAC or
243	VE reversed all these protein expression changes induced by QNZ-A (Fig. 4B), which
244	is in line with the results from the cell cycle analysis, highlighting the pivotal role of
245	ROS in regulating expression of the above redox active cell-cycle-regulatory proteins.

246

Fig. 4 here

247 **4. Discussion**

In this work, QNZ-A, a QNZ inspired electrophilic molecule, was designed by 248 introducing a Michael acceptor unit (Fig. 1A and B), and was identified as a potential 249 selective anticancer agent in terms of its preferential cytotoxicity toward A549 and 250 HepG2 cancer cells over HUVEC normal cells (Fig. 1D). The cancer cell selectivity 251 was further supported by the significant difference in inducing the accumulation of 252 ROS (Fig. 3C) between A549 and HUVEC cells. Abrogating the cytotoxicity of 253 QNZ-A by antioxidants NAC, DTT and VE (Fig. 1E) indicated ROS were involved in 254 the cytotoxicity mechanism. It is worth noting that NAC and DTT acting as both 255 antioxidants and nucleophiles can reverse the cytotoxicity of QNZ-A more 256 thoroughly than VE, supporting that Michael acceptor unit also contributes to its 257 activity. In addition, the cytotoxicity of QNZ-A towards A549 cells is predominately 258

mediated by G2/M cell cycle arrest and subsequent apoptosis, in which the Michael acceptor-dependent ROS generation also plays a central role (Fig. 2A and B). This is further supported by the fact that NAC and VE completely block the ROS accumulation induced by QNZ-A, while QNZ-B as a reduction product of QNZ-A with no Michael acceptor-pharmacophore is inactive in inducing ROS-generation (Fig. 3A and B).

The decrease in the intracellular GSH/GSSG ratio induced by QNZ-A in A549 265 cells indicates the collapse of intracellular redox buffering system. However, it is hard 266 to draw firm conclusion about whether the ROS accumulation is the trigger of this 267 be an electrophile reactive change. **ONZ-A** which has proven to 268 to sulfydryl-containing molecules (Fig. 1B), may react directly with millimolar 269 concentrations of intracellular GSH in all probability, causing the decrease of 270 GSH/GSSG ratio. From another standpoint, despite the slight decrease of the GSH 271 levels in A549 cells, the alteration is much more obviously in the GSSG levels than in 272 the GSH levels (Fig. 3D and E), indicating that the decline of GSH/GSSG ratio is 273 more dependent on the dramatic increase of intracellular GSSG levels. In addition, 274 pretreatment with antioxidant VE reversed all the alterations of intracellular GSH, 275 GSSG and GSH/GSSG ratio induced by QNZ-A (Fig. 3D-F), reflecting that ROS do 276 contribute to the collapse of redox homeostasis. It can be inferred from the above 277 results that the ROS accumulation would act as both a trigger and an effector of the 278 drop in GSH levels, leading to a vicious cycle and ensuing redox imbalance in A549 279 cells. 280

281	In further research, we investigated the underlying molecular mechanisms for the
282	ROS-dependent G2/M-phase arrest induced by QNZ-A. An extensive number of
283	reports focused on redox regulation of cell growth and death, support the view that
284	ROS as key signaling intermediates participate in cell-cycle progression [18-20]. The
285	accumulation of ROS disturb the redox control of cell cycle progression via
286	phosphorylation and ubiquitination of cell cycle regulatory proteins such as cyclins,
287	Cdks and Cdk inhibitors, leading to aberrant cell proliferation and apoptosis [18-20].
288	Our results revealed that the mRNA and protein expression levels of G2/M checkpoint
289	regulators Cyclin B1 and Cdk1 were down-regulated by QNZ-A in a ROS-dependent
290	manner in A549 cells (Fig. 4A and B). The Cyclin B1/Cdk1 complex can be activated
291	by a redox sensitive cell-cycle-regulatory protein Cdc25C phosphatase through
292	phosphorylation of Thr161 and dephosphorylation of pThr14 and pTyr15 on Cdk1
293	[21]. What coincides is that a down-regulation of Cdc25C expression was also
294	observed in A549 cells treated with QNZ-A dose-dependently (Fig. 4A and B). In
295	addition, this down-regulation can be rescued by ROS-scavenger (Fig. 4A and B),
296	which is supported by the reported hypothesis that ROS can inactivate Cdc25C
297	through oxidization of cysteine 330 and 377 at the enzyme active site to form
298	intramolecular disulfide [21]. On the other hand, the activation of Cyclin B1/Cdk1
299	complex is also negatively regulated by p21, a downstream mediator of the tumor
300	suppressor p53 in a stressed situation [22, 23]. Our results showed that QNZ-A
301	increased both the mRNA and protein expression levels of p53 and p21 in a
302	ROS-dependent manner (Fig. 4A and B). It is well established that p53 is an important

303	sensor of cellular stress conditions (such as excess ROS), playing important roles in
304	cell cycle arrest through up-regulating p21 and in apoptosis [22, 23]. So the
305	up-regulation of p53 may contribute not only to the G2/M phase arrest but also the
306	apoptosis induced by QNZ-A in A549 cells. QNZ-B, by contrast, failed to affect
307	expression of the above redox-sensitive target proteins under the same conditions (Fig.
308	4B), clearly indicating that electrophilic (Michael acceptor) moiety also at least
309	partially contributes to the collapse the cell-cycle-regulatory system in A549 cells.
310	In summary, a novel QNZ analog, QNZ-A, was first identified as a selective
311	cytotoxic agent toward cancer cells via a Michael acceptor-dependent prooxidant
312	mechanism. A possible model depicting the actions of QNZ-A is presented in Fig. 4C.
313	QNZ-A, by virtue of its Michael acceptor unit, can induce ROS accumulation
314	associated with the collapse of the redox buffering system. The ROS burst triggers
315	redox-sensitive signaling pathways: up-regulation of p53 and p21, and
316	down-regulation of Cdc25C and Cyclin B1/Cdk1, leading to a final G2/M cell cycle
317	arrest and apoptosis in A549 cells. The above results represent a clear advantage of
318	QNZ-A as a lead compound for ROS-based cancer therapeutic purposes.

319 Acknowledgements

This work was supported by Zhejiang Provincial Natural Science Foundation of China
(Grant No. LQ16C050001), Zhejiang Provincial Natural Science Foundation of China
(Grant No. LQ16H090004) and National Natural Science Foundation of China (Grant
No. 21302129).

15

324 **References**

- [1] A. Bindoli, M. P. Rigobello, Principles in redox signaling: from chemistry to
 functional significance. Antioxid. Redox Signal. 18 (2013) 1557-1593.
- 327 [2] T. M. Buttke, P. A. Sandstrom, Redox regulation of programmed cell death in
 328 lymphocytes. Free radical res. 22 (1995) 389-397.
- [3] S. C. Gupta, D. Hevia, S. Patchva, B. Park, W. Koh, B. B. Aggarwal, Upsides and
 downsides of reactive oxygen species for cancer: The roles of reactive oxygen
 species in tumorigenesis, prevention, and therapy. Antioxid. Redox Signal. 16
- 332 (2012) 1295-1322.
- [4] L. L. Policastro, I. L. Ibañez, C. Notcovich, H. A. Duran, O. L. Podhajcer, The
 tumor microenvironment: characterization, redox considerations, and novel
 approaches for reactive oxygen species-targeted gene therapy. Antioxid. Redox
 Signal. 19 (2013) 854-895.
- [5] S. Afzal, S. A. Jensen, J. B. Sorensen, T. Henriksen, A. Weimann, H. E. Poulsen,
 Oxidative damage to guanine nucleosides following combination chemotherapy
 with 5-fluorouracil and oxaliplatin. Cancer Chemother. Pharmacol. 69 (2012)
 301-307.
- [6] J. Alexandre, Y. Hu, W. Lu, H. Pelicano, P. Huang, Novel action of paclitaxel
 against cancer cells: bystander effect mediated by reactive oxygen species.
 Cancer Res. 67 (2007) 3512–3517.
- 344 [7] S. Amslinger, The tunable functionality of α,β-unsaturated carbonyl compounds
 345 enables their differential application in biological systems. ChemMedChem 5

- 346 (2010) 351-356.
- 347 [8] F.-F. Gan, K. K. Kaminska, H. Yang, C.-Y. Liew, P.-C. Leow, C.-L. So, L. N. L.
- 348 Tu, A. Roy, C.-W. Yap, T.-S. Kang, W.-K. Chui, E.-H. Chew, Identification of
- 349 Michael acceptor-centric pharmacophores with substituents that yield strong
- 350 thioredoxin reductase inhibitory character correlated to antiproliferative activity.
- 351 Antioxid. Redox Signal. 19 (2013) 1149-1165.
- [9] S. Jayakumar, R. S. Patwardhan, D. Pal, D. Sharma, S. K. Sandur,
 Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the
 radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin
 reductase. Biochem. Biophys. Res. Commun. 478 (2016) 446-454.
- [10] Y Sun, D. K. St. Clair, Y. Xu, P. A. Crooks, W. H. St. Clair, A NADPH
 oxidase-dependent redox signaling pathway mediates the selective
 radiosensitization effect of parthenolide in prostate cancer cells. Cancer Res. 70
 (2010) 2880-2890.
- 360 [11] L. Raj, T. Ide, A. U. Gurkar, M. Foley, M. Schenone, X. Li, N. J. Tolliday, T. R.
- 361 Golub, S. A. Carr, A. F. Shamji, A. M. Stern, A. Mandinova, S. L. Schreiber, S.
- W. Lee, Selective killing of cancer cells by a small molecule targeting the stress
 response to ROS. Nature 475 (2011) 231-234.
- [12] A. Vijaychand, S. N. Manjula, E. N. Bharath, B. Divya, Medicinal and biological
 significance of quinazoline: A highly important scaffold for drug discovery: A
 review. Int. J. Pharma. Bio. Sci. 2 (2011) 780-809.
- 367 [13] D. Pathania, M. Sechi, M. Palomba, V. Sanna, F. Berrettini, A. Sias, L. Taheri, N.

17

368	Neamati, Design and discovery of novel quinazolinedione-based redox
369	modulators as therapies for pancreatic cancer. Biochim. Biophys. Acta 1840
370	(2014) 332-343.

- 371 [14] M. Tobe, Y. Isobe, H. Tomizawa, T. Nagasaki, H. Takahashi, T. Fukazawa, H.
- 372 Hayashi, Discovery of quinazolines as a novel structural class of potent 373 inhibitors of NF- κ B activation. Bioorg. Med. Chem. 11 (2003) 383-391.
- 374 [15] F.-H. Wu, Y. Yuan, D. Li, S.-J. Liao, B. Yan, J.-J. Wei, Y.-H. Zhou, J.-H. Zhu,
- 375 G.-M. Zhang, Z.-H. Feng, Extracellular HSPA1A promotes the growth of
- 376 hepatocarcinoma by augmenting tumor cell proliferation and apoptosis-resistance.
- 377 Cancer Lett. 317 (2012) 157-164.
- 378 [16] F. Dai, G.-Y. Liu, Y. Li, W.-J.Yan, Q. Wang, J. Yang, D.-L. Lu, D.-J. Ding, D.
- Lin, B. Zhou, Insights into the importance of exploiting ROS-promoting signaling for designing curcumin-inspired anticancer agents by the case of diarylpentanoids. Free Radic. Biol. Med. 85 (2015) 127-137.
- [17] Y. Li, L.-P. Zhang, F. Dai, W.-J. Yan, H.-B. Wang, Z.-S. Tu, B. Zhou,
 Hexamethoxylated monocarbonyl analogues of curcumin cause G2/M cell cycle
 arrest in NCI-H460 cells via Michael acceptor-dependent redox intervention. J.
 Agric. Food Chem. 63 (2015) 7731-7742.
- [18] E. H. Verbon, J. A. Post, J. Boonstra, The influence of reactive oxygen species
 on cell cycle progression in mammalian cells. Gene 511 (2012) 1-6.
- [19] E. H. Sarsour, M. G. Kumar, L. Chaudhuri, A. L. Kalen, P. C. Goswami, Redox
 control of the cell cycle in health and disease. Antioxid. Redox Signal. 11 (2009)

- 390 2985-3011.
- 391 [20] S. G. Menon, P. C. Goswami, A redox cycle within the cell cycle: ring in the old
 392 with the new. Oncogene 26 (2007) 1101-1109.
- 393 [21] J. Rudolph, Redox regulation of the cdc25 phosphatases. Antioxid. Redox Signal.
- 394
 7 (2005) 761-767.
- 395 [22] Y. W. Chung, D. Jeong, J. Y. Won, E.-J. Choi, Y. H. Choi, I. Y. Kima,
- 396 H_2O_2 -induced AP-1 activation and its effect on p21^{WAFI/CIP1}-mediated G2/M
- 397 arrest in a p53-deficient human lung cancer cell. Biochem. Biophys. Res.
- 398 Commun. 293 (2002) 1248-1253.
- 399 [23] M. A. O'Reilly, Redox activation of p21Cip1/WAF1/Sdi1: A multifunctional
- 400 regulator of cell survival and death. Antioxid. Redox Signal. 7 (2005) 108-118.

401

402 Figure Legends

Fig.1. Synthesis, electrophilicity and cytotoxicity of ONZ analogs. (A) Synthetic 403 404 route of QNZ and its analogs QNZ-A and QNZ-B. (B) ¹H NMR spectra of QNZ-A in d6-DMSO before and after adding benzyl mercaptan. (C) Cytotoxicity of QNZ and 405 its analogs QNZ-A and QNZ-B against A549 cells. (D) Cytotoxicity of QNZ-A 406 against A549, HepG2 and HUVEC cells. (E) Cytotoxicity of QNZ-A against A549 407 cells in the absence or presence of pretreatment with NAC, DTT or VE. 408 Fig.2. ROS-dependent G2/M cell cycle arrest (A) and apoptosis (B) induced by 409 QNZ-A in A549 cells. Cells were treated with the test compounds with indicated 410 concentrations for 24 h (in cell cycle analysis) or 48 h (in cell apoptosis analysis) in 411 the absence or presence of pretreatment with NAC or VE. Data are representative of 412 413 three independent experiments. Fig. 3. ROS accumulation and imbalance of cellular redox homeostasis induced by 414 QNZ-A. (A) Fold change of ROS stimulated by QNZ-A and QNZ-B with the 415 indicated concentrations after 4 h or 8 h of treatment in A549 cells. (B) Effect of ROS 416 scavengers NAC, DTT or VE on the ROS accumulation induced by QNZ-A in A549 417

cells. (C) A comparison of ROS accumulation in A549 cells and in HUVEC normal cells treated with **QNZ-A** for 8 h. (D-F) Alterations of GSH levels (D), GSSG levels (E), and GSH/GSSG ratios (F) in A549 cells treated by **QNZ-A** and **QNZ-B** with the indicated concentrations for 4 h or 8 h, and effect of NAC or VE on these alterations. Data are expressed as mean \pm SD; n = 3, * P<0.05, ** P<0.01, *** P<0.001, *vs*.

20

423 control; # P<0.05, ## P<0.01, ###P<0.001.

424	Fig. 4. Molecular mechanisms for QNZ-A-induced G2/M cell cycle arrest. (A)
425	RT-qPCR analysis of mRNA expression levels of G2/M checkpoint regulators in
426	A549 cells treated with QNZ-A for 24 h with or without NAC pretreatment. Data are
427	expressed as mean \pm SD; $n = 3$, * P<0.05, ** P<0.01, *** P<0.001, vs. control; #
428	P<0.05, ## P<0.01. (B) Western blot analysis of G2/M checkpoint proteins in A549
429	cells treated with QNZ-A and QNZ-B for 24 h in the absence or presence of
430	pretreatment with NAC or VE. Data are representative of three independent
431	experiments. (B) Proposed mechanisms underlying the ROS-mediated cytotoxicity of
432	QNZ-A in A549 cells.

CHR HAN

Highlights

- Electrophilic molecule QNZ-A selectively kills A549 cancer cells by ROS-promoting.
- The cytotoxic mechanism relies on ROS-dependent G2/M-phase arrest and apoptosis.
- QNZ-A up regulates mRNA and protein levels of p53 and p21 in a ROS-dependent way.
- QNZ-A induces ROS-dependent G2/M arrest through Cdc25C/cyclin B1/Cdk1 pathway.
- Michael acceptor-dependent prooxidant anticancer strategy is supported.

CEP CEP