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ABSTRACT 

Greener synthesis of a series of novel indolizine analogues have been achieved by the 

cyclization of aromatic cycloimmoniumylides with electron deficient alkynes in presence of 

water as the base and solvent at 80 °C. Yield of the title compounds was good and reactions 

performed were eco-friendly. The structures of these newly synthesized compounds have 

been confirmed by spectroscopic techniques such as FTIR, NMR, LC-MS and elemental 

analysis. Characterized title compounds were evaluated for larvicidal activity against 

Anopheles arabiensis by standard WHO larvicidal assay using Temephos as standard at 4 

μg/mL. Title compounds 2e, 2f and 2g emerged as promising larvicidal agents.  

 

Keywords: 

Indolizine analogues, synthesis, characterization, larvicidal activity. 

 

Introduction 

Indolizines are bicyclic heterocyclic compounds containing condensed five and six 

membered rings with bridging nitrogen. They are isoelectronic with indole and represent a 

group of heterocyclic compounds structurally related to purines. Indolizine skeletons with 

different degrees of unsaturation are present in a wide variety of natural and unnatural 

azacyclic compounds. Most of the naturally occurring indolizines have been isolated from 

species of genus Dendrobates (Anura: Dendrobatidae) poison-arrow frogs (1, 2), 

Monomorium (Hymenoptera: Formicidae) ants (3), Dendrobium (Asparagales: Orchidaceae) 

orchids (4), Tylophora (Gentianales: Apocynaceae) vines (5) and plants of Leguminosae 

(Fabaceae) family (6). Indolizine alkaloids display broad spectrum of biological activities (4-

7). Polyhydroxylated indolizine alkaloids are excellent inhibitors of biologically important 

pathways. These include the binding and processing of glycoproteins (8), potent glycosidase 

inhibitor activities (6, 9, 10), activity against HIV (11, 12) as well as against other important 

pathogens (13). The 1-azabicyclo[4,3,0]nonane (indolizine) framework occupies a special 

place in heterocyclic systems due to the presence of this structural assembly in a number of 

natural products of biological importance such as tubersonine (14), (-)-strychnine (15), (+)-

vinblastine (16), (-)-monomorine (17), (-)-gephyrotoxin (18), etc. On the other hand, 
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synthetic indolizine derivatives have been reported as calcium channel blockers (19), 

phospholipase A2 inhibitors (20), histamine H3-receptors antagonist (21), 5-HT3-receptors 

antagonists (22), anti-inflammatory (23, 24), anti-tumour agents (25-27), oral hypoglycaemic 

(28) and CNS activity (29-31). In continuation of our studies on synthesis of promising 

heterocyclic compounds for anti-TB (32), anticancer (33, 34) and anti-mosquito properties 

(35, 36) and screening them for polymorphism behavior (37-39) herewith we undertake 

design and synthesis of novel indolizine scaffolds (scheme 1) to be screened for larvicidal 

activity against Anopheles arabiensis by standard WHO larvicidal assay using standard 

substance (40). 

 

Materials and Methods 

Chemistry 

All the reactions were carried out in hot-air dried glass wares under nitrogen atmosphere 

using dry solvents. NMR (400 MHz) spectra were recorded at ambient temperature using 

CDCl3, DMSO-d6 as a solvent using Bruker-400 spectrometer.  Chemical shift values are 

measured in δ ppm and were referenced with TMS. The peak multiplicities were given as 

follows; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet.  LC-MS analysis was 

performed on Agilent LC-1200 series coupled with 6140 single quad mass spectrometer with 

ESI +ve and –ve mode, MS range 100-2000.  Elemental analyses were recorded using Perkin 

Elmer CHNS analyser.  All the commercially available chemicals were purchased from 

Sigma-Aldrich Chemicals Company. 

 

General procedure for the preparation of 1-(2-(substituted phenyl)-2-oxoethyl)pyridin-

1-ium bromide (1a-f) 

To a stirred solution of pyridine (0.012 mol) in dry acetone (10 mL), was added substituted 

phenacylbromide (0.012 mol). Stirring was continued for 5 h at room temperature. Solid 

product separated was filtered and dried under vacuum to afford intermediates 1-(2-

(substituted phenyl)-2-oxoethyl)pyridin-1-ium bromide (1a-f) at 96-99% yield. 
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General procedure for the preparation of ethyl 3-(substituted benzoyl)-2-

methylindolizine-1-carboxylate (2a-j) 

To a stirred solution of 1-(2-(substituted phenyl)-2-oxoethyl)pyridiniumbromide (0.0016 

mol), in  water (10 mL), was added ethyl propiolate / ethyl 2-butynoate (0.0016 mol), stirred 

at 80 °C for 3h. Completion of reaction was monitored on TLC. The reaction mixture was 

diluted with ethyl acetate. Organic layer was separated, washed with brine and dried under 

sodium sulphate. The crude compound was purified by recrystallization method using hexane 

and ethyl acetate to afford 69-83% yield of ethyl 3-(substituted benzoyl)-2-methylindolizine-

1-carboxylates. The physicochemical constants of the title compounds 2a-j are tabulated in 

Table 3. 

 

Ethyl 3-(4-nitrobenzoyl)indolizine-1-carboxylate (2a) 

FTIR (KBr) (cm-1): 1679, 1620, 1595; 1H NMR (400 MHz, CDCl3) δ =  9.99-9.97 (m, 1H), 

8.45-8.36 (m, 3H), 7.97-7.93 (m, 2H), 7.74 (s, 1H), 7.56-7.51 (m, 1H), 7.19-7.15 (m, 1H), 

4.42-4.35 (q, J = 7.2Hz, 2H), 1.42-1.37 (t, J = 7.2, 3H); 13C NMR (300 MHz, CDCl3) = δ 

182.86, 163.66, 149.37, 145.34, 140.38, 129.70, 129.31, 129.16, 128.56, 123.66, 121.85, 

119.70, 115.94, 107.24, 60.30, 14.49; LC-MS (ESI, Positive): m/z: (M+H)+: 339.2; Anal. 

calculated for: C18H14N2O5; C, 63.90; H, 4.17; N, 8.28; Found: C, 63.87; H, 4.10; N, 8.22. 

 

Ethyl 2-methyl-3-(4-nitrobenzoyl)indolizine-1-carboxylate (2b) 

FTIR (KBr) (cm-1): 1681, 1618, 1595; 1H NMR(400 MHz, CDCl3) δ = 9.78-9.76 (m, 1H), 

8.40-8.32 (m, 3H), 7.83-7.79 (m, 2H), 7.47-7.41 (m, 1H), 7.07-7.06 (m, 1H), 4.43-4.36 (q, J 

= 7.2Hz, 2H), 2.18 (s, 3H), 1.44-1.40 (t, J = 8Hz, 3H); 13C NMR (400 MHz, DMSO-d6) δ = 

184.67, 163.74, 148.96, 146.17, 138.89, 137.45, 129.68, 128.55, 128.12, 123.87, 121.81, 

118.66, 115.34, 104.88, 59.55, 14.38, 14.24; LC-MS (ESI, Positive): m/z: (M+H)+: 353.2; 

Anal. calculated for:  C19H16N2O5; C, 64.77; H, 4.58; N, 7.95; Found: C, 64.70; H, 4.48; N, 

7.88. 
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Ethyl 3-(4-chlorobenzoyl)indolizine-1-carboxylate (2c) 

FTIR (KBr) (cm-1): 1699, 1614, 1523; 1H NMR (400 MHz, CDCl3) δ =  9.93-9.91 (m, 1H), 

8.42-8.39 (m, 1H), 7.78-7.75 (m, 3H), 7.51-7.45 (m, 3H), 7.12-7.08 (m, 1H), 4.41-4.35 (q, J 

= 7.2Hz, 2H), 1.42-1.38 (t, J = 7.2Hz, 3H); 13C NMR (300 MHz, DMSO-d6) δ = 183.16, 

162.89, 139.06, 137.95, 136.43, 130.47, 128.81, 128.73, 128.59, 127.72, 121.71, 118.77, 

116.09, 105.39, 59.73, 14.27; LC-MS (ESI, Positive): m/z: (M+H)+: 328.2; Anal. calculated 

for: C18H14ClNO3; C, 65.96; H, 4.31; N, 4.27; Found: C, 65.91; H, 4.30; N, 4.31. 

Ethyl 3-(4-chlorobenzoyl)-2-methylindolizine-1-carboxylate (2d) 

FTIR (KBr) (cm-1):  1687, 1620, 1510; 1H NMR (400 MHz, CDCl3) δ = δ 9.53-9.50 (m, 1H), 

8.36-8.33 (m, 1H), 7.65-7.63 (d, J=8.0 Hz, 2H), 7.47-7.45 (d, J = 8.0 Hz, 2H), 7.38-7.34 (m, 

1H), 6.98-6.94 (m, 1H), 4.42-4.36 (q, J = 7.2Hz, 2H), 2.23 (s, 3H), 1.44-1.40 (t, J = 7.2Hz, 

3H); 13C NMR (400 MHz, CDCl3) δ = 186.3, 164.8, 139.6, 139.4, 138.21, 137.75, 130.33, 

128.88, 127.96, 127.20, 122.51, 119.3, 114.4, 105.4, 59.84, 15.07, 14.52; LC-MS (ESI, 

Positive): m/z: (M+H)+: 342.2; Anal. calculated for: C19H16ClNO3; C, 66.77; H, 4.72;   N, 

4.10; Found: C, 66.83; H, 4.71;  N, 3.99. 

Ethyl 3-(4-bromobenzoyl)indolizine-1-carboxylate (2e) 

FTIR (KBr) (cm-1): 1699, 1612, 1521; 1H NMR (400 MHz, CDCl3) δ = 9.97-9.87 (m, 1H), 

8.41-8.39 (m, 1H), 7.77 (s, 1H), 7.71-7.64  (m, 4H), 7.49-7.46  (m, 1H), 7.12-7.08 (m, 1H), 

4.40-4.35 (q, J = 7.2Hz, 2H), 1.42-1.38 (t, J = 7.2Hz, 3H); 13C NMR (400 MHz, DMSO-d6) δ 

= 183.27, 162.86, 139.05, 138.28, 131.50, 130.61, 128.82, 128.72, 127.72, 125.34, 121.66, 

118.76, 116.09, 105.39, 59.71, 14.25; LC-MS (ESI, Positive): m/z: (M+H)+: 372.2; Anal. 

calculated for: C18H14BrNO3; C, 58.08; H, 3.79;  N, 3.76; Found; C, 57.98; H, 3.83;  N, 3.68. 

Ethyl 3-(4-bromobenzoyl)-2-methylindolizine-1-carboxylate (2f) 

FTIR (KBr) (cm-1): 1687, 1622, 1618; 1H NMR (400 MHz, CDCl3) δ = 9.51-9.49  (m, 1H), 

8.36-8.33 (m, 1H), 7.63-7.61  (d, J = 10.4Hz, 2H), 7.57-7.55  (d, J = 9Hz, 2H), 7.38-7.36 (m, 

1H), 6.98-6.96 (m, 1H), 4.42-4.36 (q, J = 7.2Hz, 2H) , 2.23 (s, 3H), 1.44-1.40 (t, J = 7.2Hz, 

3H). LC-MS (ESI, Positive): m/z: (M+H)+: 386.2; Anal. calculated for: C19H16BrNO3; C, 

59.08; H, 4.18; N, 3.63; Found; C, 59.13; H, 4.06;  N, 3.65. 
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Ethyl 3-(4-fluorobenzoyl)indolizine-1-carboxylate (2g) 

FTIR (KBr) (cm-1): 1699, 1618, 1522; 1H NMR (400 MHz, CDCl3) δ =  9.97-9.55 (m, 1H), 

8.38-8.37 (m, 1H), 7.87-7.82  (m, 2H),  7.78 (s, 1H), 7.47-7.43  (m, 1H), 7.25-7.21  (t, J = 8.4 

Hz, 2H) , 7.19-7.16 (m, 1H), 4.40-4.35  (q, J = 7.2Hz, 2H), 1.42-1.38 (t, J = 7.2Hz, 3H). LC-

MS (ESI, Positive): m/z: (M+H)+: 312.2: Anal. calculated for: C18H14FNO3; C, 69.45; H, 

4.53; N, 4.50; Found; C, 69.41; H, 4.50; N, 4.55. 

Ethyl 3-(4-fluorobenzoyl)-2-methylindolizine-1-carboxylate (2h) 

FTIR (KBr) (cm-1): 1681, 1600, 1510; 1H NMR (400 MHz, CDCl3) δ =  9.43-9.42 (m, 1H), 

8.35-8.33  (m, 1H), 7.74-7.70  (m, 2H),  7.36-7.33 (m, 1H),  7.18-7.15  (t, J = 8.4Hz, 2H), 

6.96-6.93 (m, 1H), 4.42-4.36  (q, J = 7.2Hz, 2H), 2.23 (s, 3H), 1.44-1.40 (t, J = 7.2Hz, 3H); 
13C NMR (400 MHz, CDCl3) δ = 186.28, 166.38, 164.94, 163.87, 139.53, 137.48, 137.25, 

137.22, 131.48, 131.39, 127.90, 127.02, 122.61, 119.36, 115.83, 115.62, 114.35, 105.36, 

59.82, 14.99, 14.54; LC-MS (ESI, Positive): m/z: (M+H)+: 326.2: Anal. calculated for: 

C19H16FNO3; C, 70.14; H, 4.96;   N, 4.31;   Found; C, 70.15; H, 4.91;   N, 4.33. 

Ethyl 3-(4-methylbenzoyl)indolizine-1-carboxylate (2i) 

FTIR (KBr) (cm-1): 1685, 1604, 1521; 1H NMR (400 MHz, CDCl3) δ = 9.96-9.94 (m, 1H), 

8.40-8.38 (m, 1H), 7.83 (s, 1H), 7.75-7.73 (d, J = 8 Hz, 2H), 7.46-7.43 (m, 1H), 7.33-7.31 (d, 

J = 8Hz, 2H), 7.09-7.07 (m, 1H),  4.40-4.35 (q, J = 7.2Hz, 2H), 2.46 (s, 3H),  1.41-1.38 (t, J = 

7.2Hz, 3H); 13C NMR (400 MHz, CDCl3) δ = 185.48, 164.15, 142.10, 139.81, 137.18, 

129.16, 129.08, 128.75, 127.50, 122.66, 119.49, 115.15, 106.11, 60.07, 21.58, 14.56; LC-MS 

(ESI, Positive): m/z: (M+H)+: 308.2: Anal. calculated for: C19H17NO3; 74.25; H, 5.58; N, 

4.56; Found; 74.28; H, 5.57; N, 4.51. 

Ethyl 3-(4-cyanobenzoyl)indolizine-1-carboxylate (2j) 

FTIR (KBr) (cm-1): 2227, 1683, 1616; 1H NMR (400 MHz, CDCl3) δ = 9.96-9.95 (m, 1H), 

8.44-8.42 (m, 1H), 7.90-7.88 (d, J = 8.4 Hz, 2H), 7.83-7.81 (d, J = 8.4Hz, 2H), 7.73 (s, 1H), 

7.54-7.52 (m, 1H), 7.17-7.14 (m, 1H), 4.41-4.36 (q, J = 7.2Hz, 2H), 1.42-1.38 (t, J = 7.2Hz, 

3H); 13C NMR (300 MHz, CDCl3) δ = 183.13, 163.66, 143.61, 140.24, 132.22, 129.27, 

129.22, 129.04, 128.41, 121.78, 119.62, 118.06, 115.81, 114.79, 107.06, 60.25, 14.45; LC-
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MS (ESI, Positive): m/z: (M+H)+: 319.2; Anal. calculated for: C19H14N2O3; C, 71.69; H, 4.43; 

N, 8.80; Found; C, 71.58; H, 4.47; N, 8.76. 

 

Larvicidal Activity 

The Anopheles arabiensis used were from a colonized strain from Zimbabwe which had been 

reared according to the WHO (1975) guidelines (40) in an insectary simulating the 

temperature (27.5 °C), humidity (70%), and lighting (12/12) of a malaria endemic 

environment. One mL of test compound (1 mg/mL) was added to distilled water (250 mL) 

producing a final concentration of 4 g/mL. Thirty 3rd instar larvae were placed in the 

container. A negative control was set up using a solvent (acetone) and distilled water and a 

positive control included Temephos (Mostop; Agrivo), an effective emulsifiable 

organophosphate larvicidal used by the malaria control program. Each container was 

monitored for larval mortality at 24 h intervals for a period of three days and fed specially 

made cat food with reduced oil/fat content at regular intervals. Bioassays were triplicated. 

The percentage mortality was calculated relative to the initial number of exposed larvae. The 

larvicidal results are tabulated in Table 4. 

 

Data analysis 

General linear mixed models (41) were used to determine differences between treatments 

registered in larval mortality (larvicide assays). Dependent variables were A. arabiensis 

mortality, fixed effects were test compound (test compounds 2a-j, acetone, and Temephos) 

and observation period (24 and 48 h). Random effects were mosquito groups (i.e., container 

in larvicide tests). Bonferroni-Hom test was used for post hoc analyses. In all cases, a value 

of p < 0.05 was considered statistically significant. Throughout the text, the results are 

presented as the adjusted mean plus/minus the standard error.  
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Results and Discussion 

Chemistry 

The synthesis of biologically active indolizines (42) continues to attract the attention of 

organic chemists (43-46). The indolizines are most commonly synthesized by sequential N-

quarterisation and intramolecular cyclocondensation reactions (47) or the cycloaddition 

reaction (48, 49) of N-acyl/alkyl pyridinium salts. Another stereo selective route is based on 

the iron-catalyzed cyclization of N-substituted pyrrolotrienes (50). A similar strategy was 

reported for the synthesis of indolizines via intramolecular 1,5-dipolar cyclization of 2-vinyl 

pyridiniumylide in the presence of tetrakis[pyrido]cobalt(II)-dichromate (51). A new pathway 

to chiral indolizines was accomplished from proline via the Pauson Khand reaction (52) 

involving an intramolecular cyclization reaction. 

In the present research, synthesis of intermediates N-heterocyclicylides (1a-f) were prepared 

by stirring substituted pyridines with substituted phenacyl bromides separately in the 

presence of acetone at room temperature. The products obtained were filtered, dried under 

vacuum and recrystallized using ethanol solvent. The yields of ylides (1a-f) obtained were 

96-99%. Anticipated indolizines have been prepared by the 1,3-dipolar cycloaddition reaction 

of N-heterocyclic ylides with electron deficient alkynes in the presence of water as a base and 

solvent at 80 °C in good yields. The completion of reaction was monitored on TLC. The 

reaction mixture was diluted with ethyl acetate, the organic layer was separated and washed 

with brine and dried with anhydrous sodium sulphate and recrystallized with mixture of 

hexane-ethyl acetate as a solvent to obtain title compounds at 69-83% yield.  

Synthesis of title compound 2a was attempted using different solvents (DMF, MeCN, DMF, 

THF, water) and bases such as K2CO3, TEA, NaHCO3 and water at different temperatures as 

tabulated in Table 1. However, the synthesis of compound 2a was achieved with water as 

base and solvent with remarkable increase in yield as well as reduced reaction time compare 

to other solvents such as DMF, MeCN, and THF (Table 2). 
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Table 1: Reaction condition for product 2a with different bases and solvents at various 

temperatures 

Entry Base Solvent Temp (°C) Yield (%) 

1 K2CO3 DMF RT 68 

2 K2CO3 MeCN 70 43 

3 TEA DMF RT 62 

4 TEA THF 60 45 

5 NaHCO3 DMF RT 56 

6 Water Water 80 83 

RT = room temperature 

Table 2: Reaction condition for product 2a with different solvents at various temperatures 

Entry Solvent/base ratio Temperature (°C) Yield (%) 

1 Water:MeCN (1:1) 70 74 

2 Water:THF (1:1) 70  78 

3 Water:DMF (1:1) 80 77 

4 Water:DMF (2:1) 80 79 

5 Water 80 83 

 

 

 

Scheme 1: Synthesis of indolizine analogues 2a-j: Reagents and conditions (a) pyridine, dry 

acetone, stir at room temperature, 5 h; (b) water, stir, 80 °C, 3h. 
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Table 3: Physicochemical constants of ethyl 3-(substituted benzoyl)-2-substituted indolizine-

1-carboxylate analogues 2a-j 

 

Compound 
Mol formulae 

(Mol mass) 
R1 R2 

Yield 

(%)a,b 

m.p (°C) cLogPc 

2a C18H14N2O5 (338) NO2 H 83 158-159 4.1470 

2b C19H16N2O5 (352) NO2 CH3 76 134-135 4.6460 

2c C18H14ClNO3 (327) Cl H 73 122-123 5.0722 

2d C19H16ClNO3 (341) Cl CH3 69 127-128 5.5712 

2e C18H14BrNO3 (371) Br H 79 126-127 5.2222 

2f C19H16BrNO3 (385) Br CH3 75 130-131 5.7212 

2g C18H14FNO3 ( 311) F H 80 121-122 4.5022 

2h C19H16FNO3 (325) F CH3 77 124-125 5.0012 

2i C19H17NO3 (307) CH3 H 77 145-146 4.8504 

2j C19H14N2O3 (318) CN H 79 151-152 3.8505 

a All of the products were characterized by spectral and physical data. 
b Yields after purification by recrystallization method. 
c cLogP was calculated using ChemBioDraw Ultra 13.0v. 

All the compounds have been purified by recrystallization method using appropriate solvents. 

The structures of all the synthesized compounds have been confirmed by various 

spectroscopic techniques such as LC-MS, 1H-NMR, 13C-NMR, FTIR and elemental analysis. 

In the 1H-NMR of title compounds 2b, 2d, 2f and 2h methyl protons as R2 on indolazine 

nucleus are observed as singlet in the range of δ 2.18-2.23. In 13C-NMR carbonyl carbon is 
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observed in the range of δ 182.86-186.3 for compounds 2a-e and 2h-j. Molecular mass of the 

compounds was in compliance with the molecular ion peak. 

 

Pharmacology 

Even though indolizines have potent inhibitor activities of biologically important pathways, 

as was illustrated in the introduction section, their potential as insecticide sources against 

mosquitoes, to the best of our knowledge, has not been published. Table 4 summarises results 

of larvicidal activity assessments. There were significant effects of treatment (p < 0.0001) 

and exposure time (p < 0.0001) but not their interaction (p = 0.88) on larval mortality. 

Overall mortality was slightly but significantly higher at 48 h (60.9 ± 0.8) compared to 24 h 

(58.8 ± 0.8). All compounds tested except indolizine 2a resulted in mortalities higher than the 

negative control. Compounds 2e and 2g were as effective (93 % and 95% mortality, 

respectively) as the positive control Temephos (98 % mortality), followed by compound 2f 

(81 %). The remaining compounds exerted moderate mortalities, ranging from 42 to 64 %. 

Compound 2e having election withdrawing bromine at fourth positon of phenyl ring 

exhibited 93% larvicidal activity whereas compound 2g having election withdrawing fluorine 

atom at fourth positon of phenyl ring exhibited larvicidal activity at 95%. However, 

analogous 2a, 2i and 2j with nitro, methyl, nitrile group, respectively did not show much 

promising activity when compared to positive control Temephos. Compound 2f with election 

withdrawing bromine at para positon of phenyl ring and methyl as R2 on indolazine nucleus 

exhibited activity at 81%. 

These results indicate that indolizine 2e and 2g emerged as promising larvicidal agents that 

merit further research and development for mosquito control. 
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Table 4: Mortality of Anopheles arabiensis larvae exposed to test compounds 2a-j 

indolizines at 4 µg/mL (1 mg/250 mL) and their negative (acetone) and positive (Temephos) 

controls. Adjusted means are shown. Adjusted standard errors were 2.7.   

  Mortality 

Compound 24 h 48 h 

2a A 18.9 20.0 

2b B 61.1 64.4 

2c B 55.6 58.9 

2d B 58.9 61.0 

2e DE 92.2 93.0 

2f E 77.8 81.1 

2g D 94.4 95.6 

2hC 40.0 42.2 

2i B 60.0 62.2 

2j C 41.1 43.3 

Acetone A 7.8 10.0 

Temephos D 97.8 98.9 
A-E Compounds not sharing a letter differ significantly (p < 0.05). 

Conclusions 

The research work is focused on the efficient synthesis of indolizine analogous (2a-j) with 

greener chemistry, which provides new method for the synthesis of indolizines. The reactions 

performed were eco-friendly and yield of the products were very good at less reaction time 

with least formation of by-product. All the indolizine analogous were toxic for A. arabiensis 

larvae, and out of the title compounds tested for larvicidal activity, compounds 2e, 2f and 2g 

emerged as potent agents comparable to standard compound Temephos. 
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