Reactions of the Cationic Fragments $[RuCp(PPh_2NHR)_2]^+$ and $[RuTp(PPh_2NHR)_2]^+$ (R = Ph, *n*-Pr) with Alkynes: Formation of Four-Membered **Azaphosphacarbenes** Sonja Pavlik,[†] Kurt Mereiter,[‡] Michael Puchberger,[‡] and Karl Kirchner*,[†] Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, and Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria Received April 2, 2005 The synthesis of RuCp(PPh₂NHR)₂Cl ($\mathbf{1a.b}$: R = Ph, n-Pr) and RuTp(PPh₂NHR)₂Cl ($\mathbf{2a.b}$) is reported. Chloride abstraction from 1a with AgCF₃SO₃ affords RuCp(PPh₂NHPh)₂(η¹- OSO_2CF_3) (3), whereas when $AgSbF_6$ is used instead $[RuCp(\kappa^2(P,P)-PPh_2NHC_6H_4PPh_2)(NH_2-H_2)]$ Ph)]+ (4) is formed. In the course of this reaction the P-N bond of one PPh₂NHPh ligand is cleaved while a new P-C bond is formed, with concomitant formation of an aniline ligand. In the presence of Ag⁺ (CF₃SO₃⁻ or SbF₆⁻) complexes 1 and 2 react with terminal alkynes $HC \equiv CR'(R' = Ph, p-C_6H_4Me, n-Bu)$ and propargylic alcohols to give novel azaphosphacarbene complexes of the types $[RuCp(\kappa^2(C,P)=C(CH_2R')N(R)PPh_2)(\kappa^1(P)-PPh_2NHR)]^+$ (5a-c, 6ac), $[\operatorname{RuTp}(\kappa^2(C,P)=\operatorname{C}(\operatorname{CH}_2R')\operatorname{N}(R)\operatorname{PPh}_2)(\kappa^1(P)-\operatorname{PPh}_2\operatorname{NHR})]^+$ (14a,b, 15a-c), $[\operatorname{RuCp}(\kappa^2(C,P)=$ $C(CH=CPh_2)N(Pr^n)PPh_2)(\kappa^1(P)-PPh_2NHPr^n)]^+$ (12), and $[RuTp(\kappa^2(C,P)=C(CH=CPh_2)N(Pr^n)-(CH=CPh_2)N(Pr^n)]^+$ $PPh_2(\kappa^1(P)-PPh_2NHPr^n)]^+$ (17). These reactions proceed via vinylidene and allenylidene intermediates, respectively, which could be isolated in some cases: viz. [CpRu(PPh₂NHPh)₂- $(=C=C=CPh_2)$]+ (11) and $[RuTp(PPh_2NHR)_2(=C=C=CPh_2)]$ + (16a,b). Furthermore, complexes 1a,b react with 3-butyn-1-ol to yield the oxacyclopentylidene complexes [CpRu(PPh₂-NHR₂(= C_4H_6O)]⁺ (**7a,b**). In sharp contrast to **6a**-**c** (R = n-Bu), **5a**-**c** (R = Ph) turned out to be quite sensitive toward traces of water, leading eventually to the formation of the aminocarbene complexes $[RuCp(=C(CH_2R)NHPh)(PPh_2NHPh)(\kappa^1(P)-PPh_2OH)]^+$ (8a,b) featuring a $\kappa^{1}(P)$ -coordinated PPh₂OH ligand. This ligand could be easily deprotonated to yield the neutral complex RuCp(=C(CH₂Ph)NHR)(PPh₂NHPh)($\kappa^1(P)$ -OPPh₂) (**10a,b**). The formation of these complexes is reversible. Finally, representative structures have been determined by X-ray crystallography. # Introduction Ruthenium vinylidene and allenylidene complexes play an important role in organometallic chemistry, as emphasized in several recent reviews. Interest in these compounds stems from the fact that they are intermediates in several stoichiometric and catalytic transformations of organic molecules. Moreover, they are readily accessible from terminal alkynes and propargylic alcohols. A key characteristic of all these complexes, particularly if they are cationic, is the electrophilicity of the α-carbon, adding, often easily, amines,² alcohols,³ phosphines,⁴ and even fluoride.⁵ In this way heteroatom- (2) (a) Bernad, D. J.; Esteruelas, M. A.; Lopez, A. M.; Modrego, J.; Puerta, M. C.; Valerga, P. *Organometallics* **1999**, *18*, 4995. (b) Bianchini, C.; Casares, J. A.; Peruzzini, M.; Romerosa, A.; Zanobini, F. J. Am. Chem. Soc. 1996, 118, 4585. (c) Barrett, G. M.; Carpenter, N. E. Organometallics 1987, 6, 2249. (d) Ouzzine, K.; Le Bozec, H.; Dixneuf, P. H. J. Organomet. Chem. 1986, 317, C25. (e) Gamasa, M. P.; Gimeno, J.; Gonzaleszcueva, M.; Lastra, E. J. Chem. Soc., Dalton stabilized carbene complexes become readily available. Such reactions have been shown to be particularly facile in the intramolecular mode⁶ through utilizing bifunc- Trans. 1996, 2547. (f) Nombel, P.; Lugan, N.; Mathieu, R. J. Organomet. Chem. 1995, 503, C22. (g) Bruce, M. I.; Swincer, A. G.; Wallis, (4) (a) Esteruelas, M. A.; Gomez, A. V.; Lopez, A. M.; Modrego, J.; Onate, E. Organometallics 1998, 17, 5434. (b) Senn, D. R.; Wong, A.; Patton, A. T.; Marsi, M.; Strouse, C. E.; Gladysz, J. A. J. Am. Chem. Soc. 1988, 110, 6096. (5) Ting, P. C.; Lin, Y. C.; Lee, G. H.; Cheng, M. C.; Wang, Y. J. Am. Chem. Soc. **1996**, 118, 6433. ^{*} To whom correspondence should be addressed. E-mail: kkirch@ mail.zserv.tuwien.ac.at Institute of Applied Synthetic Chemistry. [‡] Institute of Chemical Technologies and Analytics. (1) (a) Cadierno, V.; Gamasa, M. P.; Gimeno, J. Coord. Chem. Rev. **2004**, 248, 1627. (b) Rigaut, S.; Touchard, D.; Dixneuf, P. H. Coord. Chem. Rev. 2004, 248, 1585. (c) Guerchais, V. Eur. J. Inorg. Chem. 2002, 783. (d) Bruneau, C.; Dixneuf, P. H. Acc. Chem. Res. 1999, 32, 311. (e) Puerta, M. C.; Valerga, P. Coord. Chem. Rev. **1999**, *193*–*195*, 977. (f) Cadierno, V.; Diez, J.; Gamasa, M. P.; Gimeno, J.; Lastra, E. Coord. Chem. Rev. 1999, 193–195, 147. (g) Bruce, M. I. Chem. Rev. 1998, 98, 2797. (h) Touchard, D.; Dixneuf, P. H. Coord. Chem. Rev. 1998, 178–180, 409. (i) Werner, H. J. Chem. Soc., Chem. Commun. 1997, 903. (j) Bruce, M. I. Chem. Rev. 1991, 91, 197. R. C. J. Organomet. Chem. 1979, 171, C5. (3) (a) Cadierno, V.; Gamasa, M. P.; Gimeno, J.; Iglesias, L.; Garcia-Granda, S. Inorg. Chem. 1999, 38, 2874. (b) Gamasa, M. P.; Gimeno, J.; Gonzalez-Bernardo, C.; Borge, J.; Garcia-Granda, S. Organometallics 1997, 16, 2483. (c) Rüba, E.; Slugovc, C.; Gemel, C.; Mereiter, K.; Schmid, R.; Kirchner, K. Organometallics 1999, 18, 2275. (d) Bianchini, C.; Peruzzini, M.; Romerosa, A.; Zanobini, F. Organometallics 1995, 14, 3152. (e) Barrett, A. G. M.; Carpenter, N. E. Organometallics 1987, 14, 3152. (e) Barrett, A. G. M.; Carpenter, N. E. Organometalics 1981, 6, 2249. (f) Ouzzine, K.; Le Bozec, H.; Dixneuf, P. H. J. Organomet. Chem. 1986, 317, C25. (g) Nombel, P.; Lugan, N.; Mathieu, R. J. Organomet. Chem. 1995, 503, C22. (h) Le Bozec, H.; Ouzzine, K.; Dixneuf, P. H. Organometallics 1991, 10, 2768. $$\begin{bmatrix} Ru \\ R_2P \\ N \\ R' \\ H$$ $$\begin{bmatrix} Ru \\ \end{bmatrix} = C$$ \end{bmatrix}$$ [Ru] = RuCp, RuTp # Scheme 1 tional ligands such 2-aminopyridine 7 and 2-acetamidopyridines. 8 In the present paper we report on the synthesis of RuCp and RuTp complexes containing phosphinoamine ligands of the type PPh_2NHR with R=Ph, n-Pr. We describe the reactivity of these complexes toward terminal acetylenes and propargylic alcohols, yielding novel cyclic four-membered azaphosphacarbenes via an intramolecular addition of the amine moiety of the bifunctional phosphinoamine ligand to vinylidene and allenylidene complexes according to Chart 1. # **Results and Discussion** Treatment of RuCp(PPh₃)₂Cl with an excess of PPh₂-NHR (R = Ph, *n*-Pr) at 120 °C for 12 h in toluene affords RuCp(PPh₂NHR)₂Cl (**1a,b**) in 88 and 91% yields, respectively (Scheme 1). The synthesis of **1a** has been already reported elsewhere.⁹ The analogous RuTp complexes RuTp(PPh₂NHR)₂Cl (**2a,b**) have been prepared by reacting RuTp(COD)Cl with 2 equiv of PPh₂NHR at 120 °C for 3 h in toluene according to Scheme 2. All of these complexes are air-stable and thermally robust orange to yellow solids. They have been characterized by a combination of elemental analysis and ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectroscopy. In addition, **1a** and **2a** have been characterized by X-ray crystallography. # Scheme 2 Structural views are depicted in Figures 1 and 2, with selected bond distances and angles given in the captions. In both complexes the steric requirements of the bulky aminophosphine ligands lead to an an asymmetric arrangement of the phenyl moieties. Both complexes are stabilized in the solid state by intramolecular hydrogen bonds between the two amino groups and/or between the amino groups and the chloride ligand. In 1a two markedly bent $N-H\cdots$ Cl bonds with distinctly different $N\cdots$ C distances are observed (Figure 1), while in $2a\cdot$ CHCl₃ both an intramolecular $N-H\cdots$ N bond and an $N-H\cdots$ Cl hydrogen bond are present (Figure 2). In addition, $2a\cdot$ CHCl₃ also contains an intramolecular $C-H\cdots$ Cl hydrogen interaction from the CHCl₃ molecule to the Ru complex: $C(CHCl_3)\cdots Cl(Ru \text{ complex}) = 3.40$ Å. In solution, even at temperatures of -90 °C in CD₂-Cl₂ as the solvent, only one $^{31}P\{^{1}H\}$ signal is observed for both complexes **1** and **2**, indicating a rather weak hydrogen bond and thus apparently fast exchange. According to DFT/B3LYP calculations in the model complex RuCp(PH₃)(PH₂NH₂)Cl intramolecular N–H···Cl hydrogen bonding provides a stabilization of merely 2.5 kcal/mol. It is, therefore, not surprising that this weak interaction cannot be observed in solution by NMR spectroscopy, even at very low temperatures. Substitution of the chloride ligand in **1a** for the weakly nucleophilic CF₃SO₃⁻ anion was investigated **Figure 1.** Structural view of RuCp(PPh₂NHPh)₂Cl (**1a**) showing 50% thermal ellipsoids. Selected bond lengths (Å) and angles (deg): Ru-C(1-5)_{av} = 2.210(1), Ru-P(1) = 2.2798(3), Ru-P(2) = 2.2947(3), Ru-Cl = 2.4413(3), P(1)-N(1) = 1.681(1), P(2)-N(2) = 1.693(1), N(1)-C(18) = 1.398-(2), N(2)-C(36) = 1.403(2); P(1)-Ru-P(2) = 97.52(1), P(1)-Ru-Cl = 90.78(1), P(2)-Ru-Cl = 89.56(2), P(1)-N(1)-C(18) = 133.5(1), P(2)-N(2)-C(36) = 129.5(1); N(1)···C = 3.094(1), N(2)···Cl = 3.335(1). ⁽⁶⁾ Trost, B. M.; Kulawiec, R. J. J. Am. Chem. Soc. 1992, 114, 5576. (7) Standfest-Hauser, C. M.; Mereiter, K.; Schmid, R.; Kirchner, K. Dalton 2003, 2329. ⁽⁸⁾ Slugovc, C.; Mereiter, K.; Schmid, R.; Kirchner, K. Organometallics 1998, 17, 827. ⁽⁹⁾ Priya, S.; Balakrishna, M. S.; Mobin, S. M.; McDonald, R. J. Organomet. Chem. **2003**, 688, 227. **Figure 2.** Structural view of RuTp(PPh₂NHPh)₂Cl·CHCl₃ (**2a·**CHCl₃) showing 40% thermal ellipsoids (CHCl₃ omitted for clarity). Selected bond lengths (Å) and angles (deg): Ru-N(2) = 2.153(1), Ru-N(4) = 2.142(1), Ru-N(6) = 2.083(1), Ru-P(1) =
2.3105(5), Ru-P(2) = 2.3125(4), Ru-Cl = 2.4436(4), P(1)-N(7) = 1.695(1), P(2)-N(8) = 1.688-(1); P(1)-Ru-P(2) = 96.29(1), P(1)-Ru-Cl = 89.96(1), P(2)-Ru-Cl = 90.64(1), P(1)-N(7)-C(22) = 134.5(1), P(2)-N(8)-C(40) = 134.2(1); N(7)···Cl = 3.096(1), N(8)···N(7) = 3.087(2). with the intention of generating a reactive complex bearing a weakly coordinating ligand occupying a latent coordination site. In fact, chloride abstraction from 1a with AgCF₃SO₃ (1 equiv) affords, on workup, the expected neutral complex RuCp(PPh₂NHPh)₂(η¹-OSO₂-CF₃) (3), where CF₃SO₃⁻ is directly bound to the metal center (Scheme 1). A structural view of 3 is depicted in Figure 3 with selected bond distances and angles given in the caption. The overall geometry of the complex, which has the usual three-legged piano-stool structure, is very similar to that of **1a** with respect to Ru-C(Cp) and Ru-P bond lengths and also with respect to the spatial arrangement of the two aminophosphine ligands. The CF₃SO₃⁻ anion is coordinated via the oxygen atom in an η^1 fashion with a Ru–O(1) distance of 2.234(2) Å and a Ru-O(1)-S angle of 128.7(2)°. Moreover, as outlined in Figure 3, there are two intramolecular N-H· ··O hydrogen bonds which contribute to the coherence and asymmetry of the complex. Several other ruthenium complexes with the η^1 -OSO₂CF₃ ligand are known and have been structurally characterized.¹⁰ On the other hand, if chloride abstraction from ${\bf 1a}$ is performed with AgSbF₆ instead of AgCF₃SO₃, a different reaction was observed, resulting in the formation of [RuCp($\kappa^2(P,P)$ -PPh₂NHC₆H₄PPh₂)(NH₂Ph)]⁺ (**4**) in 90% yield (Scheme 3). In the ¹H NMR spectrum of **4** the Cp ring gives rise to a singlet at 4.61 ppm. The NH₂ hydrogen atoms of the aniline ligand exhibit two dou- **Figure 3.** Structural view of RuCp(PPh₂NHPh)₂(CF₃SO₃) (3) showing 40% thermal ellipsoids. Selected bond lengths (Å) and angles (deg): Ru-C(1-5)_{av} = 2.188(4), Ru-P(1) = 2.305(1), Ru-P(2) = 2.315(1), Ru-O(1) = 2.234(3), P(1)-N(1) = 1.680(3), P(2)-N(2) = 1.680(3); P(1)-Ru-P(2) = 98.99(3), P(1)-Ru-O(1) = 86.4(1), P(2)-Ru-O(1) = 86.2-(1), P(1)-N(1)-C(18) = 131.4(3), P(2)-N(2)-C(36) = 132.8-(2); N(1)···O(1) = 2.935(4), N(2)···O(3) = 3.305(6). # Scheme 3 AgSbF₆ CH₂Cl₂ Ph₂P PhHN NHPh A Ph₂P Ru PPh₂ H NHPh B Ph₂P Ru PPh₂ H NHPh H NHPh A Ph₂P NH₂P H NHPh B Ph₂P NH₂Ph NH₂Ph H NH₂Ph NH₂Ph NH₂Ph blets centered at 3.80 and 3.11 ppm with P–C coupling constants of 11.2 and 10.7 Hz, respectively. In the 31 P- 1 H} NMR spectrum the κ^2 (P,P)-coordinated PPh₂-NHC₆H₄PPh₂ ligand displays an AX pattern with two doublets centered at 103.1 and 48.5 ppm. The coupling constant $J_{\rm PP}$ is 63.3 Hz. In addition to spectroscopic and analytical characterization also the solid-state structure of 4 was determined by single-crystal X-ray diffraction. An ORTEP diagram is shown in Figure 4. Selected bond distances and angles are reported in the caption. Accordingly, the complex adopts a three-legged piano-stool ^{(10) (}a) Gemel, C.; Kalt, D.; Mereiter, K.; Sapunov, V. N.; Schmid, R.; Kirchner, K. Organometallics 1997, 16, 427. (b) Sutter, J.-P.; James, S. L.; Steenwinkel, P.; Karlen, T.; Grove, D. M.; Veldman, N.; Smeets, W. J. J.; Spek, A. L.; van Koten, G. Organometallics 1996, 15, 941. (c) Kraakman, M. J. A.; de Klerk-Engels, B.; de Lange, P. P. M.; Vrieze, K.; Smeets, W. J. J.; Spek, A. L. Organometallics 1992, 11, 3774. (d) Plosser, P. W.; Gallucci, J. C.; Wojcicki, A. Inorg. Chem. 1992, 31, 2376. **Figure 4.** Structural view of [RuCp($\kappa^2(P,P)$ -PPh₂NHC₆H₄-PPh₂)(NH₂Ph)]SbF₆·solv (4·solv) showing 40% thermal ellipsoids (SbF₆⁻ and solvent omitted for clarity). Selected bond lengths (Å) and angles (deg): $Ru-C(1-5)_{av} = 2.214$ -(5), Ru - P(1) = 2.271(2), Ru - P(2) = 2.285(2), Ru - N(2) = 2.285(2)2.238(5), P(1)-N(1) = 1.692(5); P(1)-Ru-P(2) = 86.92(5), P(1)-Ru-N(2) = 97.5(1), P(2)-Ru-N(2) = 87.4(1), P(1)-N(1)-C(18) = 122.2(4), Ru-N(2)-C(36) = 125.5(3). conformation with the two phosphorus atoms of the PPh₂NHC₆H₄PPh₂ ligand and the nitrogen atom of the aniline ligand as the legs. The Ru-P(1) and Ru-P(2) bond distances are 2.271(2) and 2.285(2) Å, respectively, with a P(1)-Ru-P(2) bite angle of 86.92(5)°. The Ru-N(2) bond length is 2.238(5) Å with a Ru-N(2)-C(36) angle of 125.5(3)°. For comparison, the Ru-N(aniline) bond distances in the ruthenium aniline complexes $[RuTp(PMe_3)(NH_2Ph)]^+$ and $[RuTp(P(OMe)_3)(NH_2Ph)]^+$ are 2.211(3) and 2.182(2) Å, respectively. 11 The respective Ru-N-C angles are 123.6(2) and 120.8(1)°. Due to the absence of any observable intermediates the mechanism of this reaction can only be speculated upon. A possible mechanism is presented in Scheme 3. Chloride abstraction may initially afford the highly reactive coordinatively unsaturated 16e- complex $[RuCp(PPh_2NHPh)_2]^+$ (A), 12 which then undergoes ortho metalation to yield the Ru(IV) hydride complex B. Intramolecular hydride abstraction by the "built-in" base PPh₂NHPh leads to the formation of C, which subsequently undergoes reductive elimination, thereby forming the new bidentate bisphosphine ligand PPh2-NHC₆H₄PPh₂ and releasing free aniline. The latter occupies the vacant coordination site, finally forming complex 4. In the course of this reaction the P-N bond of one PPh₂NHPh ligand is cleaved while a new P-C bond is formed. Reaction of the $[RuCp(PPh_2NHR)_2]^+$ (R = Ph, n-Pr) Fragment with Terminal Alkynes. Treatment of $\mathbf{1a}$, \mathbf{b} with HC \equiv CR' (R' = Ph, p-C₆H₄Me, n-Bu) in the presence of AgCF₃SO₃ (1 equiv) at room temperature for $2-12\ h$ in CH_2Cl_2 as the solvent results in the formation of the novel azaphosphacarbene complexes $[\operatorname{RuCp}(\kappa^2(C,P) = \operatorname{C}(\operatorname{CH}_2\operatorname{R}')\operatorname{N}(\operatorname{R})\operatorname{PPh}_2)(\kappa^1(P) - \operatorname{PPh}_2\operatorname{NHR})]^+$ (5a-c, 6a-c) in high yields (Scheme 4). These com- pounds have again been characterized by elemental analysis and by ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectroscopy. Characteristic features comprise, in the ¹³C-{1H} NMR spectrum, a marked low-field doublet of doublets resonance in the range of 275.8-282.3 ppm (dd, $J_{\rm CP} = 31-33~{\rm Hz}, J_{\rm CP} = 12-14~{\rm Hz}$), assignable to the carbene carbon atom of the four-membered azaphosphacarbene moiety. The ³¹P{¹H} NMR spectrum of complexes 5 and 6 reveal two doublets centered at about 88-82 and 78-72 ppm with a small coupling constant of 36 Hz. The NH proton of the PPh₂NHPh ligand gives rise to a doublet at about 6.5–5.5 ppm ($J_{\mathrm{HP}}=16-17$ Hz), whereas the NH proton of the PPh₂NHPrⁿ ligand could not be detected. Finally, the ¹H and ¹³C{¹H} NMR resonances of the Cp ligand are in the expected ranges. Metallacyclobutene complexes of the type A, where X and/or Y are, e.g., C, N, O, S, or P moieties are comparatively rare (Chart 2). Tour-membered azaphosphacarbene complexes where $X = PR_2$ and Y = NR, according to our knowledge, have not been described in the literature. In the last couple of years, Cavell and others reported the synthesis of a series of transitionmetal bis(iminophosphorano)carbene complexes which are somewhat related to azaphosphacarbenes. In these compounds the carbene moiety is a four-membered chelate ligand coordinated in $\kappa^2(C,N)$ fashions of the types **B**-**D**. ¹⁴ Structures of the "pincer type" **B** include group 4 metals, 15 samarium, 16 and molybdenum. 17 The bridged species C is observed in chromium, 18 aluminum, 19 and group 14 metals, 20 while bis(iminophosphorano)carbene complexes acting as a $\kappa^2(C,N)$ bidentate ligand (\mathbf{D}) are found in platinum 21 and ruthenium complexes.²² (14) For a review, see: Cavell, R. G.; Kamalesh Babu, R. P.; Aparna, K. J. Organomet. Chem. 2001, 617-618, 158. (15) (a) Cavell, R. G.; Kamalesh Babu, R. P.; Kasani, A.; McDonald, R. J. Am. Chem. Soc. 1999, 121, 5805. (b) Kamalesh Babu, R. P.; McDonald, R.; Decker, S. A.; Klobukowski, M.; Cavell, R. G. Organometallics 1999, 18, 4226. (c) Kamalesh Babu, R. P.; McDonald, R.; Cavell, R. G. Chem. Commun. 2000, 481. (d) Kamalesh Babu, R. P. McDonald, R.; Cavell, R. G. Organometallics 2000, 19, 3462. (e) Aparna, K.; Kamalesh Babu, R. P.; McDonald, R.; Cavell, R. G. Angew. Chem., Int. Ed. 2001, 40, 4400. (16) Aparna, K.; Ferguson, M.; Cavell, R. G. J. Am. Chem. Soc. 2000, (17) Leung, W.-P.; So, C.-W.; Wang, J.-Z.; Mak, T. C. W. Chem. Commun. 2003, 248 (18) Kasani, A.; McDonald, R.; Cavell, R. G. Chem. Commun. 1999, (19) (a) Aparna, K.; McDonald, R.; Ferguson, M.; Cavell, R. G. Organometallics 1999, 18, 4241. (b) Aparna, K.; McDonald, R.; Cavell, R. G. J. Am. Chem. Soc. 2000, 122, 9314. (c) Cavell, R. G.; Aparna, K.; Kamalesh Babu, R. P.; Wang, Q. J. Mol. Catal. A **2002**, 189, 137. (20) Leung, W.-P.; Wang, Z.-X.; Li, H.-W.; Mak, T. C. W. Angew. Chem., Int. Ed. **2001**, 40, 2501. (21) Jones, N. D.; Lin, G.; Gossage, R. A.; McDonald, R.; Cavell, R. G. Organometallics **2003**, 22, 2832. (22) Cadierno, V.; Diez, J.; Garcia-Alvarez, J.; Gimeno, J.; Calhorda, M. J.; Veiros, L. F. Organometallics 2004, 23, 2421. ⁽¹¹⁾ Conner, D.; Jayaprakash, K. N.; Gunnoe, T. B.; Boyle, P. D. Inorg. Chem. 2002, 41, 3042. ⁽¹²⁾ Coordinatively unsaturated RuCp complexes, in contrast to RuCp* complexes, seem to be extremely rare. For a recent example, see: Gemel, C.; Huffman, J. C.; Caulton, K. G.; Mauthner, K.; Kirchner, K. J. Organomet. Chem. 2000, 593-594, 342. ⁽¹³⁾ For examples of four-membered metallacyclobutene complexes containing at least one heteroatom, see: (a) Carlton, L.; Davidson, J. Containing at least one neteroatom, see: (a) Carton, L., Davidson, J. L.; Miller, J. C.; Muir, K. W. J. Chem. Soc., Chem. Commun. 1984, 11. (b) Fischer, E. O.; Filippou, A. C.; Alt, H. G.; Thewalt, U. Angew. Chem., Int. Ed. Engl. 1985, 24, 203. (c) Bohle, D. S.; Clark, G. R.; Rickard, C. E. F.; Roper, W. R.; Wright, L. J. J. Organomet. Chem. 1988, 358, 411. (d) Licandro,
E.; Maiorana, S.; Manzotti, R.; Papagni, A.; Perdiccia, D.; Pryce, M.; Tiripiccio, A.; Lanfranchi, M. *Chem. Commun.* **1998**, 383. (e) Buil, M. L.; Esteruelas, M. A.; Garcia-Yebra, C.; Gutierrez-Puebla, E.; Olivan, M. Organometallics 2000, 19, 2184. (f) Jamison, G. M.; Saunders: R. S.; Wheeler, D. R.; Alam, T. M.; McClain, M. D.; Loy, D. A.; Ziller, J. W. Organometallics 1996, 15, 3244. (g) Handwerker, B. M.; Garnett, K. E.; Nagle, K. L.; Geoffroy, G. L.; Rheingold, A. L. Organometallics 1990, 9, 1562. (h) Adams, R. D.; Chen, G. Organometallics 1992, 11, 837. (i) Castarlenas, R.; Esteruelas, M. A.; Onate, E. Organometallics 2001, 20, 2294 In contrast to the reactions of **1a**,**b** and simple terminal alkynes, with 3-butyn-1-ol oxacyclopentylidene complexes of the type [CpRu(PPh₂NHR)₂(=C₄H₆O)]⁺ (7a,b) rather than azaphosphacarbenes are readily formed (Scheme 4). The formation of both azaphosphacarbene and oxacyclopentylidene complexes likely proceeds via vinylidene intermediates according to Scheme 4. Although such intermediates could not be isolated in the case of the present RuCp systems, they could be spectroscopically detected. The tendency of vinylidene complexes to be readily attacked by nitrogen or oxygen donors to give Fischer carbene complexes is well-known.^{2,3} Such a process is especially facile when the nucleophilic attack occurs in an intramolecular, chelateassisted fashion. In the case of 3-butyn-1-ol, nucleophilic addition of the hydroxy function of the alkynol at the α-carbon atom of the vinylidene intermediate is apparently kinetically favored over nucleophilic attack of the amine moiety, thus yielding exclusively oxacyclopentylidene complexes 7a,b. While complexes $5\mathbf{a} - \mathbf{c}$ and $6\mathbf{a} - \mathbf{c}$ are air stable in the solid state and to some extent also in solution, complexes 5a-c, in sharp contrast to 6a-c, turned out to be quite sensitive toward even traces of water. Accordingly, treatment of 5a or 5c (either isolated or prepared in situ by reacting 1a with the respective acetylene and AgCF₃SO₃) with 1 equiv of water resulted in the formation of the aminocarbene complexes [RuCp(= $C(CH_2R)NHPh)(PPh_2NHPh)(\kappa^1(P)-PPh_2OH)]^+$ (8a,b), featuring a $\kappa^{1}(P)$ -coordinated diphenylphosphinous acid (Scheme 5). Only a few examples of mononuclear complexes with a single PPh₂OH ligand have been reported in the literature, including W(CO)₄(PPh₂OH)- $(PPh_2CH_2COR) (R = Ph, p-C_6H_4Me)$, ²³ $PtCl_2(PPh_2OH)$, ²⁴ $[RuCp(PPh_2OH)_2(PHPh_2)]^+$, and $[RuCp(PPh_2OH)_2(PHPh_2)]^+$ (PHPh₂)₂]⁺.²⁵ In many cases, the PPh₂OH ligand is found in conjunction with the corresponding diphenylphosphinite ligand, [PPh₂O]-, to form Ph₂P-O-H· ··O-PPh₂ moieties with very strong and almost symmetric hydrogen bonds of O···O distances as low as 2.40 Å. Complexes **8a**,**b** are obviously formed via nucleophilic attack of water at the phosphorus atom of the fourmembered azaphosphacarbene accompanied by concomitant cleavage of the P-N bond. The ¹H NMR spectrum of 8a displays an AB pattern for the CH₂Ph moiety, showing two doublets centered at 3.96 and 3.62 ppm with a coupling constant of 14.9 Hz. Furthermore, the OH proton of the $\kappa^1(P)$ -coordinated PPh₂OH ligand in **8a** and **8b** gives rise to a low-field resonance at 11.68 and 10.75 ppm, respectively. Characteristic ¹³C{¹H} NMR spectroscopic features of 8a and 8b comprise a marked low-field resonance at 254.3 and 258.7 ppm, respectively, assignable to the carbene carbon atom of the aminocarbene moiety. The ³¹P{¹H} NMR spectrum of 8 displays an AX pattern, showing two doublets centered at about 140 and 80 ppm, assignable to the PPh₂OH and PPh₂NHPh ligands, respectively. Attempts to grow crystals of complex 8b failed; instead, small amounts of crystals identified as the cationic [RuCp(= $C(CH_2Bu^n)NHPPh_2$)($\kappa^2(P,P)$ -PPh₂- ⁽²³⁾ Al-Jibori, S.; Hall, M.; Hutton, A. T.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1984, 863. ⁽²⁴⁾ Berry, D. E.; Beveridge, K. A.; Bushnell, G. W.; Dixon, K. R. Can. J. Chem. **1985**, 63, 863. ⁽²⁵⁾ Torres-Lubian, R.; Rosales-Hoz, M. J.; Arif, A. M.; Ernst, R. D.; Paz-Sandoval, M. A. J. Organomet. Chem. **1999**, 585, 68. OPPh₂)|⁺ (**9**) could be obtained. Complex **9** contains a symmetric $\kappa^2(P,P)$ -coordinated PPh₂OPPh₂ ligand, as is readily apparent from ³¹P{¹H} NMR spectroscopy, exhibiting a singlet at 137.7 ppm. A structural view of **9** is depicted in Figure 5. Selected bond distances and angles are reported in the caption. This complex can be described in terms of a three-legged piano-stool conformation with the two P atoms of the PPh2OPPh2 ligand and the C atom of the aminocarbene moiety as the legs. The Ru–C(36) bond distance of 2.037(3) Å is comparable to that of other heteroatom-stabilized ruthenium carbene complexes. The bite angle of the chelating PPh₂-OPPh₂ ligand is 67.91(2)°, corresponding to a P-P distance of 2.51 Å. Only a very few complexes with a chelating PPh2OPPh2 ligand have been characterized by now, examples being Cr(CO)₄(PPh₂OPPh₂)²⁶ and RuCl₂(PPh₂OPPh₂)(PPh₃)(Ph₂PO₂CCH=CH₂).²⁷ In other instances the ligand is acting as a bridging ligand, **Figure 5.** Structural view of [RuCp(=C(CH₂Buⁿ)NHPPh₂)- $(\kappa^2(P,P)$ -PPh₂OPPh₂)]CF₃SO₃ (**9**) showing 20% thermal ellipsoids (CF₃SO₃⁻ omitted for clarity). Selected bond lengths (Å) and angles (deg): Ru-C(1-5)_{av} = 2.234(2), Ru-P(1) = 2.2508(5), Ru-P(2) = 2.2439(5), Ru-C(36) = 2.037-(2), P(1)-O = 1.673(1), P(2)-O = 1.675(1), C(36)-N = 1.313(2), C(36)-C(37) = 1.516; P(1)-Ru-P(2) = 67.91(2), P(1)-Ru-C(36) = 99.1(1), P(2)-Ru-C(36) = 90.8(1), P(1)-O-P(2) = 97.2(1); N···O(1) = 2.821(5). showing in these cases P-P distances about 0.5 Å larger than in the chelating mode.²⁶ When a solution of 8a is passed through a column charged with neutral Al₂O₃, the PPh₂OH ligand is readily deprotonated and RuCp(=C(CH₂Ph)NHPh)- $(PPh_2NHPh)(\kappa^1(P)-PPh_2O)$ (**10a**) is obtained (Scheme 5). The diphenylphosphinite ligand is coordinated via the lone pair at P rather than via the oxygen lone pairs. This type of complex could be obtained also by directly reaction of **5** with water and subsequent treatment with acidic Al₂O₃, as shown for example for **5b**, affording **10b** upon workup. Complexes 10 exhibit spectroscopic features very similar to those of 8, and it is sufficient to point out the ³¹P{¹H} NMR resonances giving rise to two doublets centered at about 111 and 79.1 ppm, assignable to the [PPh₂O]⁻ ligand and the aminophosphine PPh₂NHPh, respectively (cf. $\kappa^{1}(P)$ -coordinated PPh₂OH in **8a,b** exhibits a ³¹P{¹H} signal at 141.0 and 140.8 ppm, respectively). On the basis of the ³¹P{¹H} NMR data the phosphorus atom in [PPh₂O] may be considered as P(III) rather than as P(V), and thus the ligand is better described by structure **IIa** rather than **IIb**. The formation of complexes **10** is reversible. In fact, addition of acid, e.g. CF₃COOH, leads to a clean backtransformation to **8**, as monitored by NMR spectroscopy. To unequivocally establish the ligand arrangement around the metal center, the structure of **10a** has been determined by X-ray crystallography. A structural view of **10a** is depicted in Figure 6. Important bond distances and angles are given in the caption. The molecule exhibits the typical three-legged piano-stool geometry ^{(26) (}a) Wang, E. H.; Prasad, L.; Gabe, E. J.; Bradley, F. C. *J. Organomet. Chem.* **1982**, 236, 321. (b) Burrows, A. D.; Mahon, M. F.; Palmer, M. T.; Varrone, M. *Inorg. Chem.* **2002**, 41, 1695. (27) Irvine, D. J.; Preston, S. A.; Cole-Hamilton, D. J.; Barnes, J. C. ⁽²⁷⁾ İrvine, D. J.; Preston, S. Ā.; Cole-Hamilton, D. J.; Barnes, J. C. J. Chem. Soc., Dalton Trans. 1991, 2413. **Figure 6.** Structural view of [RuCp(=C(CH₂Ph)NHPh)- $(PPh_2NHPh)(\kappa^1(P)-O=PPh_2)$] (**10a**) showing 20% thermal ellipsoids. Selected bond lengths (Å) and angles (deg): Ru- $C(1-5)_{av} = 2.237(9), Ru-P(1) = 2.228(5), Ru-P(2) = 2.282-$ (5), Ru-C(42) = 1.984(12), P(1)-N = 1.678(10), P(2)-O = 1.678(10)1.534(7), C(42)-N(2) = 1.352(14), C(42)-C(43) = 1.509(15); P(1)-Ru-P(2) = 94.5(1), P(1)-Ru-C(42) = 87.3(4), P(2)-Ru-C(42) = 90.0(4), P(1)-N(1)-C(18) = 132.2(8); $N(1)\cdots O = 2.843(13), N(2)\cdots O = 2.662(13).$ with Ru-C(Cp), Ru-P, and Ru-C $_{carbene}$ bond lengths in accordance with other RuCp complexes of this work. Interestingly, the Ru-P bond to the phosphinoamine is slightly shorter than to the diphenylphosphinite (2.228 vs 2.282 Å), which is one argument supporting formula **IIa**. Another argument is the strong basicity of the phosphinite oxygen atom, which becomes apparent by the two outstandingly short intramolecular N-H· $\cdot \cdot \cdot O$ hydrogen bonds of $N \cdot \cdot \cdot O = 2.66$ and 2.84 Å present in 10a (cf. Figure 6). The shorter of these two hydrogen bonds compares well with those between [HNEt₃]⁺ cations and anionic phosphinite complexes.²⁸ Next we have studied the reaction of complexes 1a,b with the propargylic alcohol HC≡CCPh2OH in the presence of AgCF₃SO₃. The outcome of this reaction depends strongly on the nature of the subtituent of the amine moiety in PPh₂NHR. In the case of R = Ph, the allenylidene complex [CpRu(PPh₂NHPh)₂(=C=C= CPh₂)]⁺ (11) is obtained in high yield. On the other hand, with R = n-Pr the amine moiety is more basic as well as sterically less demanding; the reaction does not stop at the stage of the allenylidene complex, and nucleophilic attack of the amine moiety at the C_{α} atom of the allenvlidene ligand leads to the formation of the azaphosphacarbene [RuCp($\kappa^2(C,P)$ =C(CH=CPh₂)N(Prⁿ)- $PPh_2(\kappa^1(P)-PPh_2NHPr^n)]^+$ (12), as outlined in Scheme 6. Complexes 11 and 12 are both air-stable solids and were characterized by ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectroscopy and elemental analysis. Characteristic spectroscopic features of 11 are the three resonances in the ¹³C{¹H} NMR spectrum at 291.9, 201.5, and 161.2 ppm for
the C_{α} , C_{β} , and C_{γ} allenyl carbon atoms. A view of the molecular geometry of 11 is shown in Figure 7, with selected bond distances and angles given in the Figure 7. Structural view of [CpRu(PPh₂NHPh)₂(=C=C= CPh₂)]CF₃SO₃·CH₂Cl₂ (11·CH₂Cl₂) showing 40% thermal ellipsoids (CF₃SO₃⁻ and CH₂Cl₂ omitted for clarity). Selected bond lengths (Å) and angles (deg): $Ru-C(1-5)_{av} =$ 2.250(4), Ru-P(1) = 2.294(2), Ru-P(2) = 2.297(2), Ru-P(3) = 2.297(2)C(42) = 1.889(6), C(42) - C(43) = 1.270(8), C(43) - C(44) =1.356(8), P(1)-N(1) = 1.680(5), P(2)-N(2) = 1.662(5); P(1)-Ru-P(2) = 97.92(6), P(1)-Ru-C(42) = 89.3(2), P(2)-Ru-C(42) 89.3(2),C(42) = 88.6(2), Ru - C(42) - C(43) = 175.5(5), C(42) - C(43) - C(43)C(44) = 172.9(7), P(1) - N(1) - C(18) = 131.3(4), P(2) - N(2) - C(44) = 172.9(7), P(1) - N(1) - C(18) = 131.3(4), P(2) - N(2) P(2 $C(36) = 131.0(4); N(1) \cdots C(31) = 3.464(7), N(2) \cdots O(1) =$ 3.455(8). caption. The structure shows the typical pseudooctahedral three-legged piano-stool geometry, with a nearly linear allenylidene group coordinated to the ruthenium atom. The allenylidene chain shows typical Ru- C_{α} , C_{α} - C_{β} , and C_{β} - C_{γ} bond lengths of 1.889(6), 1.270(8), and 1.356(8) Å comparing well with those of related allenylidene complexes. 35,29 The ¹H and ¹³C{¹H} NMR spectra of **12** are consistent with the presence of an azaphosphacarbene structure containing a vinyl side chain. In the ¹³C{¹H} NMR spectrum of 12 the carbene moiety is identified by a downfield signal at 275.2 ppm (dd, $J_{\rm CP}=31.1~{\rm Hz}, J_{\rm CP}$ = 15.0 Hz). Other spectral changes accompanying the transformation to the azaphosphacarbene include characteristic resonances at 148.0 and 92.7 ppm assignable to the vinyl carbon atoms CH=CPh₂ and CH=CPh₂, respectively. The vinyl proton gives rise to a singlet at 5.08 ppm. Reaction of the $[RuTp(PPh_2NHR)_2]^+$ (R = Ph, n-Pr) Fragment with Terminal Alkynes. When 2a,b is treated with HC \equiv CR' (R' = Ph, p-C₆H₄Me, n-Bu) in the presence of either AgSbF₆ or AgCF₃SO₃ (1 equiv) at room temperature for 4-24 h in CH₂Cl₂, the azaphosphacarbene complexes [RuTp($\kappa^2(C,P)$ =C(CH₂R')N- $(R)PPh_2(\kappa^1(P)-PPh_2NHR)]^+$ (14a,b, 15a-c) are obtained in high yields as air-stable dark yellow solids (Scheme 7). The only exception is when HC≡CBuⁿ is reacted with 2a, where the vinylidene complex [RuTp(PPh₂NHPh)₂-(=C=CH(Buⁿ)]SbF₆ (13) was isolated. Complex 13 did not undergo rearrangement to the corresponding azaphosphacarbene even under reflux conditions for 24 h. ^{(29) (}a) Bustelo, E.; Jimenez Tenorio, M.; Puerta, M. C.; Valerga, P. Eur. J. Inorg. Chem. 2001, 2391. (b) Bustelo, E.; Jimenez Tenorio, M.; Puerta, M. C.; Valerga, P. Organometallics 1999, 18, 4563. (c) Cadierno, V.; Gamasa, M. P.; Gimeno, J.; Lastra, E.; Borge, J.; Garcia-Granda, S. Organometallics 1994, 13, 745. ### Scheme 7 Complexes 14 and 15 exhibit three distinct sets of pyrazol-1-yl resonances in a 1:1:1 ratio in the ¹H and ¹³C{¹H} NMR spectrum, due to three distinct pyrazol-1-yl rings differing in their trans ligand atoms. In the ¹³C{¹H} NMR spectrum the most noticeable resonance is again the low-field resonance of the carbene carbon atom, observed as a doublet of doublets in the range 288.5-283.7 ppm with P-C coupling constants between 20-23 Hz and 10-11 Hz. Finally, the ${}^{1}\text{H}$ and ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR resonances of Tp and the phosphinoamine ligands are in the expected ranges. **15a-c** R = *n*-Pr; R' = Ph, *p*-C₆H₄Me, *n*-Bu **13** R = Ph; R' = *n*-Bu The identities of the chemical structures of 14a and 15b were unequivocally proven by X-ray crystallography. The result is depicted in Figures 8 and 9, respectively, with important bond distances and angles given in the captions. The coordination geometry around ruthenium is a distorted octahedron. The three Ru-N(Tp) bond lengths show only minor variations and are within the range of those for other RuTp complexes. In **14a** the Ru–C(28) bond distance is 2.007(14) Å, which is comparable to those in other aminocarbene complexes. The Ru-P(1) and Ru-P(2) distances are 2.241-(4) and 2.333(4) Å, respectively. Similar bond distances are found for **15b**: Ru-C(40) is 1.993(1) Å, and Ru-P(1) and Ru-P(2) distances are 2.323(1) and 2.253(1) Å, respectively. **12** R = *n*-Pr Upon treatment of **2a**,**b** with the propargylic alcohol HC≡CPh₂OH and AgCF₃SO₃ in CH₂Cl₂ for 8 h at room temperature, the allenylidene complexes [RuTp(PPh₂- $NHR)_2 (=C=C=CPh_2)]^+$ (16a,b) are obtained in high yields (Scheme 8). These complexes are readily identified by ¹³C{¹H} NMR spectroscopy, exhibiting triplets at 312.9 and 316.9 ppm with P-C coupling constants of 19.1 and 19.9 Hz, respectively, which are assigned to the C_{α} carbon atom of the allenylidene unit. The C_{β} and C_{γ} carbon atoms give rise to singlets at 199.6 and 206.1 and at 164.1 and 160.9, respectively. While allenylidene **16a** is stable even at elevated temperatures, **16b** slowly rearranges at 50 °C to afford the vinyl azaphosphacarbene complex [RuTp($\kappa^2(C,P)$ =C(CH=CPh₂)N(Prⁿ)PPh₂)- **Figure 8.** Structural view of $[RuTp(\kappa^2(C,P)=C(CH_2Ph)N (Ph)PPh_2)(\kappa^1(P)\text{-}PPh_2NHPh)]SbF_6\boldsymbol{\cdot}2C_6H_5F \quad (\boldsymbol{14a\cdot 2C_6H_5F})$ showing 20% thermal ellipsoids (SbF $_6^-$ and C_6H_5F omitted for clarity). Selected bond lengths (Å) and angles (deg): Ru-N(2) = 2.174(7), Ru-N(4) = 2.112(7), Ru-N(6) =2.121(7), Ru-P(1) = 2.241(4), Ru-P(2) = 2.333(4), Ru-P(2) = 2.333(4)C(28) = 2.007(14), C(28) - N(7) = 1.334(16), P(1) - N(7) =1.782(12), P(2)-N(8) = 1.675(11); P(1)-Ru-P(2) = 94.7-(2), P(1)-Ru-C(28) = 68.7(4), P(2)-Ru-C(28) = 98.2(4). $(\kappa^{1}(P)-PPh_{2}NHPr^{n})]CF_{3}SO_{3}$ (17) in high isolated yield (Scheme 8). The NMR spectroscopic features are similar to those of 5, 6, 14, and 15. The characteristic resonance of the carbon atom is 274.8 ppm (dd, $J_{\rm CP} = 22.2$ Hz, $J_{\rm CP} = 13.0$ Hz). In the ¹H NMR spectrum the vinyl CH=CPh₂ hydrogen atom gives rise to a doublet at 5.07 ppm ($J_{\rm HP} = 7.3~{\rm Hz}$). The solid-state structure of 17 has been confirmed by single-crystal X-ray diffraction (Figure 10). Selected bond distances and angles are reported in the caption. The coordination geometry around ruthenium is distorted octahedral. The Ru-N(Tp) bond distances are all very similar. The bond lengths in the Ru-azaphosphacarbene ring are comparable to those of complexes **14a** and **15b**: e.g. Ru-P(2) = 2.260 Å, Ru-C(40) = 2.012 Å, P(2) - N(8) = 1.766 Å, and N(8) - C(40)= 1.353 Å in 17. Unlike in 14a but as in 15b this ring is not planar in 17, as the nitrogen N(8) deviates by 0.25 Å from the plane defined by Ru, P(2), and C(40). # **Concluding Remarks** In the present study RuCp and RuTp complexes featuring two phosphinoamine ligands of the type PPh₂- **Figure 9.** Structural view of $[RuTp(\kappa^2(C,P)=C(CH_2 C_6H_4Me)N(Pr^n)PPh_2)(\kappa^1(P)-PPh_2NHPr^n)]CF_3SO_3 \cdot CH_2Cl_2-$ (15b·CH₂Cl₂) showing 30% thermal ellipsoids (CF₃SO₃) and CH₂Cl₂ omitted for clarity). Selected bond lengths (Å) and angles (deg): Ru-N(2) = 2.166(1), Ru-N(4) = 2.144-(1), Ru-N(6) = 2.168(1), Ru-P(1) = 2.323(1), Ru-P(2) = 2.323(1)2.253(1), Ru-C(40) = 1.993(1), C(40)-N(8) = 1.351(2), P(2)-N(8) = 1.754(1), P(1)-N(7) = 1.670(1); P(1)-Ru-P(2)= 99.18(1), P(1)-Ru-C(40) = 98.67(3), P(2)-Ru-C(40) =67.46(3), P(1)-N(7)-C(22) = 124.7(1), P(2)-N(8)-C(40) = 124.7(1)98.6(1), P(2)-N(8)-C(37) = 131.4(1). NHR with R = Ph, n-Pr have been synthesized. We have demonstrated that both the $[RuCp(PPh_2NHR)_2]^+$ and [RuTp(PPh₂NHR)₂]⁺ fragments prepared in situ promote the formation of vinylidene, allenylidene, and oxacyclopentyldiene complexes upon treatment with terminal alkynes. The strong electrophilic character of the α-carbon atom of the vinylidene and allenylidene unit, respectively, is demonstrated by the fact that the weakly nucleophilic nitrogen atom of the bifunctional phosphinoamine reacts readily with the vinylidene and allenylidene moieties in an intramolecular fashion to give novel cyclic azaphosphacarbene complexes. Azaphosphacarbenes belong to a rare series of transitionmetal complexes in which the carbene moiety is part of a four-membered chelate ligand coordinated in a $\kappa^2(C,P)$ mode. # **Experimental Section** General Information. Manipulations were performed under an inert atmosphere of purified argon by using Schlenk techniques and/or a glovebox. All chemicals were standard **Figure 10.** Structural view of $[RuTp(\kappa^2(C,P)=C(CH=$ $CPh_2)N(Pr^n)PPh_2)(\kappa^1(P)-PPh_2NHPr^n)]CF_3SO_3$ (17) showing 30% thermal ellipsoids (CF₃SO₃⁻ omitted for clarity). Selected bond lengths (Å) and angles (deg): Ru-N(2) =2.163(1), Ru-N(4) = 2.129(1), Ru-N(6) = 2.154(1), Ru-P(1) = 2.3354(3), Ru-P(2) = 2.2595(3), Ru-C(40) = 2.012-(1), C(40)-N(8) = 1.353(1), P(2)-N(8) = 1.766(1), P(1)-N(7) = 1.667(1); P(1) - Ru - P(2) = 99.49(1), P(1) - Ru - C(40)= 100.68(3), P(2)-Ru-C(40) = 67.32(3), P(1)-N(7)-C(22)= 124.4(1), P(2)-N(8)-C(40) = 98.4(1), P(2)-N(8)-C(37)= 131.0(1). reagent grade and used without further purification. The solvents were purified according to standard procedures. The deuterated solvents were purchased from Aldrich and dried over 4 Å molecular sieves. RuCp(PPh₃)₂Cl and RuTp(COD)Cl were prepared according to the literature. The half of the literature and literature and 300 spectrometers and were referenced to SiMe₄ (Thand The half of the literature) and The half of the literature and RuCp(PPh₂NHPh)₂Cl (1a). A suspension of RuCp(PPh₃)₂-Cl (1.5 g, 2.01 mmol) and PPh₂NHPh (4.6 g, 15.5 mmol) in toluene (15 mL) was heated for 12 h at reflux. After removal of the solvent, the remaining residue was dissolved in CH₂Cl₂ and precipitated with petroleum ether. The product was collected on a glass frit, washed with petroleum ether, and dried under vacuum. Yield: 1.4 g (88%). Anal. Calcd for
C₄₁H₃₇-ClN₂P₂Ru (mol wt 756.23): C, 65.12; H, 4.93; N, 3.70. Found: C, 65.09; H, 5.02; N, 4.67. ¹H NMR (δ, CDCl₃, 20 °C): 7.56-7.09 (m, 20H, Ph), 6.84 (t, $J_{HH} = 8.0 \text{ Hz}$, 4H, NHPh), 6.59 (t, $J_{\rm HH} = 7.4~{\rm Hz},\, 2{\rm H},\, {\rm NH}Ph),\, 6.33~({\rm d},\, J_{\rm HH} = 7.7~{\rm Hz},\, 4{\rm H},\, {\rm NH}Ph),$ 6.17 (pt, ${}^{2}J_{HP} = 6.6$ Hz, 2H, NHPh), 4.07 (5H, Cp). ${}^{13}C\{{}^{1}H\}$ NMR (δ , CDCl₃, 20 °C): 143.2 (t, $J_{CP} = 6.7 \text{ Hz}$, NPh¹), 139.0 (t, $^{1}\!J_{\rm CP}=25.0$ Hz, Ph¹), 135.5 (t, $^{1}\!J_{\rm CP}=25.1$ Hz, Ph¹′), 131.6 (t, $^2\!J_{\rm CP}=5.5$ Hz, Ph 2,6), 131.2 (t, $^2\!J_{\rm CP}=5.5$ Hz, Ph $^{2,6}\prime$), 129.2 (d, ${}^{4}J_{CP} = 3.7 \text{ Hz}$, Ph^{4,4'}), 128.3 (NPh^{3,5}), 127.8 (t, ${}^{3}J_{CP} = 5.3$ Hz, Ph^{3,5}), 127.7 (t, ${}^{3}J_{CP} = 5.3$ Hz, Ph^{3,5}), 119.5 (NPh⁴), 117.9 (t, $J_{\rm CP} = 2.5$ Hz, NPh^{2,6}), 81.5 (t, $J_{\rm CP} = 2.5$ Hz, Cp). ³¹P{¹H} NMR (δ , CDCl₃, 20 °C): 71.9. RuCp(PPh2NHPrn)2Cl (1b). This complex has been prepared analogously to 2a with RuCp(PPh₃)₂Cl (300 mg, 0.41 mmol) and PPh₂NHPrⁿ (603 mg, 2.5 mmol) as the starting materials. Yield: 256 mg (91%). Anal. Calcd for C₃₅H₄₁ClN₂P₂-Ru (mol wt 688.19): C, 61.09; H, 6.00; N, 4.07. Found: C, 60.94; H, 6.12; N, 4.00. 1 H NMR (δ , CDCl $_3$, 20 $^\circ$ C): 7.75–7.64 (m, 4H, Ph), 7.38-7.22 (m, 8H, Ph), 7.20 - 7.09 (m, 4H, Ph), 4.07-6.93 (m, 4H, Ph), 4.28-3.29 (m, 2H, NHPrn), 4.14 (5H, Cp), 2.52-2.36 (m, 2H, Prn), 2.33-2.16 (m, 2H, Prn), 1.52- $1.33~(\mathrm{m},\,4\mathrm{H},\,\mathrm{Pr^{n}}),\,0.81~(\mathrm{t},\,J_{\mathrm{HH}}=7.4~\mathrm{Hz},\,6\mathrm{H},\,\mathrm{Pr^{n}}).~^{13}\mathrm{C}\{^{1}\mathrm{H}\}~\mathrm{NMR}$ (δ , CDCl₃, 20 °C): 140.2 (t, ${}^{1}J_{CP} = 21.0 \text{ Hz}$, Ph¹), 137.8 (t, ${}^{1}J_{CP}$ = 28.3 Hz, Ph¹), 132.6 (t, ${}^{2}J_{CP}$ = 5.3 Hz, Ph^{2,6}), 130.9 (t, ${}^{2}J_{CP}$ = 5.8 Hz, Ph^{2,6}′), 129.0 (Ph⁴), 128.3 (Ph⁴′), 127.6 (t, $^3\!J_{\rm CP}=4.8$ Hz, Ph^{3,5}), 127.4 (t, ${}^{3}J_{CP} = 4.8$ Hz, Ph^{3,5}′), 80.7 (t, $J_{CP} = 2.5$ Hz, Cp), 45.9 (t, ${}^{2}J_{CP} = 5.8$ Hz, CH₂), 24.6 (t, ${}^{3}J_{CP} = 3.4$ Hz, CH₂), 11.7 (CH₃). ${}^{31}P{}^{1}H}$ NMR (δ , CDCl₃, 20 °C): 84.8. RuTp(PPh₂NHPh)₂Cl (2a). A suspension of RuTp(COD)-Cl (100 mg, 0.22 mmol) and PPh₂NHPh (133.3 mg, 0.480 mmol) in toluene (5 mL) was heated for 3 h at reflux. After removal of the solvent the remaining residue was dissolved in CH₂Cl₂ (2 mL) and the product was precipitated by addition of Et₂O and petroleum ether. The vellow powder was collected on a glass frit, washed with petroleum ether, and dried under vacuum. Yield: 171 mg (86%). Anal. Calcd for C₄₅H₄₂BClN₈P₂-Ru (mol wt 904.16): C, 59.78; H, 4.68; N, 12.39. Found: C, 59.89; H, 4.56; N, 12.44. ^{1}H NMR (δ , $C_{6}D_{6}$, 20 $^{\circ}C$): 8.32 (pt, ${}^{2}J_{HP} = 7.3 \text{ Hz}, 2H, NHPh), 7.75-6.71 (36H, Ph, NHPh, Tp),$ 5.71 (d, J = 1.6 Hz, 1H, Tp), 5.66 (dd, $J_1 = J_2 = 2.2$ Hz, 1H, Tp), 5.60 (dd, $J_1 = J_2 =$ 1.9 Hz, 1H, Tp). $^{13}\text{C}\{^1\text{H}\}$ NMR (δ , CDCl₃, 20 °C): 147.7 (Tp), 143.9 (Tp), 142.6 (t, $J_{CP} = 5.9 \text{ Hz}$, NPh¹), 136.0 (Tp), 137.3 (t, ${}^{1}J_{CP} = 21.1 \text{ Hz}$, Ph¹), 134.3 (Tp), 132.9 (t, ${}^{2}J_{CP} = 5.0 \text{ Hz}$, Ph^{2,6}), 132.2 (t, ${}^{2}J_{CP} = 5.0 \text{ Hz}$, Ph^{2,6}), 131.2 (t, ${}^{1}J_{CP} = 23.2 \text{ Hz}, \text{Ph}^{1}$), 129.1 (Ph⁴), 128.8 (Ph⁴), 128.6 (NPh^{3,5}), 127.6 (t, ${}^{3}J_{CP} = 4.6 \text{ Hz}$, Ph^{3,5}), 127.4 (t, ${}^{3}J_{CP} = 5.3 \text{ Hz}$, Ph^{3,5}'), 119.9 (NPh⁴), 118.5 (NPh^{2,6}), 104.8 (Tp), 104.5 (Tp). ³¹P- ${^{1}H}$ NMR (δ , C₆D₆, 20 °C): 76.8. RuTp(PPh2NHPrn)2Cl (2b). This complex has been prepared analogously to 2a with RuTp(COD)Cl (150 mg, 0.20 mmol) and PPh₂NHPrⁿ (642.3 mg, 2.64 mmol) as starting materials. Yield: 664 mg (90%). Anal. Calcd for C₃₉H₄₆-BClN₈P₂Ru (mol wt 836.13): C, 56.02; H, 5.55; N, 13.40. Found: C, 56.11; H, 5.67; N, 13.37. ¹H NMR (δ, CDCl₃, 20 °C): 7.86-7.02 (m, 23H, Ph, Tp), 6.75 (d, J = 1.9 Hz, 2H, Tp), 5.75 (d, J = 1.9 Hz, 1H, Tp), 5.62 (dd, $J_1 = J_2 = 2.1$ Hz, 2H, Tp), 5.41 (dd, $J_1 = J_2 = 2.2$ Hz, 1H, Tp), 4.47–4.27 (m, 2H, $NHPr^{n}$), 2.91–2.74 (m, 2H, Pr^{n}), 2.70–2.47 (m, 2H, Pr^{n}), 1.78– $1.54 \text{ (m, 4H, Pr^n)}, 0.91 \text{ (t, } J_{HH} = 7.4 \text{ Hz, 6H, Pr^n)}. ^{13}\text{C} \{^{1}\text{H}\} \text{ NMR}$ $(\delta, \text{CDCl}_3, 20 \text{ °C})$: 147.0 (Tp), 143.7 (Tp), 136.3 (t, ${}^{1}J_{\text{CP}} = 18.9$ Hz, Ph^{1} , 135.4 (Tp), 134.9 (t, ${}^{1}J_{CP} = 13.1 Hz, Ph^{1}$), 134.2 (Tp), 132.8 (t, ${}^{2}J_{CP} = 4.6 \text{ Hz}$, Ph^{2,6}), 132.5 (t, ${}^{2}J_{CP} = 4.6 \text{ Hz}$, Ph^{2,6}), 128.7 (Ph⁴), 128.5 (Ph⁴), 127.4 (t, ${}^{3}J_{CP} = 4.2 \text{ Hz}$, Ph^{3,5}), 127.1 $(t, {}^{3}J_{CP} = 4.2 \text{ Hz}, Ph^{3',5'}), 104.6 (Tp), 104.4 (Tp), 46.8 (t, J_{CP} =$ 5.4 Hz, CH₂), 25.3 (t, $J_{CP} = 3.1$ Hz, CH₂), 11.9 (CH₃). ${}^{31}P\{{}^{1}H\}$ NMR (δ , CDCl₃, 20 °C): 88.3. $RuCp(PPh_2NHPh)_2(\eta^1-OSO_2CF_3)$ (3). A solution of 1a (100 mg, 0.13 mmol) in CH₂Cl₂ (5 mL) was treated with AgCF₃-SO₃ (41 mg, 0.16 mmol) and stirred at room temperature for 2 h. The solution was then evaporated to dryness, and the residue was redissolved in CH₂Cl₂. Insoluble materials were removed by filtration. On addition of Et₂O a yellow precipitate was formed, which was collected on a glass frit, washed with Et₂O, and dried under vacuum. Yield: 82 mg (72%). Anal. Calcd for C₄₂H₃₇F₃N₂O₃P₂RuS (mol wt 869.8): C, 57.99; H, 4.29; N, 3.22. Found: C, 57.80; H, 4.28; N, 3.17. ¹H NMR (δ, $CDCl_3$, 20 °C): 7.40-7.03 (m, 20H, Ph), 6.80 (t, $J_{HH} = 7.8 \text{ Hz}$, 4H, NHPh), 6.57 (t, $J_{HH} = 7.2$ Hz, 2H, NHPh), 6.28 (d, $J_{HH} =$ 7.9 Hz, 4H, NHPh), 5.49 (pt, ${}^{2}J_{HP} = 8.0$ Hz, 2H, NHPh), 4.20 (5H, Cp). ¹³C{¹H} NMR (δ , CDCl₃, 20 °C): 142.2 (t, $J_{CP} = 6.2$ Hz, NPh¹), 137.0 (t, ${}^{1}J_{CP} = 26.0 \text{ Hz}$, Ph¹), 134.3 (t, ${}^{1}J_{CP} = 24.6 \text{ Hz}$ Hz, Ph¹′), 131.3 (t, ${}^{2}J_{CP} = 5.8$ Hz, Ph^{2,6}), 131.0 (t, ${}^{2}J_{CP} = 6.0$ Hz, Ph^{2,6'}), 129.9 (Ph⁴), 129.7 (Ph^{4'}), 128.4 (NPh^{3,5}), 128.3 (t, ${}^{3}J_{\text{CP}} = 5.1 \text{ Hz}, \text{ Ph}^{3,5}), 128.3 \text{ (t, } {}^{3}J_{\text{CP}} = 5.3 \text{ Hz}, \text{ Ph}^{3,5}), 119.8$ (NPh⁴), 117.9 (t, $J_{CP} = 2.8$ Hz, NPh^{2,6}), 84.0 (Cp). $^{31}P\{^{1}H\}$ NMR (δ, CDCl₃, 20 °C): 77.3. $[RuCp(\kappa^2(P,P)-PPh_2NHC_6H_4PPh_2)(NH_2Ph)]SbF_6$ (4). A solution of complex **1a** (100 mg, 0.13 mmol) in CH₂Cl₂ (5 mL) was treated with AgSbF₆ (54.5 mg, 0.16 mmol) and stirred at room temperature for 2 h. The solution was evaporated to dryness and the residue dissolved in CH2Cl2. Insoluble materials were filtered off. On addition of Et₂O a yellow precipitate was formed, which was collected on a glass frit, washed with Et₂O, and dried under vacuum. Yield: 112 mg (90%). Anal. Calcd for $C_{41}H_{37}F_6N_2P_2RuSb$ (mol wt 956.5): C, 51.48; H, 3.90;N, 2.93. Found: C, 51.39; H, 3.99; N, 2.97. 1 H NMR (δ , CD₂-Cl₂, 20 °C): 7.93–6.29 (m, 29H, Ph), 5.64 (d, ${}^{2}J_{HP} = 6.6$ Hz, 1H, NH), 4.61 (5H, Cp), 3.80 (d, $J_{\rm HP}=11.2~{\rm Hz},$ 1H, N $_2{\rm Ph}),$ 3.11 (d, $J_{HP} = 10.7 \text{ Hz}$, 1H, N H_2 Ph). ¹³C{¹H} NMR (δ , CD₂Cl₂, 20 °C): 148.9 (NHPh1), 146.0 (NH2Ph1), 135.7-119.4 (Ph), 82.1 (Cp). ${}^{31}P\{{}^{1}H\}$ NMR (δ , CD₂Cl₂, 20 °C): 103.1 (d, $J_{PP} = 63.3$ Hz), 48.5 (d, $J_{PP} = 63.3$ Hz). $[RuCp(\mathcal{K}_2(C,P)=C(CH_2Ph)N(Ph)PPh_2)(\mathcal{K}_1(P)-PPh_2NHPh)] \mathbf{CF_3SO_3}$ (5a). A solution of $\mathbf{1a}$ (100 mg, 0.13 mmol) in $\mathbf{CH_2Cl_2}$ (5 mL) and phenylacetylene (42.8 μ L, 0.39 mmol) was treated with AgCF₃SO₃ (41 mg, 0.16 mmol) and stirred at room temperature for 12 h. The solution was then evaporated to dryness and the residue redissolved in CH₂Cl₂. Insoluble materials were removed by filtration. On addition of Et₂O and petroleum ether a dark vellow precipitate was formed, which was washed with Et₂O and petroleum ether and dried under vacuum. Yield: 76 mg (78%). Anal. Calcd for $C_{50}H_{43}F_3N_2O_3P_2$ -RuS (mol wt 972.0): C, 61.74; H, 4.46; N, 2.86. Found: C, 61.69; H, 4.50; N, 2.87. ¹H NMR (δ, CD₂Cl₂, 20 °C): 7.85-6.62 (m, 31H, Ph), 6.28 (d, $J_{HH} = 7.7$ Hz, 2H, NHPh), 6.11 (d, $J_{\rm HH} = 7.7 \text{ Hz}, 2H, NHPh), 5.53 (d, {}^{2}J_{\rm HP} = 16.8 \text{ Hz}, 1H, NHPh),$ 4.49 (5H, Cp), 4.14 (dd, $J_{1,HH} = 14.3 \text{ Hz}$, $J_{2,HP} = 4.0 \text{ Hz}$, 1H, ${ m C}H_2{ m Ph}),~3.82~{ m (dd},~J_{1,{ m HH}}=14.3~{ m Hz},~J_{2,{ m HP}}=1.2~{ m Hz},~1{ m H},~{ m C}H_2-1.2~{ m Hz}$ Ph). ${}^{13}\text{C}\{{}^{1}\text{H}\}\ \text{NMR}\ (\delta,\ \text{CD}_{2}\text{Cl}_{2},\ 20\ {}^{\circ}\text{C}):\ 276.8\ (\text{dd},\ J_{1,\text{CP}}=32.2\)$ ⁽³⁰⁾ Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 3rd ed.; Pergamon: New York, 1988. ⁽³¹⁾ Bruce, M. I.; Hameister, C.; Swincer, A. G.; Wallis, R. C. *Inorg. Synthesis* **1990**, *28*, 270. ⁽³²⁾ Gemel, C.; Trimmel, G.; Slugovc, C.; Kremel, S.; Mereiter, K.; Schmid, R.; Kirchner, K. Organometallics 1996, 15, 3998. $\text{Hz}, J_{2,\text{CP}} = 13.8 \text{ Hz}, = C), 141.8 - 118.7 \text{ (Ph)}, 86 2 \text{ (Cp)}, 53.3 \text{ (d,}$ $J_{\rm CP} = 11.5~{\rm Hz}, {\rm CH_2}$). ³¹P NMR (δ , CD₂Cl₂, 20 °C): 83.7 (d, $J_{\rm PP}$ = 36.0 Hz), 77.2 (d, $J_{PP} = 36.0 \text{ Hz}$).
$[\mathbf{RuCp}(\kappa^2(C,P)=\mathbf{C}(\mathbf{CH_2C_6H_4CH_3})\mathbf{N}(\mathbf{Ph})\mathbf{PPh_2})(\kappa^1(P)-\mathbf{Ph_2})(\kappa^2(C,P)=\mathbf{C}(\mathbf{CH_2C_6H_4CH_3})\mathbf{N}(\mathbf{Ph})\mathbf{PPh_2})(\kappa^2(P)-\mathbf{$ PPh₂NHPh)]CF₃SO₃ (5b). This complex has been prepared analogously to $\mathbf{5a}$ with $\mathbf{1a}$ (150 mg, 0.20 mmol), p-tolylacetylene (75.4 μ L, 0.6 mmol), and AgCF₃SO₃ (61 mg, 0.24 mmol) as starting materials. Yield: 119 mg (60%). Anal. Calcd for C₅₁H₄₅F₃N₈O₃P₂RuS (mol wt 986.0): C, 62.13; H, 4.60; N, 2.84. Found: C, 62.24; H, 4.71; N, 2.57. 1 H NMR (δ , CD₂Cl₂, 20 $^{\circ}$ C): 7.98–6.57 (m, 30H, Ph), 6.42 (d, ${}^{2}J_{HP} = 13.1 \text{ Hz}$, 1H, NHPh), $6.21 (d, J_{HH} = 7.8 Hz, 2H, NHPh), 6.15 (d, J_{HH} = 7.8 Hz, 2H,$ NHPh), 4.46 (5H, Cp), 4.08 (dd, $J_{1,HH} = 14.3 \text{ Hz}$, $J_{2,HP} = 3.8$ Hz, 1H, $CH_2C_6H_4CH_3$), 3.68 (d, $J_{HH} = 14.3$ Hz, 1H, $CH_2C_6H_4$ -CH₃), 2.41 (3H, CH₃). ¹³C{¹H} NMR (δ, CD₂Cl₂, 20 °C): 277.0 $(dd, J_{1,CP} = 32.2 \text{ Hz}, J_{2,CP} = 13.8 \text{ Hz}, =C), 141.5-118.7 \text{ (Ph)},$ 86 2 (Cp), 52.8 (d, $J_{CP} = 10.7 \text{ Hz}$, CH₂), 20.9 (CH₃). ${}^{31}P\{{}^{1}H\}$ NMR (δ , CD₂Cl₂, 20 °C): 83.6 (d, $J_{PP} = 35.6$ Hz), 77.9 (d, J_{PP} = 35.6 Hz). $[\mathbf{R}\mathbf{u}\mathbf{C}\mathbf{p}(\kappa^{2}(C,P)=\mathbf{C}(\mathbf{C}\mathbf{H}_{2}\mathbf{B}\mathbf{u}^{n})\mathbf{N}(\mathbf{P}\mathbf{h})\mathbf{P}\mathbf{P}\mathbf{h}_{2})(\kappa^{1}(P)-\mathbf{P}\mathbf{h}_{2})(\kappa^{2}(C,P))$ PPh₂NHPh)]CF₃SO₃ (5c). This complex has been prepared analogously to 5a using 1a (150 mg, 0.20 mmol), 1-hexyne $(68.9 \ \mu L, \ 0.6 \ mmol)$, and AgCF₃SO₃ $(61 \ mg, \ 0.24 \ mmol)$ as starting materials. Yield: 102 mg (54%). Anal. Calcd for C₄₈H₄₇F₃N₈O₃P₂RuS (mol wt 952.0): C, 60.50; H, 4.98; N, 2.94. Found: C, 60.38; H, 4.88; N, 2.85. 1 H NMR (δ , CD₂Cl₂, 20 ${}^{\circ}$ C): 7.98-6.65 (m, 26H, Ph), 6.23 (d, $J_{HH} = 8.0 \text{ Hz}$, 2H, NHPh), 6.13 (d, $J_{HH} = 7.8$ Hz, 2H, NHPh), 5.46 (d, ${}^{2}J_{HP} = 16.7$ Hz, NHPh), 4.84 (5H, Cp), 2.88–2.53 (m, 2H), 1.94–1.62 (m, 1H), 1.60-1.34 (m, 1H), 1.33-1.06 (m, 5H), 0.95-0.74 (m, 3H). ¹³C-{¹H} NMR (δ , CD₂Cl₂, 20 °C): 282.3 (dd, $J_{1,CP} = 33.0$ Hz, $J_{2,CP}$ = 13.8 Hz, =C), 141.8-116.2 (Ph), 86.2 (Cp), 48.8 (d, J_{CP} = 10.7 Hz, CH₂), 33.1 (CH₂), 21.8 (CH₂), 18.5 (CH₂), 13.8 (CH₃). ³¹P{¹H} NMR (δ , CD₂Cl₂, 20 °C): 81.9 (d, $J_{PP} = 37.2 \text{ Hz}$), 77.6 $(d, J_{PP} = 37.2 \text{ Hz}).$ $[\mathbf{RuCp}(\kappa_2(C,P)=\mathbf{C}(\mathbf{CH_2Ph})\mathbf{N}(\mathbf{Pr^n})\mathbf{PPh_2})(\kappa^1(P)-\mathbf{Pr^n})(\kappa^1(P)-\mathbf{Pr^n})\mathbf{PPh_2})(\kappa^1(P)-\mathbf{Pr^n})(\kappa^$ $PPh_2NHPr^n)]CF_3SO_3$ (6a). This complex has been prepared analogously to 5a using 1b (100 mg, 0.15 mmol), phenylacetylene (32 μ L, 0.29 mmol), and AgCF₃SO₃ (41.1 mg, 0.16 mmol) as starting materials. Yield: 105 mg (77%). Anal. Calcd for $C_{44}H_{47}F_3N_2P_2O_3RuS$ (mol wt 903.94): C, 58.46; H, 5.24; N, 3.10. Found: C, 58.39; H, 5.32; N, 3.17. ${}^{1}H$ NMR (δ , CD₂Cl₂, 20 °C): 7.88-6.82 (m, 25H, Ph), 4.27 (5H, Cp), 3.48-3.24 (m, 1H, CH_2Ph), 3.48-3.24 (m, 1H, CH_2Ph), 2.71-2.46 (m, 1H, $Pr^{n}),\,2.43-2.2\,(m,\,1H,\,Pr^{n}),\,1.95-1.63\,(m,\,1H,\,Pr^{n}),\,1.59-1.32\,$ (m, 1H, Prⁿ), 1.31-0.93 (m, 4H, Prⁿ), 0.81 (t, $J_{HH} = 6.7$ Hz, $3H, Pr^{n}$), 0.62 (t, $J_{HH} = 7.3$ Hz, $3H, Pr^{n}$). The NH proton could not be detected. ${}^{13}C\{{}^{1}H\}$ NMR (δ , CD₂Cl₂, 20 °C): 276.8
(dd, $J_{\rm CP} = 32.2 \text{ Hz}, J_{\rm CP} = 14.6 \text{ Hz}, =C), 135.7-127.8 (Ph), 85.0$ (Cp), 54.1 (CH₂), 51.5 (CH₂), 46,0 (CH₂), 24.8 (CH₂), 23.1 (CH₂), 11.0 (CH₃), 10.8 (CH₃). ³¹P{¹H} NMR (δ, CD₂Cl₂, 20 °C): 88.7 $(d, J_{PP} = 37.2 \text{ Hz}), 74.5 (d, J_{PP} = 37.2 \text{ Hz}).$ $[\mathbf{RuCp}(\kappa^2(C,P)=\mathbf{C}(\mathbf{CH_2C_6H_4CH_3})\mathbf{N}(\mathbf{Pr^n})\mathbf{PPh_2})(\kappa^1(P)-\mathbf{Pr^n})(\kappa^1(P)-\mathbf{Pr^n})\mathbf{PPh_2})(\kappa^1(P)-\mathbf{Pr^n})(\kappa^1(P)-\mathbf{P$ PPh₂NHPrⁿ)]CF₃SO₃ (6b). This complex has been prepared analogously to **5a** with **1b** (100 mg, 0.15 mmol), p-tolylacetylene (36.8 µL, 0.29 mmol), and AgCF₃SO₃ (41.1 mg, 0.16 mmol) as starting materials. Yield: 103 mg (75%). Anal. Calcd for C₄₅H₄₉F₃N₂O₂P₂RuS (mol wt 917.97): C, 58.88; H, 5.39; N, 3.05. Found: C, 58.89; H, 5.44; N, 3.08. ${}^{1}H$ NMR (δ , CD₂Cl₂, 20 °C): 7.97-6.71 (m, 25H, Ph), 4.26 (5H, Cp), 3.84-3.55 (m, 1H, $CH_2C_6H_4Me$), 3.51-3.27 (m, 1H, $CH_2C_6H_4Me$), 2.89-2.69 (m, 1H, Prⁿ), 2.67-2.47 (m, 1H, Prⁿ), 2.46-2.22 (m, 1H, Prⁿ), 2.38 (3H, CH₃), 1.87–1.65 (1H, Prⁿ), 1.58–1.05 (m, 4H, Prⁿ), $0.81 (t, J_{HH} = 7.4 \text{ Hz}, 3H, Pr^n), 0.60 (t, J_{HH} = 7.3 \text{ Hz}, 3H, Pr^n).$ The NH proton could not be detected. ${}^{13}C\{{}^{1}H\}$ NMR (δ , CD₂-Cl₂, 20 °C): 275.8 (dd, $J_{CP} = 31.4 \text{ Hz}$, $J_{CP} = 14.6 \text{ Hz}$, =C), 138.1–118.1 (Ph), 84.9 (Cp), 54.0 (d, $J_{\rm CP}=3.2~{\rm Hz},~{\rm CH_2}),$ 51.0 $(d, J_{CP} = 12.3 \text{ Hz}, CH_2), 45.8 (d, J_{CP} = 10.0 \text{ Hz}, CH_2), 24.3 CH_2$ $J_{\rm CP} = 6.9~{\rm Hz},~{\rm CH_2}),~23.2~({\rm CH_2}),~20.8~({\rm CH_3}),~11.0~({\rm CH_3}),~10.8$ (CH₃). ${}^{31}P\{{}^{1}H\}$ NMR (δ , CD₂Cl₂, 20 ${}^{\circ}$ C): 88.8 (d, $J_{PP}=37.2$ Hz), 74.4 (d, $J_{PP} = 37.2 \text{ Hz}$). $[\mathbf{RuCp}(\kappa^2(C,P)=\mathbf{C}(\mathbf{CH_2Bu^n})\mathbf{N}(\mathbf{Pr^n})\mathbf{PPh_2})(\kappa^1(P)-\mathbf{Pr^n})\mathbf{PPh_2})$ PPh₂NHPrⁿ)]CF₃SO₃ (6c). This complex has been prepared analogously to 5a using 1b (100 mg, 0.15 mmol), 1-hexyne $(50.0 \,\mu\text{L}, \, 0.44 \, \text{mmol}), \, \text{and AgCF}_3\text{SO}_3 \, (41.1 \, \text{mg}, \, 0.16 \, \text{mmol}) \, \text{as}$ starting materials. Yield: 111 mg (84%). Anal. Calcd for C₄₂H₅₁F₃N₂O₃P₂RuS (mol wt 883.95): C, 57.07; H, 5.82; N, 3.17. Found: C, 57.12; H, 5.69; N, 3.22. ${}^{1}H$ NMR (δ , CD₂Cl₂, 20 °C): 7.98-6.91 (m, 20H, Ph), 4.72 (5H, Cp), 3.69-3.40 (m, 1H), 3.37-3.13 (m, 1H), 3.09-2.86 (m, 1H), 2.79-2.60 (m, 1H), $2.59 - 2.35 \ (m, \, 2H), \, 2.33 - 2.10 \ (m, \, 2H), \, 1.83 - 1.18 \ (m, \, 8H), \, 0.93$ $(t, J_{HH} = 7.0 \text{ Hz}, 3H), 0.80 (t, J_{HH} = 7.3 \text{ Hz}, 3H), 0.56 (t, J_{HH})$ = 7.4 Hz, 3H). The NH proton could not be detected. ¹³C{¹H} NMR (δ , CD₂Cl₂, 20 °C): 280.5 (dd, $J_{CP} = 32.2 \text{ Hz}$, $J_{CP} = 14.6$ Hz, =C), 138.5-118.1 (Ph), 84.9 (Cp), 53.7 (CH₂), 46.4 (d, J_{CP} = 11.5 Hz, CH₂), 45.7 (d, J_{CP} = 10.5 Hz, CH₂), 31.8 (CH₂), 27.8 (CH_2) , 24.2 $(d, J_{CP} = 6.9 \text{ Hz}, CH_2)$, 22.8 (CH_2) , 22.3 (CH_2) , 13.8 (CH₃), 10.9 (CH₃). ³¹P{¹H} NMR (δ, CD₂Cl₂, 20 °C): 88.4 (d, $J_{PP} = 37.2 \text{ Hz}$), 72.2 (d, $J_{PP} = 37.2 \text{ Hz}$). $[CpRu(PPh_2NHPh)_2(=C_4H_6O)]CF_3SO_3$ (7a). A solution of 1a (100 mg, 0.13 mmol) in CH₂Cl₂ (5 mL) and 3-butyn-1-ol $(20 \,\mu\text{L}, 0.45 \,\text{mmol})$ was treated with AgCF₃SO₃ $(37.4 \,\text{mg}, 0.15 \,$ mmol) and stirred at room temperature for 12 h. The solution was then evaporated to dryness, and the residue was redissolved in CH₂Cl₂. Insoluble materials were removed by filtration. On addition of Et₂O and petroleum ether a light brown precipitate was formed, which was washed with Et2O and petroleum ether and dried under vacuum. Yield: 85 mg (70%). Anal. Calcd for $C_{46}H_{43}F_3N_2O_4P_2RuS$ (mol wt 939.93): C, 58.78; H, 4.61; N, 2.98. Found: C, 58.09; H, 4.73; N, 2.99. 1H NMR $(\delta, \text{CD}_2\text{Cl}_2, 20 \text{ °C}): 7.59-7.27 \text{ (m, 20H, Ph)}, 6.97 \text{ (t, } J_{\text{HH}} = 8.0 ($ Hz, 4H, NHPh), 6.79 (t, $J_{\rm HH}$ = 7.4 Hz, 2H, NHPh), 6.45 (d, $J_{\rm HH} = 7.7 \text{ Hz}, 4\text{H}, \text{NH}Ph), 6.42 (\text{pt}, {}^{2}J_{\rm HP} = 7.6 \text{ Hz}, 2\text{H}, \text{N}HPh),$ 4.85 (5H, Cp), 4.49 (t, $J_{HH} = 7.4$ Hz, 2H, CH₂), 3.27 (t, $J_{HH} =$ 7.7 Hz, 2H, CH₂), 1.84 (q, $J_{\rm HH} = 7.5$ Hz, 2H, CH₂). $^{13}{\rm C}\{^{1}{\rm H}\}$ NMR (δ , CD₂Cl₂, 20 °C): 298.8 (t, $J_{CP} = 13.3$ Hz, =C), 141.5 (t, $J_{\rm CP} = 5.7$ Hz, NPh¹), 136.2 (t, ${}^{1}\!J_{\rm CP} = 27.5$ Hz, Ph¹), 135.7 $(t, {}^{1}J_{CP} = 29.1 \text{ Hz}, Ph^{1}), 131.2 - 128.4 (Ph), 121.2 (NPh^{4}), 118.5$ $(t, J_{CP} = 2.8 \text{ Hz}, \text{NPh}^{2.6}), 92.2 (t, J_{CP} = 1.8 \text{ Hz}, \text{Cp}), 82.2 (\text{CH}_2),$ 59.5 (CH₂), 22.4 (CH₂). ${}^{31}P{}^{1}H}$ NMR (δ , CD₂Cl₂, 20 °C): 80.3. $[CpRu(PPh_2NHPr^n)_2(=C_4H_6O)]CF_3SO_3$ (7b). This complex has been prepared analogously to 7a using 1b (100 mg, 0.15 mmol), 3-butyn-1-ol (109.7 μ L, 1.45 mmol), and AgCF₃-SO₃ (41.1 mg, 0.16 mmol) as starting materials. Yield: 88 mg (68%). Anal. Calcd for $C_{40}H_{47}F_3N_2O_4P_2RuS$ (mol wt 871.89): C, 55.10; H, 5.43; N, 3.21. Found: C, 55.06; H, 5.33; N, 3.12. $^{1}H\ NMR\ (\delta,\ CD_{2}Cl_{2},\ 20\ ^{\circ}C);\ \ 7.98-7.23\ (m,\ 20H,\ Ph),\ 4.83\ (5H,\ Ph)$ Cp), 4.51 (t, $J_{HH} = 7.4$ Hz, 2H), 4.27–4.09 (m, 2H, NHPrⁿ), 3.75 (t, $J_{HH} = 6.0$ Hz, 2H), 2.85 (t, $J_{HH} = 7.7$ Hz, 2H), 2.62-2.33 (m, 5H), 1.74-1.58 (m, 1H), 1.58-1.39 (m, 2H), 0.87 (t, $J_{\rm HH} = 7.7~{\rm Hz},\,6{\rm H}$). $^{13}{\rm C}\{^{1}{\rm H}\}~{\rm NMR}~(\delta,\,{\rm CD_2Cl_2},\,20~^{\circ}{\rm C})$: 297.8 (t, $J_{\rm CP} = 14.2 \text{ Hz}, =C$, 137.8 (t, ${}^{1}J_{\rm CP} = 28.0 \text{ Hz}, \text{ Ph}^{1}$), 136.8 (t, ${}^{1}J_{CP} = 29.5 \text{ Hz}, \text{Ph}^{1}$), 133.9–128.3 (Ph), 91.9 (Cp), 81.6 (CH₂), $58.9 \text{ (CH}_2), 45.6 \text{ (t, } J_{CP} = 5.0 \text{ Hz, CH}_2), 24.6 \text{ (t, } J_{CP} = 3.5 \text{ Hz,}$ CH₂), 22.2 (CH₂), 11.3 (CH₃). ${}^{31}P\{{}^{1}H\}$ NMR (δ , CD₂Cl₂, 20 ${}^{\circ}C$): $[RuCp(=C(CH_2Ph)NHPh)(PPh_2NHPh)(\kappa^1(\textbf{\textit{P}})-PPh_2OH)]-$ **CF₃SO₃** (8a). A solution of 1 (150 mg, 0.20 mmol) in CH₂Cl₂ (5 mL) and phenylacetylene $(65 \mu\text{L}, 0.6 \text{ mmol})$ was treated with $AgCF_3SO_3$ (56 mg, 0.22 mmol). H_2O (8 μ L, 0.4 mmol,) was added, and the reaction mixture was stirred at room temperature for 12 h. The solution was evaporated to dryness and the residue dissolved in CH₂Cl₂. Insoluble materials were removed by filtration. Upon addition of Et₂O and petroleum ether an orange precipitate was formed, which was washed with Et₂O and petroleum ether and dried under vacuum. Yield: 115 mg (58%). Anal. Calcd for C₅₀H₄₅F₃N₂O₄P₂RuS
(mol wt 990.0): C, 60.66; H, 4.58; N, 2.83. Found: C, 60.78; H, 4.50; N, 2.77. ¹H NMR (δ , CD₂Cl₂, 20 °C): 11.68 (1H, PPh₂OH), $7.96 - 6.84 \; (\mathrm{m}, \, 29\mathrm{H}, \, \mathrm{Ph}), \, 6.82 - 6.53 \; (\mathrm{m}, \, 6\mathrm{H}, \, \mathrm{Ph}), \, 6.46 \; (\mathrm{d}, \, ^2\!J_{\mathrm{HP}})$ = 7.2 Hz, 1H, NHPh), 6.23 (d, ${}^2J_{\rm HP}$ = 7.5 Hz, 1H, NHPh), 4.46 (5H, Cp), 3.96 (d, $J_{HH} = 14.7$ Hz, 1H, CH_2Ph), 3.62 (d, $J_{HH} =$ 14.9 Hz, 1H, C H_2 Ph). ¹³C{¹H} NMR (δ , CD₂Cl₂, 20 °C): 254.3 (t, $J_{\rm CP}=15.7$ Hz, =C), 142.9–118.6 (Ph), 88.8 (Cp), 54.6 (CH₂). ³¹P{¹H} NMR (δ , CD₂Cl₂, 20 °C): 141.0 (d, $J_{\rm PP}=47.1$ Hz), 80.5 (d, $J_{\rm PP}=47.1$ Hz). $[RuCp(=C(CH_2Bu^n)NHPh)(PPh_2NHPh)(\kappa^1-(P)-PPh_2OH)] \mathbf{CF_3SO_3}$ (8b). This complex has been prepared analogously to 8a using 1 (150 mg, 0.20 mmol), 1-hexyne (68.9 μ L, 0.6 mmol), AgCF₃SO₃ (61 mg, 0.24 mmol), and H_2O (8 μ L, 0.4 mmol,) as starting materials. Yield: 108 mg (56%). Anal. Calcd for C₄₈H₄₉F₃N₂O₄P₂RuS (mol wt 970.0): C, 59.44; H, 5.09; N, 2.89. Found: C, 59.39; H, 5.13; N, 2.67. 1 H NMR (δ , CD₂Cl₂, 20 $^{\circ}$ C): 10.75 (1H, PPh₂OH), 7.99–6.30 (m, 32H, Ph, NHPh), 4.71 (5H, Cp), 2.70-2.41 (m, 2H, CH_2), 1.15-0.57 (m, 9H, Bu^n). ${}^{13}C\{{}^{1}H\}$ NMR (δ , CD₂Cl₂, 20 °C): 258.7 (t, $J_{CP} = 15.3 \text{ Hz}, =C$), 142.6 (d, ${}^{1}\!J_{\rm PC} = 51.3~{\rm Hz}, {\rm Ph^{1}}$), 142.2 (d, $J_{\rm CP} = 12.2~{\rm Hz}, {\rm NPh^{1}}$), 140.4 $(d, {}^{1}J_{PC} = 47.5 \text{ Hz}, Ph^{1}), 139.3 (NPh^{1}), 138.1 (d, {}^{1}J_{PC} = 52.9)$ Hz, Ph¹), 135.9 (d, ${}^{1}J_{PC} = 55.2 \text{ Hz}$, Ph¹), 132.7–118.5 (Ph), 89.1 (Cp), 51.2 (CH₂), 31.5 (CH₂), 25.6 (CH₂), 21.8 (CH₂), 13.4 (CH₃). $^{31}P\{^{1}H\}$ NMR (δ , CD₂Cl₂, 20 °C): 140.8 (d, J_{PP} = 46.0 Hz), 80.7 $(d, J_{PP} = 45.9 \text{ Hz}).$ Attempts to Crystallize 7a. Formation of [RuCp(=C-(CH₂Buⁿ)NHPPh₂)($\kappa^2(P,P)$ -PPh₂OPPh₂)]CF₃SO₃ (9). Crystals of 9 were obtained by diffusion of Et₂O into a CH₂Cl₂ solution of 7a. ¹H NMR (δ , CD₂Cl₂, 20 °C): 7.93–7.70 (m, 4H), 7.69–7.37 (m, 16H), 7.28–7.01 (m, 4H), 5.79 (d, $J_{\rm HH}$ = 7.4 Hz, 2H), 5.2 (5H, Cp), 2.71–2.56 (m, 2H, CH₂), 1.35–0.65 (m, 9H, Buⁿ). ¹³C{¹H} NMR (δ , CD₂Cl₂, 20 °C): 254.1 (=C), 142.5–124.6 (Ph), 88.8 (Cp), 51.6 (CH₂), 31.5 (CH₂), 25.9 (CH₂), 21.8 (CH₂), 13.3 (CH₃). ³¹P{¹H} NMR (δ , CD₂Cl₂, 20 °C): 137.7. $[RuCp(=C(CH_2Ph)NHPh)(PPh_2NHPh)(k^1(P)-PPh_2O)]$ (10a). A solution of **7a** (100 mg, 0.10 mmol) in CH₂Cl₂ was passed through a column charged with neutral Al₂O₃. The yellow product was eluted with acetonitrile, evaporated to dryness and dried under vacuum. Yield: 47 mg (56%). Anal. Calcd for C₄₉H₄₄N₂OP₂Ru (mol wt 839.9): C, 70.07; H, 5.28; N, 3.34. Found: C, 69.89; H, 5.07; N, 3.37. ${}^{1}H$ NMR (δ , CD₂-Cl₂, 20 °C): 7.90-6.62 (m, 37H, Ph, NHPh), 4.46 (5H, Cp), $3.82 \text{ (d, } J_{\text{HH}} = 15.0 \text{ Hz, } 1\text{H, } CH_2\text{Ph)}, 3.56 \text{ (d, } J_{\text{HH}} = 15.1 \text{ Hz,}$ 1H, CH₂Ph). $^{13}\text{C}\{^{1}\text{H}\}$ NMR (δ , CD₂Cl₂, 20 °C): 251.4 (dd, $J_{\text{I,CP}}$ = 17.6 Hz, $J_{2,CP}$ = 14.6 Hz, =C), 149.7 (d, ${}^{1}J_{PC}$ = 48.3 Hz, Ph¹), 148.3 (d, ${}^{1}J_{PC} = 42.9 \text{ Hz}$, Ph¹), 144.0 (d, $J_{CP} = 12.3 \text{ Hz}$, NPh¹), 140.3 (d, ${}^{1}J_{PC} = 42.9 \text{ Hz}$, Ph¹), 138.8 (d, ${}^{1}J_{PC} = 40.0 \text{ Hz}$, Ph¹), 138.3 (NPh1), 137.6 (CH₂Ph1), 133.8-118.0 (Ph), 87.7 (Cp), 55.3 (CH₂). $^{31}P\{^{1}H\}$ NMR (δ , CD₂Cl₂, 20 °C): 110.6 (d, $J_{PP}=48.4$ Hz), 79.1 (d, $J_{PP} = 48.4 \text{ Hz}$). $[\mathbf{RuCp}(=\mathbf{C}(\mathbf{CH_2C_6H_4Me})\mathbf{NHPh})(\mathbf{PPh_2NHPh})(\kappa^1(\textbf{\textit{P}})-$ **PPh₂O)**] (10b). A solution of **5b** (80 mg, 0.08 mmol) in CH₂-Cl₂ was passed through a column charged with neutral Al₂O₃. The yellow product was eluted with acetonitrile, evaporated to dryness, and dried in vacuo. Yield: 56 mg (82%). Anal. Calcd for C₅₀H₄₆N₂OP₂Ru (mol wt 853.9): C, 70.33; H, 5.43; N, 3.28. Found: C, 70.39; H, 5.36; N, 3.36. ¹H NMR (δ, CD₂Cl₂, 20 °C): 7.88-6.56 (m, 36H, Ph, NHPh), 4.46 (5H, Cp), 3.76 (d, $J_{HH} =$ 14.9 Hz, 1H, CH_2Ph), 3.48 (d, $J_{HH} = 15.0$ Hz, 1H, CH_2Ph), 2.35 (3H, C H_3). ¹³C{¹H} NMR (δ , CD₂Cl₂, 20 °C): 251.5 (dd, $J_{1,CP}$ = 17.6 Hz, $J_{2,CP}$ = 14.6 Hz, =C), 149.8 (d, ${}^{1}J_{PC}$ = 47.5 Hz, Ph 1), $148.3 \text{ (d, } {}^{1}J_{PC} = 42.9 \text{ Hz, Ph}^{1}), 144.0 \text{ (d, } J_{CP} = 12.3 \text{ Hz, NPh}^{1}),$ $140.2 \text{ (d, } {}^{1}J_{PC} = 42.9 \text{ Hz, Ph}^{1}), 138.8 \text{ (d, } {}^{1}J_{PC} = 42.2 \text{ Hz, Ph}^{1}),$ 137.6 (NPh¹), 135.5 (CH₂C₆H₄CH₃, Ph), 135.1 (CH₂C₆H₄CH₃, Ph), 131.6-118.0 (Ph), 87.6 (Cp), 53.8 (CH₂), 20.8 (CH₃). ³¹P-{¹H} NMR (δ , CD₂Cl₂, 20 °C): 111.1 (d, $J_{PP} = 47.1$ Hz), 79.1 $(d, J_{PP} = 47.1 \text{ Hz}).$ [CpRu(PPh₂NHPh)₂(=C=CPh₂)]CF₃SO₃ (11). A solution of complex 1 (150 mg, 0.20 mmol) in CH₂Cl₂ (5 mL) and 1,1-diphenylpropyn-1-ol (124 mg, 0.6 mmol) was treated with AgO₃SCF₃ (56 mg, 0.22 mmol) and stirred at room temperature for 8 h. The solution was evaporated to dryness and the residue dissolved in CH₂Cl₂. Insoluble materials were filtered off. On addition of Et₂O a dark red solid was formed, which was washed with Et₂O and dried under vacuum. Yield: 173 mg (82%). Anal. Calcd for $C_{57}H_{47}F_3N_2P_2O_3RuS$ (mol wt 1060.1): C, 64.58; H, 4.47; N, 2.64. Found: C, 64.63; H, 4.50; N, 2.72. $^{1}\mathrm{H}$ NMR (δ , CD₂Cl₂, 20 °C): 7.97–6.96 (m, 30H, Ph), 6.84 (t, $J_{\mathrm{HH}}=7.9$ Hz, 4H, NHPh), 6.71 (t, $J_{\mathrm{HH}}=7.3$ Hz, 2H, NHPh), 6.38 (dd, $J_{\mathrm{1,HP}}=19.0$ Hz, $J_{\mathrm{2,HP}}=7.8$ Hz, 2H, NHPh), 6.00 (d, $J_{\mathrm{HH}}=7.5$ Hz, 4H, NHPh), 5.1 (5H, Cp). $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (δ , CD₂-Cl₂, 20 °C): 291.9 (=C), 201.5 (=C=C=CPh₂), 161.2 (=C=C=CPh₂), 143.6–128.2 (Ph), 120.8 (NPh⁴), 118.1 (NPh^{2,6}), 93.0 (Cp). $^{31}\mathrm{P}\{^{1}\mathrm{H}\}$ NMR (δ , CD₂Cl₂, 20 °C): 74.1. $[\mathbf{RuCp}(\kappa_2(C,P)=\mathbf{C}(\mathbf{CH}=\mathbf{CPh_2})\mathbf{N}(\mathbf{Pr^n})\mathbf{PPh_2})(\kappa^1(P)-\mathbf{Pr^n})\mathbf{PPh_2})(\kappa^1(P)-\mathbf{Pr^n})\mathbf{PPh_2}(\kappa^1(P)-\mathbf{Pr^n}$ PPh_2NHPr^n]CF₃SO₃ (12). A solution of 1b (100 mg, 0.15 mmol) in CH₂Cl₂ (5 mL) and 1,1-diphenylpropyn-1-ol (91 mg, 0.44 mmol) was treated with AgCF₃SO₃ (41.1 mg, 0.16 mmol) and stirred at room temperature for 1 h. The solution was then evaporated to dryness and the residue redissolved in CH₂Cl₂. Insoluble materials were removed by filtration. On addition of Et₂O and petroleum ether a brown precipitate was formed, which was washed with Et₂O
and petroleum ether and dried under vacuum. Yield: 93 mg (63%). Anal. Calcd for C₅₁H₅₁F₃N₂- P_2O_3RuS (mol wt 992.05): C, 61.75; H, 5.18; N, 2.82. Found: C, 61.69; H, 5.22; N, 2.77. ¹H NMR (δ, CD₂Cl₂, 20 °C): 7.91- $6.99\ (m,30H,Ph),\, 5.08\ (1H,-CH\!\!=\!\!CPh_2),\, 4.16\ (5H,Cp),\, 4.02-1000$ $3.78 \ (m,\ 1H,\ Pr^n),\ 3.52 - 3.28 \ (m,\ 1H,\ Pr^n),\ 2.69 - 2.42 \ (m,\ 1H,\ Pr^n)$ Prⁿ), 2.40–2.20 (m, 1H, Prⁿ), 1.97–1.76 (m, 1H, NHPrⁿ), 1.51– 1.24 (m, 2H, Prⁿ), 1.22–1.00 (m, 2H, Prⁿ), 0.71 (t, $J_{HH} = 7.1$ Hz, 3H, Prⁿ), 0.59 (t, $J_{HH} = 7.3$ Hz, 3H, Prⁿ). ¹³C{¹H} NMR (δ , CD₂Cl₂, 20 °C): 275.2 (dd, $J_{1,CP} = 31.1$ Hz, $J_{2,CP} = 15.0$ Hz, =C), 148.0 ($-CH=CPh_2$), 138.2-125.4 (Ph), 92.7 ($-CH=CPh_2$), 85.0 (Cp), 54.7 (d, $J_{CP} = 2.3 \text{ Hz}$, CH₂), 45.9 (d, $J_{CP} = 10.0 \text{ Hz}$, CH_2), 24.3 (d, $J_{CP} = 6.9 \text{ Hz}$, CH_2), 22.8 (CH_2), 11.0 (CH_3), 10.8 (CH₃). ${}^{31}P\{{}^{1}H\}$ NMR (δ , CD₂Cl₂, 20 ${}^{\circ}$ C): 88.6 (d, $J_{PP}=36.0$ Hz), 75.1 (d, $J_{PP} = 36.0 \text{ Hz}$). $[RuTp(PPh_2NHPh)_2(=C=CH(Bu^n))]SbF_6$ (13). A solution of 2a (150 mg, 0.16 mmol) in CH₂Cl₂ (5 mL) and 1-hexyne (55 μ L, 0.48 mmol) was treated with AgSbF₆ (65.2 mg, 0.19 mmol) and stirred at room temperature for 24 h. The solution was evaporated to dryness and the residue dissolved in CH₂Cl₂. Insoluble materials were filtered off. On addition of Et₂O and petroleum ether a dark yellow solid was formed, which was washed with Et₂O and petroleum ether and dried under vacuum. Yield: 118 mg (62%). Anal. Calcd for C₅₁H₅₂BF₆N₈P₂-RuSb (mol wt 1185.6): C, 51.62; H, 4.42; N, 9.44. Found: C, 51.59; H, 4.47; N, 9.47. 1 H NMR (δ , CD₂Cl₂, 20 $^{\circ}$ C): 8.04– 6.47 (m, 33H, Ph, Tp), 6.27-6.13 (m, 4H, Tp), 5.89-5.78 (m, 2H, Tp), 5.29 (pt, ${}^{2}J_{HP} = 7.3$ Hz, 2H, NHPh), 4.31–4.20 (m, 1H, =C= $CHBu^n$), 2.22-2.08 (m, 2H, Bu^n), 1.36-1.22 (m, 2H, Buⁿ), 1.20–1.01 (m, 2H, Buⁿ), 0.66 (t, $J_{HH} = 7.1 \text{ Hz}$, 3H, Buⁿ). $^{13}{\rm C}\{^{1}{\rm H}\}$ NMR (&, CD₂Cl₂, 20 °C): 369.8 (t, $J_{\rm CP}=17.6$ Hz, = C=CHBuⁿ), 144.9 (Tp), 144.4 (Tp), 140.4 (t, $J_{CP} = 4.6$ Hz, $NPh^1),\ 137.8\ (Tp),\ 136.4\ (Tp),\ 132.9\ (Tp),\ 132.3-128.6\ (Ph),$ 121.9 (NPh⁴), 118.6 (NPh^{2,6}), 107.0 (=C=CHBuⁿ), 106.4 (Tp), 105.9 (Tp), 33.1 (CH₂), 21.8 (CH₂), 18.5 (CH₂), 13.8 (CH₃). ³¹P- ${^{1}H}$ NMR (δ , CD₂Cl₂, 20 °C): 67.2. $[\mathbf{RuTp}(\mathcal{K}^2(C,P) = \mathbf{C}(\mathbf{CH_2Ph})\mathbf{N}(\mathbf{Ph})\mathbf{PPh_2})(\mathcal{K}^1(P) - \mathbf{PPh_2NHPh})] \mathbf{SbF_6}$ (14a). A solution of complex 2a (100 mg, 0.11 mmol) in CH₂Cl₂ (5 mL) and phenylacetylene (36 μL, 0.33 mmol) was treated with AgSbF₆ (41.2 mg, 0.12 mmol) and stirred at room temperature for 24 h. The solution was evaporated to dryness and the residue dissolved in CH₂Cl₂. Insoluble materials were filtered off. On addition of Et₂O and petroleum ether a dark yellow solid was formed, which was washed with Et₂O and petroleum ether and dried under vacuum. Yield: 108 mg (81%). Anal. Calcd for $C_{53}H_{48}BF_6N_8P_2RuSb$ (mol wt 1206.6): C, 52.76; H, 4.01; N, 9.29. Found: C, 52.84; H, 4.00; N, 9.16. ¹H NMR (δ, CD₂Cl₂, 20 °C): 8.13–6.39 (m, 37H, Ph, Tp), 6.15– 5.93 (m, 4H, Ph, Tp), 5.41-5.37 (m, 1H, Tp), 5.27-5.16 (m, 2H, Tp), 5.03 (d, $J_{HH} = 11.5$ Hz, 1H, CH_2Ph), 4.27 (d, $^2J_{HP} =$ 16.1 Hz, 1H, NHPh), 4.09 (dd, $J_{\rm HH} = 11.8$ Hz, $J_{\rm HP} = 3.5$ Hz, 1H, CH_2Ph). ¹³C{¹H} NMR (δ , CD_2Cl_2 , 20 °C): 286.4 (dd, J_{CP} $= 20.7 \text{ Hz}, J_{CP} = 12.3 \text{ Hz}, =C), 145.4 \text{ (Tp)}, 145.2 \text{ (Tp)}, 143.6$ (Tp), 141.6 (d, $J_{\rm CP}=10.7~{\rm Hz},~{\rm NPh^1}$), 140.0 (d, $J_{\rm CP}=4.6~{\rm Hz},$ NPh1'), 137.6 (Tp), 135.9 (Tp), 135.7 (Tp), 133.2-126.7 (Ph), 120.9 (NPh⁴), 117.5 (d, $J_{PC} = 4.6 \text{ Hz}$, NPh^{2,6}), 107.0 (Tp), 106.4 (Tp), 104.7 (Tp), 48.5 (d, $J_{\rm CP} =$ 10.0 Hz, CH₂). $^{31}{\rm P}\{^{1}{\rm H}\}$ NMR $(\delta, CD_2Cl_2, 20 \text{ °C})$: 84.2 (d, $J_{PP} = 39.7 \text{ Hz}$), 82.2 (d, $J_{PP} = 39.7 \text{ Hz}$) $[RuTp(\kappa^{2}(C,P)=C(CH_{2}C_{6}H_{4}Me)N(Ph)PPh_{2})(\kappa^{1}(P)-$ PPh₂NHPh)]CF₃SO₃ (14b). This complex has been prepared analogously to 14a using 2a (150 mg, 0.16 mmol), p-tolueneacetylene (63.2 μL, 0.48 mmol), and AgO₃SCF₃ (56 mg, 0.22 mmol) as starting materials. The solution was stirred at 50 °C for 48 h. Yield: 102 mg (56%). Anal. Calcd for $C_{55}H_{50}$ -BF₃N₈O₃P₂RuS (mol wt 1133.9): C, 58.26; H, 4.44; N, 9.88. Found: C, 58.09; H, 4.49; N, 9.92. 1 H NMR (δ , CD₂Cl₂, 20 ${}^{\circ}$ C): 8.23-6.25 (m, 36H, Ph, Tp), 6.13-5.97 (m, 4H, Ph, Tp), 5.44-5.37 (m, 1H, Tp), 5.17-5.07 (m, 2H, Tp), 4.96 (d, $J_{HH} = 11.5$ Hz, 1H, $CH_2C_6H_4CH_3$), 4.27 (d, ${}^2J_{HP} = 15.9$ Hz, 1H, NHPh), $4.07 \text{ (dd, } J_{1,HH} = 11.3 \text{ Hz, } J_{2,HP} = 3.7 \text{ Hz, } 1H, \text{ } CH_2\text{Ph), } 1.99$ (3H, CH₃). ¹³C{¹H} NMR (δ , CD₂Cl₂, 20 °C): 286.5 (dd, $J_{1,CP}$ = 20.7 Hz, $J_{2,CP}$ = 11.5 Hz, =C), 145.5 (Tp), 145.3 (Tp), 143.8 (Tp), 141.7 (d, $J_{CP} = 10.7 \text{ Hz}$, NPh¹), 140.0 (d, $J_{CP} = 4.6 \text{ Hz}$, NPh¹'), 137.6 (Tp), 135.9 (Tp), 135.7 (Tp), 133.3-125.4 (Ph), $120.9\ (NPh^4),\ 117.6\ (NPh^{2,6}),\ 107.0\ (Tp),\ 106.4\ (Tp),\ 104.5\ (Tp),$ 48.2 (d, $J_{CP} = 10.0 \text{ Hz}$, CH₂), 20.5 (CH₃). ³¹P{¹H} NMR (δ , CD₂-Cl₂, 20 °C): 83.9 (d, $J_{PP} = 39.7$ Hz), 82.4 (d, $J_{PP} = 39.7$ Hz). $[\mathbf{RuTp}(\kappa^2(\mathbf{C},\mathbf{P})=\mathbf{C}(\mathbf{CH_2Ph})\mathbf{N}(\mathbf{Pr^n})\mathbf{PPh_2})(\kappa^1(\mathbf{P})-\mathbf{PPh_2})(\kappa^2(\mathbf{PPh_2})-\mathbf{PPh_2})(\kappa^2(\mathbf{$ PPh₂NHPrⁿ)]CF₃SO₃ (15a). A solution of complex 2b (100 mg, 0.12 mmol) in $CH_2Cl_2\,(5~mL)$ and phenylacetylene (39 μL , 0.36 mmol) was treated with AgSbF₆ (34 mg, 0.13 mmol) and stirred at room temperature for 4 h. The solution was evaporated to dryness and the residue dissolved in CH₂Cl₂. Insoluble materials were filtered off. On addition of Et₂O and petroleum ether a yellow solid was formed, which was washed with Et₂O and petroleum ether and dried under vacuum. Yield: 103 mg (82%). Anal. Calcd. for C₄₈H₅₂BF₃N₈O₃P₂RuS (mol wt 1051.87): C, 54.81; H, 4.98; N, 10.65. Found: C, 54.84; H, 5.09; N, 10.58. ¹H NMR (δ , CD₂Cl₂, 20 °C): 8.21–6.15 (m, 33H, Ph, Tp), 6.00-5.84 (m, 1H, Tp), 5.76-5.61 (m, 1H, Tp), $4.98 \text{ (d, } J_{HH} = 13.6 \text{ Hz, } 1H, \text{ C}H_2\text{Ph}), 4.12-3.56 \text{ (m, } 2H, \text{ Pr}^n),$ 3.82 (d, $J_{HH} = 13.6$ Hz, 1H, CH_2Ph), 2.26-1.87 (m, 2H, Pr^n), 1.46-1.10 (m, 4H, Prⁿ), 0.90 (t, $J_{\rm HH}=7.6$ Hz, 3H, Prⁿ), 0.56 $(t, J_{HH} = 7.6 \text{
Hz}, 3H, Pr^n)$. The NH proton could not be detected. ¹³C{¹H} NMR (δ , CD₂Cl₂, 20 °C): 283.7 (dd, $J_{1,CP} = 23.0$ Hz, $J_{2,CP} = 11.5 \text{ Hz}, =C$, 146.1 (Tp), 144.9 (d, $J_{CP} = 3.1 \text{ Hz}, \text{Tp}$), 142.7 (Tp), 136.9 (Tp), 136.5 (Tp), 136.0 (Tp), 135.9-127.0 (Ph), 106.3 (Tp), 106.2 (Tp), 104.5 (Tp), 54.8 (d, $J_{CP} = 2.3 \text{ Hz}$, CH₂), 48.9 (d, $J_{CP} = 10.7 \text{ Hz}$, CH_2), 46.4 (d, $J_{CP} = 10.0 \text{ Hz}$, CH_2), $24.6 (d, J_{CP} = 5.4 Hz, CH_2), 22.7 (CH_2), 11.0 (CH_3), 10.3 (CH_3).$ ³¹P{¹H} NMR (δ , CD₂Cl₂, 20°C): 86.7 (d, $J_{PP} = 38.5 \text{ Hz}$), 78.6 $(d, J_{PP} = 38.5 \text{ Hz}).$ $[\mathbf{RuTp}(\kappa^2(C,P)=\mathbf{C}(\mathbf{CH}_2\mathbf{C}_6\mathbf{H}_4\mathbf{Me})\mathbf{N}(\mathbf{Pr^n})\mathbf{PPh_2})(\kappa^1(P)-\mathbf{N}(\mathbf{Pr^n})\mathbf{PPh_2})(\kappa^2(P)-\mathbf{N}(\mathbf{Pr^n})\mathbf{P$ PPh₂NHPrⁿ)]CF₃SO₃ (15b). This complex has been prepared analogously to **15a** using **2b** (100 mg, 0.12 mmol), p-tolueneacetylene (30.2 μ L, 0.24 mmol), and AgO₃SCF₃ (34 mg, 0.13 mmol) as starting materials. Yield: 116 mg (91%). Anal. Calcd for C₄₉H₅₄BF₃N₈O₃P₂RuS (mol wt 1065.90): C, 55.22; H, 5.11; N, 10.51. Found: C, 55.19; H, 5.19; N, 10.63. 1 H NMR (δ , CD₂-Cl₂, 20 °C): 8.08-6.06 (m, 32H, Ph, Tp), 5.94-5.84 (m, 1H, Tp), 5.78–5.67 (m, 1H, Tp), 4.90 (d, $J_{\rm HH} = 13.9$ Hz, 1H, ${\rm C}H_{2}$ -Ph), 4.08-3.57 (m, 2H, Prⁿ), 3.79 (dd, $J_{1,HH} = 14.1$ Hz, $J_{2,HP} Hz 2.1 Hz, 1H, CH₂Ph), 2.54-1.87 (m, 2H, Prⁿ), 2.11 (3H, CH₃), 1.50-1.21 (m, 2H, Prⁿ), 1.08-0.87 (m, 2H, Prⁿ), 0.67 (t, $J_{HH} =$ $6.5 \text{ Hz}, 3H, Pr^n$, $0.55 (t, J_{HH} = 7.3 \text{ Hz}, 3H, Pr^n)$. The NH proton could not be detected. $^{13}C\{^{1}H\}$ NMR (δ , CD₂Cl₂, 20 °C): 284.0 $(dd, J_{CP} = 22.6 \text{ Hz}, J_{CP} = 11.1 \text{ Hz}, =C), 146.1 (Tp), 145.0 (d, J_{CP} = 11.1 \text{ Hz}, =C)$ $J_{\rm CP} = 3.1~{\rm Hz}, {\rm Tp}),\, 142.8~({\rm Tp}),\, 137.0~({\rm Tp}),\, 136.4~({\rm d},\, J_{\rm CP} = 51.4)$ Hz), 136.4 (Tp), 135.9 (Tp), 135.3-127.6 (Ph), 106.3 (Tp), 106.1 $(d, J_{CP} = 3.1 \text{ Hz}, Tp), 104.5 (Tp), 54.7 (d, J_{CP} = 3.1 \text{ Hz}, CH_2),$ $48.6 \text{ (d, } J_{CP} = 10.7 \text{ Hz, } CH_2), 46.4 \text{ (d, } J_{CP} = 10.0 \text{ Hz, } CH_2),$ $24.5~(\mathrm{d}, J_{\mathrm{CP}} = 6.1~\mathrm{Hz}, \mathrm{CH_2}), \, 22.7~(\mathrm{CH_2}), \, 20.5~(\mathrm{CH_3}), \, 11.0~(\mathrm{CH_3}), \, 20.5~\mathrm{CH_3}), 20.5~$ 10.3 (CH₃). ${}^{31}P\{{}^{1}H\}$ NMR (δ , CD₂Cl₂, 20 °C): 87.0 (d, $J_{PP}=$ 38.5 Hz), 78.4 (d, $J_{PP} = 38.5$ Hz). $[\mathbf{RuTp}(\kappa^2(C,P)=\mathbf{C}(\mathbf{CH_2Bu^n})\mathbf{N}(\mathbf{Pr^n})\mathbf{PPh_2})(\kappa^1(P)-\mathbf{PPh_2})(\kappa^2(C,P)=\mathbf{C}(\mathbf{CH_2Bu^n})\mathbf{N}(\mathbf{Pr^n})\mathbf{PPh_2})(\kappa^2(P)-\mathbf{PPh_2})$ PPh₂NHPrⁿ)]CF₃SO₃ (15c). This complex has been prepared analogously to 15a using 2b (100 mg, 0.12 mmol), 1-hexyne (0.24 mmol, 27.3 μ L), and AgO₃SCF₃ (34 mg, 0.13 mmol) as starting materials. Yield: 103 mg (83%). Anal. Calcd for C₄₆H₅₆BF₃N₈O₃P₂RuS (mol wt 1031.88): C, 53.54; H, 5.47; N, 10.86. Found: C, 53.49; H, 5.49; N, 10.90. ^{1}H NMR (δ , CD₂-Cl₂, 20 °C): 8.05-6.22 (m, 29H, Ph, Tp), 5.99-5.76 (m, 2H, Tp), 4.07-3.62 (m, 2H, CH₂), 3.15-2.94 (m, 1H), 2.89-2.68 (m, 1H), 2.23-1.90 (m, 2H), 1.81-1.53 (m, 3H), 1.01-0.79 (m, 10H), 0.61-0.48 (m, 6H). The NH proton could not be detected. ¹³C{¹H} NMR (δ , CD₂Cl₂, 20 °C): 286.2
(dd, $J_{1,CP} = 22.2$ Hz, $J_{2,CP} = 10.7 \text{ Hz}, =C$, 146.1 (Tp), 144.5 (d, $J_{CP} = 3.8 \text{ Hz}, \text{Tp}$), 142.6 (Tp), 136.9 (Tp), 136.3 (d, $J_{\rm CP} = 2.3$ Hz, Tp), 135.7 (Tp), 135.6-127.6 (Ph), 106.2 (Tp), 105.8 (d, $J_{CP} = 2.3$ Hz, Tp), 104.1(Tp), 53.5 (d, $J_{CP} = 3.1 \text{ Hz}$, CH₂), 46.4 (d, $J_{CP} = 10.0 \text{ Hz}$, CH₂), $43.6 \text{ (d, } J_{\text{CP}} = 10.7 \text{ Hz, CH}_2), 31.9 \text{ (CH}_2), 25.0 \text{ (CH}_2), 24.5 \text{ (d, }$ $J_{\rm CP} = 6.1 \text{ Hz}, \text{CH}_2$, 24.2 (CH₂), 21.7 (CH₂), 13.1 (CH₃), 11.0 (CH3), 10.9 (CH3). $^{31}P\{^{1}H\}$ NMR (d, CD2Cl2, 20 °C): 87.7 (d, $J_{PP} = 38.5 \text{ Hz}$), 78.1 (d, $J_{PP} = 38.5 \text{ Hz}$). $[RuTp(PPh_2NHPh)_2(=C=C=CPh_2)]CF_3SO_3$ (16a). A solution of complex 2a (150 mg, 0.17 mmol) and 1,1-diphenylpropyn-1-ol (104 mg, 0.5 mmol) in CH₂Cl₂ (5 mL) was treated with AgO₃SCF₃ (47 mg, 0.18 mmol) and stirred at room temperature for 8 h. The solution was evaporated to dryness and the residue dissolved in CH_2Cl_2 . Insoluble materials were filtered off. On addition of Et₂O and petroleum ether a dark purple solid was obtained, which was washed with Et₂O and petroleum ether and dried under vacuum. Yield: 138 mg (69%). Anal. Calcd for $C_{61}H_{52}BF_3N_8P_2O_3RuS$ (mol wt 1208.0): C, 60.65; H, 4.34; N, 8.28. Found: C, 60.77; H, 4.41; N, 8.15. ¹H NMR (δ, CD₂Cl₂, 20 °C): 8.10-6.72 (m, 41H, Ph, Tp), 6.29-6.14 (m, 6H, Ph, Tp), 5.72–5.64 (m, 2H, Tp), 5.51 (pt, ${}^{2}J_{HP} =$ 7.9 Hz, 2H, NHPh). ¹³C{¹H} NMR (δ, CD₂Cl₂, 20 °C): 312.9 $(t, J_{CP} = 19.1 \text{ Hz}, =C = C = CPh_2), 199.6 (=C = C = CPh_2), 164.1$ $(=C=C=CPh_2)$, 145 4 (Tp), 144.0 (Tp), 143.4 (Ph^1) , 140.9 (t, t) $J_{\rm CP} = 5.0 \,\mathrm{Hz}, \,\mathrm{NPh^1}, \,137.6 \,\mathrm{(Tp)}, \,136.0 \,\mathrm{(Tp)}, \,133.1 \,\mathrm{(Tp)}, \,132.3 - 12.0 \,\mathrm{(Tp)}$ $127.8\ (Ph),\ 121.5\ (NPh^4),\ 118.2\ (NPh^{2,6}),\ 106.5\ (Tp),\ 105.4\ (Tp).$ ³¹P{¹H} NMR (δ, CD₂Cl₂, 20 °C): 71.5. $[RuTp(PPh_2NHPr^n)_2(=C=C=CPh_2)]CF_3SO_3$ (16b). A solution of complex 2b (100 mg, 0.12 mmol) and 1,1-diphenylpropyn-1-ol (50 mg, 0.24 mmol) in CH_2Cl_2 (5 mL) was treated with AgO₃SCF₃ (34 mg, 0.13 mmol) and stirred at room temperature for 1 h. The solution was evaporated to dryness and the residue dissolved in CH₂Cl₂. Insoluble materials were filtered off. On addition of Et₂O and petroleum ether a dark purple solid was obtained, which was washed with Et₂O and petroleum ether and dried under vacuum. Yield: 114 mg (83%). Anal. Calcd for $C_{55}H_{56}BF_3N_8P_2O_3RuS$ (mol wt1139.98): C, 57.95; H, 4.95; N, 9.83. Found: C, 58.08; H, 4.99; N, 9.91. ¹H NMR (δ , CD₂Cl₂, 20 °C): 8.13–6.93 (m, 33H, Ph, Tp), 6.65-6.46 (m, 4H, Ph, Tp), 6.43-6.32 (m, 2H, Tp), 5.77-5.68 (m, 1H, Tp), 2.85-2.25 (m, 4H, Prⁿ), 1.71-1.44 (m, 4H, Pr^n), 0.91 (t, $J_{HH} = 7.3$ Hz, 6H, Pr^n). The NH proton could not be detected. ${}^{13}\text{C}\{{}^{1}\text{H}\}\ \text{NMR}\ (\delta,\ \text{CD}_{2}\text{Cl}_{2},\ 20\ {}^{\circ}\text{C})$: 316.9 (t, $J_{\text{CP}}=$ $19.9 \text{ Hz}, =C = C = CPh_2$, $206.1 (=C = C = CPh_2)$, $160.9 (=C = C = C = CPh_2)$ CPh₂), 146.9–127.6 (Tp, Ph), 106.6 (Tp), 106.1 (Tp), 105.3 (Tp), 46.8 (t, $J_{CP} = 4.6$ Hz, CH_2), 25.9 (t, $J_{CP} = 3.5$ Hz, CH_2), 11.5(CH₃). ${}^{31}P\{{}^{1}H\}$ NMR (δ , CD₂Cl₂, 20 °C): 78.8. $[\mathbf{RuTp}(\kappa^2(\mathbf{C},\mathbf{P})=\mathbf{C}(\mathbf{CH}=\mathbf{CPh_2})\mathbf{N}(\mathbf{Pr^n})\mathbf{PPh_2})(\kappa^1(\mathbf{P})-\mathbf{CPh_2})\mathbf{N}(\mathbf{Pr^n})\mathbf{PPh_2})(\kappa^2(\mathbf{P})-\mathbf{PPh_2})(\kappa^2(\mathbf{PP})-\mathbf{PPh_2})(\kappa^2(\mathbf{PP$ PPh₂NHPrⁿ)]CF₃SO₃ (17). A solution of complex 16b (100 mg, 0.09 mmol) in CH₂Cl₂ (5 mL) was heated at 50 °C for 8 h. The solution was reduced to about 1 mL. On addition of Et₂O and petroleum ether a red solid was obtained which was washed with Et₂O and petroleum ether and dried under vacuum. Yield: 83 mg (81%). Anal. Calcd. for C₅₅H₅₆BF₃N₈P₂O₃-RuS (mol wt 1139.98): C, 60.65; H, 4.34; N, 8.28. Found: C, 60.59; H, 4.38; N, 8.16. ¹H NMR (δ, CD₂Cl₂, 20 °C): 8.15-6.69 (m, 33H, Ph, Tp), 6.64-6.47 (m, 2H, Ph, Tp), 6.44-6.23 (m, 4H, Ph, Tp), 5.88-5.81 (m, 1H, Tp), 5.07 (d, $J_{HP} = 7.3$ Hz, 1H, CH), 3.70-3.46 (m, 1H), 3.25-2.97 (m, 1H), 2.63-2.28 (m, Table 1. Details for the Crystal Structure Determinations of Complexes 1a, 2a·CHCl₃, 3, 4·solv, and 9 | | 1a | 2a·CHCl ₃ | 3 | 4·solv | 9 | | |--|--|--------------------------------|---|-----------------------------|---|--| | formula | C ₄₁ H ₃₇ ClN ₂ P ₂ Ru | $C_{46}H_{43}BCl_4N_8P_2Ru$ | C ₄₂ H ₃₇ F ₃ N ₂ O ₃ P ₂ RuS | $C_{41}H_{37}F_6N_2P_2RuSb$ | C ₄₂ H ₄₂ F ₃ NO ₄ P ₂ RuS | | | fw | 756.19 | 1023.50 | 869.81 | 956.49 | 876.84 | | | cryst size, mm | $0.62\times0.54\times0.40$ | $0.60 \times 0.36 \times 0.20$ | $0.6 \times 0.4 \times 0.3$ | $0.70\times0.25\times0.20$ | 0.75 imes 0.42 imes 0.22 | | | space group (No.) | $P2_{1}(4)$ | $P2_1/n$ (14) | Pn(7) | $P2_1/n$ (14) | $P\bar{1}$ (2) | | | a, Å | 10.0363(6) | 11.005(2) | 9.9429(12) | 11.142(2) | 11.6571(7) | | | b, Å | 18.0314(11) | 21.850(3) | 21.374(3) | 15.037(3) | 12.9967(8) | | | c, Å | 10.3864(6) | 20.272(3) | 18.606(2) | 24.940(4) | 15.1889(9) | | | α , deg | 90 | 90 | 90 | 90 | 77.718(1) | | | β , deg | 113.968(1) | 103.544(2) | 98.610(2) | 100.654(3) | 68.636(1) | | | γ , deg | 90 | 90 | 90 | 90 | 71.892(1) | | | V , $Å^3$ | 1717.5(2) | 4738.7(12) | 3909.6(8) | 4106.5(12) | 2024.0(2) | | | Z | 2 | 4 | 4 | 4 | 2 | | | $ ho_{ m calcd}, { m g \ cm^{-3}}$ | 1.462 | 1.435 | 1.478 | 1.547 | 1.439 | | | T, K | 100(2) | 123(2) | 297(2) | 173(2) | 300(2) | | | $\mu(\text{Mo K}\alpha), \text{mm}^{-1}$ | 0.660 | 0.666 | 0.592 | 1.161 | 0.574 | | | <i>F</i> (000) | 776 | 2088 | 1776 | 1904 | 900 | | | $\theta_{ m max}$, deg | 30 | 30 | 30 | 25 | 30 | | | no. of rflns measd | 32 068 | 67 859 | 29 072 | 27 305 | 28 295 | | | no. of unique rflns | 9955 | 13 633 | 19 397 | 6922 | 11 591 | | | no. of rflns $I \ge 2\sigma(I)$ | 9932 | 11 898 | 15 960 | 5232 | 9669 | | | no. of params | 430 | 598 | 987 | 508 | 629 | | | R1 $(I > 2\sigma(I))^a$ | 0.0167 | 0.0291 | 0.0315 | 0.0468 | 0.0344 | | | R1 (all data) | 0.0168 | 0.0360 | 0.0450 | 0.0735 | 0.0444 | | | wR2 (all data) a
 0.0443 | 0.0738 | 0.0745 | 0.1076 | 0.0912 | | | diff Fourier peaks
min/max, e Å ⁻³ | -0.26/0.40 | -0.50/0.76 | -0.42/0.35 | -0.70/1.47 | -0.74/0.77 | | $^{^{}a} R1 = \sum ||F_{0}| - |F_{c}||/\sum |F_{0}|; wR2 = [\sum (w(F_{0}^{2} - F_{c}^{2})^{2})/\sum (w(F_{0}^{2})^{2})]^{1/2}.$ Table 2. Details for the Crystal Structure Determinations of Complexes 10a, 11·CH₂Cl₂, 14a·2C₆H₅F, 15b·CH₂Cl₂, and 17 | | 10a | $11 \cdot \mathrm{CH_2Cl_2}$ | 14a •2C ₆ H ₅ F | $15b \cdot \mathrm{CH_2Cl_2}$ | 17 | |--|--------------------------------------|--|--|---|---| | formula | $\mathrm{C_{49}H_{44}N_{2}OP_{2}Ru}$ | C ₅₈ H ₄₉ Cl ₂ F ₃ N ₂ O ₃ - | $\mathrm{C}_{65}\mathrm{H}_{58}\mathrm{BF}_{8}\mathrm{N}_{8}\mathrm{P}_{2}\mathrm{RuSb}$ | C ₅₀ H ₅₆ BCl ₂ F ₃ N ₈ O ₃ - | C ₅₅ H ₅₆ BF ₃ N ₈ O ₃ - | | | | P_2RuS | | P_2RuS | P_2RuS | | fw | 839.87 | 1144.96 | 1398.76 | 1150.81 | 1139.96 | | cryst size, mm | 0.2 imes 0.1 imes 0.1 | $0.53\times0.36\times0.22$ | $0.12\times0.04\times0.02$ | $0.\overline{70} imes 0.50 imes 0.32$ | $0.\underline{6}8 \times 0.33 \times 0.19$ | | space group (No.) | $P2_{1}/c$ (14) | $P2_1/n$ (14) | $P2_{1}/c$ (14) | P1 (2) | P1(2) | | a, Å | 19.82(4) | 13.280(2) | 11.403(2) | 12.8141(5) | 12.3228(5) | | b, Å | 8.626(15) | 12.787(2) | 17.341(4) | 13.9087(6) | 13.8390(5) | | c, Å | 23.59(4) | 31.996(5) | 31.492(7) | 18.1289(7) | 17.7616(7) | | α, deg | 90 | 90 | 90 | 86.685(1) | 79.910(1) | | β , deg | 100.61(5) | 100.455(3) | 96.726(7) | 69.964(1) | 83.886(1) | | γ, deg | 90 | 90 | 90 | 62.774(1) | 63.820(1) | | $V, Å^3$ | 3964(13) | 5343.1(14) | 6184(2) | 2680.2(2) | 2674.7(2) | | $Z^{'}$ | 4 | 4 | 4 | 2 | 2 | | $ ho_{ m calcd}, { m g \ cm^{-3}}$ | 1.407 | 1.423 | 1.502 | 1.426 | 1.415 | | T, K | 300(2) | 173(2) | 300(2) | 173(2) | 173(2) | | $\mu(Mo K\alpha), mm^{-1}$ | 0.517 | 0.549 | 0.805 | 0.550 | 0.454 | | F(000) | 1736 | 2344 | 2824 | 1184 | 1176 | | $\theta_{ m max}$, deg | 25 | 25 | 23.1 | 30 | 30 | | no. of rflns measd | 9230 | 30 407 | 28 346 | 50 111 | 50 109 | | no. of unique rflns | 6115 | 9336 | 8639 | 15 449 | 15 487 | | no. of rflns $I > 2\sigma(I)$ | 2442 | 5480 | 3246 | 14 225 | 14 512 | | no. of params | 410 | 583 | 555 | 676 | 717 | | R1 $(I > 2\sigma(I))^a$ | 0.0905 | 0.0641 | 0.0874 | 0.0272 | 0.0249 | | R1 (all data) | 0.2121 | 0.1245 | 0.2321 | 0.0303 | 0.0268 | | $wR2 \text{ (all data)}^a$ | 0.2007 | 0.1834 | 0.2634 | 0.0743 | 0.0667 | | diff Fourier peaks
min/max, e Å ⁻³ | -0.62/0.85 | -0.78/1.11 | -0.53/0.77 | -0.66/0.53 | -0.32/0.46 | $^{^{}a} R1 = \sum ||F_{0}| - |F_{c}||/\sum |F_{0}|; wR2 = [\sum (w(F_{0}^{2} - F_{c}^{2})^{2})/\sum (w(F_{0}^{2})^{2})]^{1/2}.$ 2H), 2.27–2.09 (m, 1H), 2.03–1.84 (m, 1H), 1.67–1.39 (m, 2H), 0.88–0.75 (m, 3H), 0.64–0.44 (m, 3H). The NH proton could not be detected. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (δ , CD₂Cl₂, 20 °C): 274.8 (dd, $J_{\mathrm{CP}}=22.2$ Hz, $J_{\mathrm{CP}}=13.0$ Hz, =C), 152.5 (–CH=CPh₂), 146.3–129.9 (Tp, Ph), 129.7 (–CH=CPh₂), 129.6–127.0 (Ph), 106.7 (Tp), 106.0 (Tp), 105.1 (Tp), 56.9 (d, $J_{\mathrm{CP}}=2.3$ Hz, CH₂), 46.0 (d, $J_{\mathrm{CP}}=10.0$ Hz, CH₂), 24.5 (d, $J_{\mathrm{CP}}=6.1$ Hz, CH₂), 22.2 (CH₂), 11.0 (CH₃), 10.9 (CH₃). $^{31}\mathrm{P}\{^{1}\mathrm{H}\}$ NMR (δ , CD₂Cl₂, 20 °C): 83.4 (d, $J_{\mathrm{PP}}=39.7$ Hz), 80.2 (d, $J_{\mathrm{PP}}=39.7$ Hz). X-ray Structure Determination. Crystals of 1a, 2a·CHCl₃, 3, 4·solv, 9, 10a, 11·CH₂Cl₂, 14a·2C₆H₅F, 15b·CH₂Cl₂, and 17 were obtained by diffusion of Et₂O or pentane (4·solv, 15b·CH₂Cl₂, 17) into CH₂Cl₂ or CHCl₃ (2a·CHCl₃) solutions. Compound 9 cocrystallized with 10a from CH_2Cl_2/Et_2O . In the case of complex 14a this method gave only very unstable solvates, which were not measurable at all. Finally, evaporation crystallization from fluorobenzene was successful and yielded well-developed stable crystals of a corresponding solvate with the disadvantage of a very small size. Crystal data and experimental details are given in Tables 1 and 2. X-ray data were collected on a Bruker Smart APEX CCD area detector diffractometer using graphite-monochromated Mo K α radiation ($\lambda = 0.710~73~\text{Å}$) and 0.3° ω -scan frames covering either hemispheres or complete spheres of the reciprocal space, except for 9, where a quarter-sphere was measured. Corrections for absorption (multiscan method), $\lambda/2$ effects, and crystal decay were applied.33 The structures were solved by direct methods using the program SHELXS97.34 Structure refinement on F^2 was carried out with the program SHELXL97.³³ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were inserted in idealized positions and were refined riding with the atoms to which they were bonded, except for N-bound hydrogen atoms, which were refined in x, y, z if permitted by data quality. 35 Computational Details. All calculations were performed using the Gaussian 98 software package. 36 The geometries of the model complexes and the transition states were optimized at the B3LYP level³⁷ with the Stuttgart/Dresden ECP (SDD) (33) Bruker programs: SMART, version 5.054; SAINT, version 6.2.9; SADABS, version 2.03; XPREP, version 5.1; SHELXTL, version 5.1 (Bruker AXS Inc., Madison, WI, 2001). (34) Sheldrick, G. M. SHELX97: Program System for Crystal Structure Determination; University of Göttingen, Göttingen, Germany, 1997. (35) Spek, A. L. PLATON: A Multipurpose Crystallographic Tool; University of Utrecht, Utrecht, The Netherlands, 2003. (36) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, basis set.³⁸ For all other atoms the 6-31G(d,p) basis set was employed.³⁹ A vibrational analysis was performed to confirm that the structures of the model compounds have no imaginary frequency. The geometries were optimized without symmetry constraints. **Acknowledgment.** Financial support by the "Fonds zur Förderung der wissenschaftlichen Forschung" is gratefully acknowledged (Project No. P16600-N11). Supporting Information Available: Complete crystallographic data and technical details in CIF format for 1a, 2a. CHCl₃, 3, 4·solv, 9, 10a, 11·CH₂Cl₂, 14a·2C₆H₅F, 15b·CH₂Cl₂, and 17. This material is available free of charge via the Internet at http://pubs.acs.org. # OM050247A (37) (a) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648. (b) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. **1989**, 157, 200. (c) Lee, C.; Yang, W.; Parr, G. *Phys. Rev. B* **1988**, 37, 785. (38) (a) Haeusermann, U.; Dolg, M.; Stoll, H.; Preuss, H. *Mol. Phys.* **1993**, 78, 1211. (b) Kuechle, W.; Dolg, M.; Stoll, H.; Preuss, H. *J. Chem. Phys.* **1994**, 100, 7535. (c) Leininger, T.; Nicklass, A.; Stoll, H.; Dolg, M.; Schwerdtfeger, P. J. Chem. Phys. 1996, 105, 1052. (39) (a) McClean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639. (b) Krishnan, J. S.; Binkley, R.; Seeger, J. A.; Pople, J. Chem. Phys. 1980, 72, 650. (c) Wachters, A. H. Chem. Phys. 1970, 52, 1033. (d) Hay, P. J. J. Chem. Phys. **1977**, 66, 4377. (e) Raghavachari, K.; Trucks, G. W. J. Chem. Phys. **1989**, 91, 1062. (f) Binning, R. C.; Curtiss, L. A. J. Comput. Chem. 1995, 103, 6104. (g) McGrath, M. P.; Radom, L. J. Chem. Phys. 1991, 94, 511.