2002 Vol. 4, No. 23 4159-4161

Highly Efficient Synthesis of Chiral β-Amino Acid Derivatives via Asymmetric Hydrogenation

Wenjun Tang and Xumu Zhang*

Department of Chemistry, The Pennsylvania State University, 152 Davey Laboratory, University Park, Pennsylvania 16802

xumu@chem.psu.edu

Received September 19, 2002

ABSTRACT

$$\begin{array}{c} \text{COOR}_2 \\ \text{R}_1 & \text{NHAc} \end{array} \xrightarrow{\text{[Rh(TangPhos)(nbd)]SbF}_6} \\ \hline \text{rt, H}_2 \text{ (20 psi), 24 h, THF} \\ \hline \text{R}_1 & \text{NHAc} \end{array} \qquad \begin{array}{c} \text{COOR}_2 \\ \text{R}_1 & \text{NHAc} \end{array}$$

The Rh–TangPhos complex is an efficient hydrogenation catalyst for making chiral β -amino acid derivatives. With the Rh–TangPhos system, high enantioselectivities (up to 99.6%) and turnover numbers have been obtained in the hydrogenation of E/Z isomeric mixtures of both β -alkyl and β -aryl β -(acylamino)acrylates.

The synthesis of chiral β -amino acids has drawn a great deal of attention due to its importance in biomedical research and the pharmaceutical industry. Enantiomerically pure β -amino acids and their derivatives have been used as important building blocks for the synthesis of β -peptides, β -lactam antibiotics, and many important drugs. Although several stoichiometric and catalytic methods have been reported for the synthesis of β -amino acids, a practical and efficient synthesis is still highly desirable. Direct hydrogenation of 3-aminoacrylic acid derivatives represents one of the simplest

and most efficient routes. While good to excellent enantioselectivities have been reported in Ru- 3 or Rh-catalyzed 4 asymmetric hydrogenation of (E)- β -(acylamino)acrylates derivatives with the use of chiral bisphosphine ligands such as BINAP, 3 BICP, 4 DuPhos, 4b,c and BisP*, 4a the results of hydrogenation of (Z)- β -(acylamino)acrylates derivatives are less than satisfying. 5 For example, hydrogenation of (E)-methyl 3-acetamido-2-butenoate with an Ru-BINAP system gave 96% ee, while (Z)-methyl 3-acetamido-2-butenoate gave only 5% ee with the opposite configuration. Since both (Z)-

^{(1) (}a) Hoekstra, W. J., Ed. The Chemistry and Biology of β -Amino Acids. *Curr. Med. Chem.* **1999**, 6, 905. (b) *Enantioselective Synthesis of* β -Amino Acids; Juaristi, E., Ed.; Wiley-VCH: New York, 1997. (c) Guenard, D.; Guritte-Voegelein, R.; Potier, P. Acc. Chem. Res. **1993**, 26, 160.

^{(2) (}a) Tang, T.; Ellman, J. A. J. Org. Chem. 1999, 64, 12. (b) Sibi, M. P.; Shay, H. J.; Liu, M.; Jasperse, C. P. J. Am. Chem. Soc. 1998, 120, 6615. (c) Kobayashi, S.; Ishitani, H.; Ueno, M. J. Am. Chem. Soc. 1998, 120, 431. (d) Chung, X. X. Tetrahedron: Asymmetry 1997, 8, 5. (e) Dumas, F.; Mezrhab, B.; d'Angelo, J. J. Org. Chem. 1996, 61, 2293. (f) Davis, F. A.; Szewczyk, J. M.; Reddy, R. E. J. Org. Chem. 1996, 61, 2222. (g) Enders, D.; Wahl, H.; Bettray, W. Angew. Chem., Int. Ed. Engl. 1995, 34, 455. (h) Wang, Z.-M.; Kolb, H. C.; Sharpless, K. B. J. Org. Chem. 1994, 59, 5104. (i) Hattori, K.; Miyata, M.; Yamamoto, H. J. Am. Chem. Soc. 1993, 115, 1151. (j) Bunnage, M. E.; Davies, S. G.; Goodwin, C. J. J. Chem. Soc.

<sup>Perkin Trans. 1 1993, 1375. (k) Juaristi, E.; Escalante, J.; Lamatsch, B.;
Seebach, D. J. Org. Chem. 1992, 57, 2396. (l) Deng, L.; Jacobsen, E. N. J.
Org. Chem. 1992, 57, 4320. (m) Hawkins, J. M.; Fu, G. C. J. Org. Chem.
1986, 51, 2820.</sup>

⁽³⁾ Lubell, W. D.; Kitamura, M.; Noyori, R. Tetrahedron: Asymmetry 1991, 2, 543.

^{(4) (}a) Yasutake, M.; Gridnev, I. D.; Higashi, N.; Imamoto, T. *Org. Lett.* **2001**, *3*, 1701. (b) Heller, D.; Holz, J.; Drexler, H. J.; Lang, J.; Drauz, K.; Krimmer, H.-P.; Börner, A. *J. Org. Chem.* **2001**, *66*, 6816. (c) Zhu, G.; Chen, Z.; Zhang, X. *J. Org. Chem.* **1999**, *64*, 6907. (d) Furukawa, M.; Okawara, T.; Noguchi, Y.; Terawaki, Y. *Chem. Pharm. Bull.* **1979**, *27*, 2223. (e) Achiwa, K.; Soga, T. *Tetrahedron Lett.* **1978**, 1119.

⁽⁵⁾ Lee recently reported a new ligand, BMDPI, which shows good ees for both (*Z*)- and (*E*)-isomeric substrates, see: Lee, S.-G.; Zhang, Y. J. *Org. Lett.* **2002**, *4*, 2429.

and (E)-isomeric substrates are formed simultaneously in most synthetic protocols, the development of a new catalytic system that can work well for both isomeric substrates is needed. This is especially important in the situation where the (Z)- and (E)-substrates cannot be easily separated and only their mixture can be employed as the starting material. Herein, we disclose a new catalyst, the Rh-TangPhos system, for hydrogenation of β -aminoacrylic acid derivatives. High enantioselectivities have been obtained for both (Z)- and (E)-isomeric substrates with the Rh-TangPhos system.

We have previously demonstrated that the Rh—TangPhos complexes are highly efficient catalysts for hydrogenation of dehydroamino acids and E/Z mixtures of enamides.⁶ The structure of TangPhos has been confirmed by comparison with the X-ray structure of its corresponding phosphine sufide 1^7 (Figure 1). To further expand the utility of this electronic-

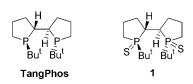


Figure 1. Structure of TangPhos and its phosphine sulfide 1.

rich phosphine in asymmetric hydrogenation, the Rh—TangPhos system was employed for hydrogenation of both (Z)- and (E)-isomers of methyl 3-acetamido-2-butenoate. (Table 1) The hydrogenation was conducted at room temperature under 20 psi of H_2 in the presence of 0.5 mol %

Table 1. Solvent Effect of Hydrogenation of Methyl 3-Acetamido-2-butenoate with the Rh—TangPhos System

entry ^a	substrate	solvent	conversion (%)	ee (%)
1	(E)- 2	CH ₃ OH	100	97.0
2	(E)- 2	THF	100	99.6
3	(E)- 2	toluene	82	98.0
4	(E)- 2	CH_2Cl_2	100	99.4
5	(E)- 2	EtOAc	100	99.5
6	(Z)- 2	CH_3OH	13	83.7
7	(Z)- 2	THF	100	98.5
8	(Z)- 2	toluene	55	96.9
9	(Z)- 2	CH_2Cl_2	88	98.5
10	(Z)- 2	EtOAc	99	98.5
11	(E)-2/(Z)-2 (1:1)	THF	100	99.5

 $[^]a$ Absolute configurations were determined to be $\it R$ by comparing the optical rotations with reported values. Reactions were carried out under 20 psi of $\rm H_2$ in solvent at room temperature for 24 h. Substrate/[Rh(Tang-Phos)nbd]SbF_6 = 200:1. The ees were determined by chiral GC using a chiralselect 1000 column.

 $[Rh(TangPhos)nbd]SbF_6$ (nbd = 3,5-norbornadiene) as the catalyst precursor. It was found that, with the Rh-TangPhos catalyst, both (Z)- and (E)-isomers were hydrogenated to form (R)-methyl 3-acetamidobutanoate. Our study showed that the solvent had a pronounced influence on both the reactivity and the enantioselectivity of the reaction (Table 1). While the (E)-isomer showed complete conversions in most solvents except toluene (entries 1-5), the (Z)-isomer showed lower reactivities (entries 6-10). THF was found to be an excellent solvent for the reaction, as complete conversions were obtained for both (Z)- and (E)-isomers. To our surprise, excellent enantioselectivities (E = 99.6% ee; Z = 98.5% ee) were obtained for both (Z)- and (E)-isomers (entries 2 and 7). To the best of our knowledge, these are among the highest enantioselectivities to date for hydrogenation of methyl 3-acetamido-2-butenoate, especially for hydrogenation of the (Z)-isomer (other ligands: Me-DuPhos, 87.8% ee;^{4b} BICP, 86.9% ee;^{4c} BINAP, 5% ee³). A 1:1 E/Z isomeric mixture of methyl 3-acetamido-2-butenoate was also subjected to hydrogenation. When THF was used as the solvent, (R)-methyl 3-acetamidobutanoate was obtained in 100% yield and 99.5% ee (entry 11). The H₂ pressure had a large influence on the enantioselectivity. Higher H₂ pressure deteriorated the ee, which was consistent with Börner's observation.4b When the hydrogenation of the 1:1 E/Z isomeric mixture was conducted under 80 psi of H₂ pressure, a lower ee (96.5%) was obtained.

To test the synthetic utilities of the Rh—TangPhos system for the synthesis of β -amino acid derivatives, a series of β -alkyl- and β -aryl-substituted β -(acylamino)acrylates were tested for hydrogenation. As shown in Table 2, a wide array of β -alkyl and β -aryl β -amino acid derivatives were obtained in excellent ees. For hydrogenation of (E)- β -alkyl β -(acylamino)acrylates, extremely high enantioselectivities (98–100%) have been obtained (entries 1 and 3–6). These results are comparable with those obtained with Imamoto's BisP*. Entries 1 and 2 showed another example in which both (Z)-and (E)-isomeric substrates gave the hydrogenation product with the same configuration in high ees. These results further demonstrated that an E/Z mixture of β -(acylamino)acrylates could be hydrogenated in high ee with the Rh—TangPhos system.

Asymmetric hydrogenation of β -aryl β -(acylamino)acrylates remains a challenging task. Since the (Z)- and (E)-isomeric substrates are not separable by column chromatography, hydrogenation of their E/Z mixtures is crucial for the synthesis of chiral β -aryl β -amino acid derivatives. While many β -aryl β -amino acid derivatives have been important intermediates for drug synthesis, 8 little success has been

4160 Org. Lett., Vol. 4, No. 23, 2002

⁽⁶⁾ Tang, W.; Zhang, X. Angew. Chem., Int. Ed. 2002, 41, 1612.

⁽⁷⁾ Crystallographic data for the X-ray structure of 1 have been deposited with Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-190907. For a graphical structure, see Supporting Information.

^{(8) (}a) Boesch, H.; Cesco-Cancian, S.; Hecker, L. R.; Hoekstra, W. J.; Justus, M.; Maryanoff, C. A.; Scott, L.; Shah, R. D.; Solms, G.; Sorgi, K. L.; Stefanick, S. M.; Thurnheer, U.; Villani, F. J., Jr.; Walker, D. G. Org. Process Res. Dev. 2001, 5, 23. (b) Hoekstra, W. J.; Maryanoff, B. E.; Damiano, B. P.; Andrade-Gordon, P.; Cohen, J. H.; Costanzo, M. J.; Haertlein, B. J.; Hecker, L. R.; Hulshizer, B. L.; Kauffman, J. A.; Keane, P.; McComsey, D. F.; Mitchell, J. A.; Scott, L.; Shah, R. D.; Yabut, S. C. J. Med. Chem. 1999, 42, 5254. (c) Zhong, H. M.; Cohen, J. H.; Abdel-

Table 2. Hydrogenation of β -Alkyl or β -Aryl β -(Acylamino)acrylates with the Rh—TangPhos System

$$\begin{array}{c} \text{COOR}_2 \\ \text{R}_1 \\ \text{NHAc} \\ \textbf{4} \end{array} \qquad \begin{array}{c} \text{[Rh(TangPhos)(nbd)]SbF}_6 \\ \hline \text{rt, H}_2 \text{ (20 psi), 24 h, THF} \\ \textbf{5} \end{array} \qquad \begin{array}{c} \text{COOR}_2 \\ \text{NHAc} \\ \textbf{5} \end{array}$$

entrya	R_1	R_2	$\mathbf{geometry}^c$	ee ^b (%)	configuration
1	Me	Et ((E)-4a)	E	99.5 (5a)	R
2	Me	Et ((<i>Z</i>)- 4a)	Z	97.3 (5a)	R
3	Me	<i>i</i> -Pr (4b)	E	99.3 (5b)	R
4	Et	Me (4c)	E	99.6 (5c)	R
5	<i>n</i> -Pr	Et (4d)	E	99.6 (5d)	R
6	<i>i</i> -Bu	Me (4e)	E	98.5 (5e)	R
7	Ph	Me (4f)	$E\!/\!Z$	93.8 (5f)	S
8	<i>p</i> -F-Ph	Me (4g)	$E\!/\!Z$	95.0 (5g)	S
9	<i>p</i> -Cl-Ph	Me (4h)	$E\!/\!Z$	92.3 (5h)	S
10	<i>p</i> -Br-Ph	Me (4i)	$E\!/\!Z$	95.1 (5i)	S
11	<i>p</i> -Me-Ph	Me (4j)	$E\!/\!Z$	94.0 (5j)	S
12	<i>p</i> -MeO-Ph	Me (4k)	$E\!/\!Z$	$98.5^d (\mathbf{5k})$	S
13	<i>p</i> -BnO-Ph	Me (41)	$E\!/\!Z$	98.5 (51)	S
14	o-Me-Ph	Me (4m)	$E\!/\!Z$	74.3 (5m)	S
15	o-MeO-Ph	Me (4n)	$E\!/Z$	83.1 (5n)	S

 a Reactions were carried out under 20 psi of H₂ in THF at room temperature for 24 h. Substrate/[Rh(TangPhos)nbd]SbF₆ = 200:1. Absolute configurations were determined by comparing the optical rotations with reported values. b The ee (%) values were determined by chiral GC using a Chiralselect 1000 column. c For E/Z ratios of E/Z mixtures, see refs 4c and 8. d The ee was determined by chiral HPLC using an (s,s)-whelk-01 column.

achieved for their syntheses through asymmetric hydrogenation. Previous reports showed only moderate ees with Rh—DuPhos,^{4c} Rh—BICP,^{4c} and Ru—BINAP³ systems. We recently developed a Ru-o-BINAPO system for the hydrogenation of β -aryl β -(acylamino)acrylates.⁹ Although excellent ees were obtained, the catalytic efficiencies were low

Magid, A. F.; Kenney, B. D.; Maryanoff, C. A.; Shah, R. D.; Villani, F. J., Jr.; Zhang, F.; Zhang, X. *Tetrahedron Lett.* **1999**, 40, 7721. (d) Shankar, B. B.; Kirkup, M. P.; McCombie, S. W.; Clader, J. W.; Ganguly, A. K. *Tetrahedron Lett.* **1996**, 37, 4095. (e) Burnett, D. A.; Caplen, M. A.; Davis, H. R., Jr.; Burrier, R. E.; Clader, J. W. J. Med. Chem. **1994**, 59, 1733.

(less than 100 turnovers). We found that the Rh-TangPhos system is very efficient for this type of substrate. As shown in Table 2 (entries 7-15), good to excellent ees (74.3-98.5%) have been obtained for a series of β -aryl β -(acylamino)acrylates. While no major electronic effect was observed for para-substituted β -aryl β -(acylamino)acrylates, electron-rich substrates gave slightly higher ees (entries 12 and 13). For ortho-substituted β -aryl β -(acylamino)acrylates, lower enantioselectivities were observed (entries 14 and 15). To further demonstrate the catalytic efficiency of the Rh-TangPhos system for hydrogenation of β -(acylamino)acrylates, 41 was subjected to hydrogenation in THF under 20 psi of H₂ in the presence of 0.1 mol % [Rh(TangPhos)nbd]SbF₆. The product (S)-51 was obtained in 100% yield and in 98.5% ee (TON = 1000), with no deterioration of enantioselectivity.

In conclusion, an efficient catalytic system for rhodium-catalyzed asymmetric hydrogenation of β -(acylamino)acrylates has been developed. With TangPhos as the chiral ligand, high enantioselectivities (up to 99.6%) and turnover numbers have been obtained in the hydrogenation of E/Z isomeric mixtures of both β -alkyl and β -aryl β -(acylamino)acrylates. Under these conditions, a variety of chiral β -alkyl and β -aryl β -amino acids can be efficiently synthesized. Since the substrates are easy to prepare according to known procedures, ^{4c,9} the Rh—TangPhos system provides an efficient and practical way for making chiral β -amino acid derivatives.

Acknowledgment. This work was supported by grants from the National Institutes of Health.

Supporting Information Available: X-ray structure of **1**, experimental procedure for hydrogenation, and analytical data of new substrates and products. This material is available free of charge via the Internet at http://pubs.acs.org.

OL026935X

Org. Lett., Vol. 4, No. 23, 2002

⁽⁹⁾ Zhou, Y.-G.; Tang, W.; Wang, W.-B.; Li, W.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 4952.