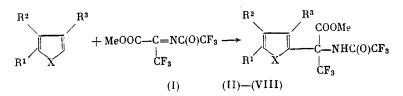
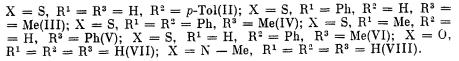
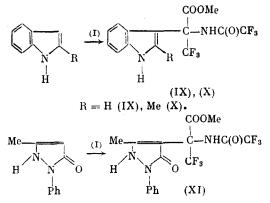
- V. I. Saloutin, I. A. Piterskikh, and K. I. Pashkevich, Zh. Org. Khim., <u>24</u>, No. 4, 701 (1988).
- 3. S. T. Ioffe (Yoffe), E. I. Fedin, P. V. Petrovskii, et al., Tetrahedron Lett., 2661 (1966).
- 4. T. Ishihara, H. Shinjo, Y. Inoue, et al., <u>23</u>, 1 (1983).

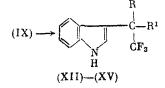

THE C-ALKYLATION OF SOME HETEROAROMATIC COMPOUNDS BY THE TRIFLUOROACETYLIMINE OF METHYL TRIFLUOROPYRUVATE


- S. N. Osipov, N. D. Chkanikov, Yu. V. Shklyaev,
- A. F. Kolomiets, and A. V. Fokin UDC 66.095.253:547.484.23'161+547.298.2

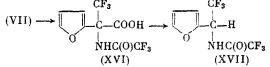
The trifluoroacetylimine of methyl trifluoropyruvate regiospecifically C-alkylates furan, N-methylpyrrole, and thiophenes at the free C^2 position, indoles at the C^3 position, and 1-phenyl-3-methyl-5-pyrazolone at the C⁴ position. The alkylation products were converted to trifluoromethylated amino acids and their ester and amine derivatives.


The C-alkylation of indoles and thiophene by the benzenesulfonylimine of methyl trifluoropyruvate was described in our previous work [1]. Details are given below for the reactions of the trifluoroacetylimine of methyl trifluoropyruvate (I) with some five-membered heterocyclic compounds.

Thiophene derivatives are selectively alkylated by imine (I) in CCl₄ at reflux at the free C² position to give thiophenes (II)-(VI) in preparative yields. Furan and N-methyl-pyrrole undergo this reaction in chloroform from -50 to +20°C to give the C²-alkylation products (VII) and (VIII).


Indole, 2-methylindole, and 1-phenyl-3-methyl-5-pyrazolone react with (I) in chloroform at 20°C to give C^3 -alkylated indoles (IX) and (X) and C⁴-alkylated pyrazolone (XI).

The structure of indole (IX) was confirmed by the following transformations. The alkaline hydrolysis of (IX) gives acid (XII), which decarboxylates upon sublimation in vacuum to give


A. N. Nesmeyanov Institute of Heteroorganic Compounds, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 9, pp. 2131-2134, September, 1989. Original article submitted October 17, 1988.

(XIII). Treatment of substituted indole (IX) with HCl in methanol gave α -amino acid ester (XIV). Alkaline hydrolysis of (XIV) with subsequent neutralization is accompanied by spontaneous decarboxylation to give amine (XV).

 $\begin{array}{l} \mathrm{R} = \mathrm{COOH}, \ \mathrm{R}^1 = \mathrm{NHC}(\mathrm{O})\mathrm{CF}_3 \ (\mathrm{XII}); \ \mathrm{R} = \mathrm{H}, \ \mathrm{R}^1 = \mathrm{NHC}(\mathrm{O})\mathrm{CF}_3 \ (\mathrm{XIII}); \\ \mathrm{R} = \mathrm{COOMe}, \ \ \mathrm{R}^1 = \mathrm{NH}_2 \ (\mathrm{XIV}); \ \ \mathrm{R} = \mathrm{H}, \ \ \mathrm{R}^1 = \mathrm{NH}_2 \ (\mathrm{XV}). \end{array}$

Furan (VII) undergoes analogous transformations upon alkaline hydrolysis to give (XVI) and (XVII).

The structures of these products were supported by elemental analysis and ¹H and ¹⁹F NMR spectroscopy (Tables 1 and 2).

EXPERIMENTAL

The ¹H and ¹⁹F NMR spectra were taken on a Bruker WP-200SY spectrometer at 200 and 188 MHz, respectively. The chemical shifts (δ , ppm) were determined relative to HMDS as the internal standard and CF₃CO₂H as the external standard. The R_f values were obtained on Kavalier Silufol plates manufactured in Czechoslovakia.

 $\frac{2-(\alpha-\text{Carbomethoxy-}\alpha-\text{trifluoroacetamidotrifluoroethyl)-3-p-tolylthiophene (II).}{\text{mixture of 2.0 g imine (I) and 1.3 g 3-p-tolylthiophene in 10 ml CCl₄ was heated at reflux for 4 h and cooled. A yield of 2.04 g (II) was obtained. PMR spectrum in acetone-d₆: 7.38 s (1H, NH), 7.27 d and 7.02 d (4H, p-MeC₆H₄, J_{H-H} = 8.0 Hz), 7.29 d and 6.98 d (2H, H^{2,4}, J_{H-H} = 1.5 Hz), 3.86 s (3H, OMe), 2.33 s (3H, Me).$

Analogous procedures gave 2-(α-carbomethoxy-α-trifluoroacetamidotrifluoroethyl)-3methyl-5-phenylthiophene (III), 3-methyl-4,5-diphenylthiophene (IV), 3-phenyl-5-methylthiophene (V), and 3-methyl-4-phenylthiophene (VI). PMR spectra in CDCl₃ (δ,ppm): III) 7.51 m and 7.25 m (6H, H⁴, Ph), 3.87 s (3H, OMe), 2.12 s (3H, Me); IV) 7.28 m and 7.15 m (10H, 2Ph), 3.92 s (3H, OMe), 1.80 s (3H, Me); V) 7.72 m and 7.15 m (6H, H⁴, Ph), 3.67 s (3H, OMe), 2.50 s (3H, Me); VI) 7.62 m and 7.33 m (6H, H⁵, Ph), 3.82 s (3H, OMe), 2.10 s (3H, Me). 2-(α-Carbomethoxy-α-trifluoroacetamidotrifluoroethyl)furan (VII). A sample of 1.4 g furan in 5 ml chloroform was added to 5.0 g imine (I) in 5 ml chloroform at -50°C. The mixture was warmed to 20°C. The yield of product (VII) was 4.5 g. PMR spectrum in acetone-d_F

(δ, ppm): 7.65 d.d. (1H, H⁵, $J_{H^5-H^4} = 1.9$, $J_{H^5-H^3} = 0.8$ Hz), 6.77 d.d. (1H, H³, $J_{H^3-H^4} = 3.3$, $J_{H^3-H^5} = 0.8$ Hz), 6.5 d.d. (1H, H⁴, $J_{H^4-H^3} = 3.3$, $J_{H^4-H^5} = 1.9$ Hz), 3.79 s (3H, OMe). 2-(α-Carbomethoxy-α-trifluoroacetamidotrifluoroethyl)-1-methylpyrrole (VIII) was obtained by analogy to (VII) PMR spectrum in acetopeed (δ ppm): 9.12 br s (1H NH) 6.75

obtained by analogy to (VII). PMR spectrum in acetone-d₆ (δ , ppm): 9.12 br.s. (1H, NH), 6.75 d.d. (1H, H⁵, J_{H⁵-H⁴} = 2.7, J_{H⁵-H³} = 1.7 Hz), 6.37 m (1H, H³), 6.00 d.d. (1H, H⁴, J_{H⁴-H³} = 3.9, J_{H⁴-H⁵} = 2.7 Hz), 3.81 s (3H, OMe), 3.71 s (3H, NMe).

 $\frac{3 - (\alpha - Carbomethoxy - \alpha - trifluoroacetamidotrifluoroethyl) indole (IX). A mixture of 1.4 g imine (I) and 0.65 g indole in 10 ml chloroform was maintained for 1 h at 20°C. The yield of (IX) was 1.3 g. An analogous procedure gave 3-(\alpha - carbomethoxy - \alpha - trifluoroacetamidotrifluoroethyl) - 2-methyl-indole (X).$

 $\frac{4-(\alpha-\text{Carbomethoxy}-\alpha-\text{trifluoroacetamidotrifluoroethyl)-3-methyl-1-phenyl-5-pyrazolone (XI).}{A \text{ mixture of 2.0 g imine (I) and 1.3 g phenylpyrazolone in 10 ml chloroform was maintained for 4 h at 25°C to give 3.2 g (XI). PMR spectrum in acetone-d₆ (<math>\delta$, ppm): 7.50 m (5H, Ph), 3.82 s (3H, OMe), 2.20 s (3H, Me).

 $3-(\alpha$ -Carbomethoxy- α -trifluoroacetamidotrifluoroethyl)indole (XII). A mixture of 2.0 g (IX) and 10 ml 5% aq. NaOH was heated for 8 h at 70°C and neutralized with hydrochloric acid. Extraction with ether gave 1.2 g (XII).

<u>3-(a-Trifluoroacetamidotrifluoroethyl)indole (XIII)</u> was obtained upon the sublimation of 1.0 g (XII) at 100°C (1 mm). The product yield was 0.66 g.

<u>3-(α -Carbomethoxy- α -aminotrifluoroethyl)indole (XIV).</u> A sample of 3.2 g (IX) was dissolved in anhydrous methanol and dry HCl was bubbled through for 8 h at 40°C. The solu-

TABLE 1. The Properties of (II)-(XVII)

Com- pound	Mp,°C	Yield, %	R _f a : b **	Found/Calcu- lated, %			Chemical	19
					н	N	formula	¹⁹ F NMR spec trum (δ, ppm)
(11)	114	62	0,57	47.94	2.99	3,44	C ₁₇ H ₁₃ NO ₃ SF ₆	-6.2 s2,3 s
			1:6	48,00	3,05	3.29		
(III)	93-94	87	0,49	47.83	2.84	3,36	$C_{17}H_{13}NO_3SF_6$	−7,1 s, −2,4 s
(11)	1== 1=0			48,00	3,05	3,29	C H NO CD	
(IV)	175-176	91	0,51	54.86	3,21	2,58	$C_{23}H_{17}NO_3SF_6$	-6.5 s, -1,9 s
(V)	95-97	83	0,49	55,08	3.39	2,79	C H NO CE	
(*)	90-91	00	1:12	48.08 48.00	3.25	3,58	$C_{17}H_{13}NO_3SF_6$	-6.9 s2.0 s
(VI)	68-69	84	0,48	48,00	3,05 3,21	3,29 3,15	C ₁₇ H ₁₃ NO ₃ SF ₆	
(,1)	00-03	04	1:12	48,20	3.05	3,29	01711131103016	$-5.9 \mathrm{s}, -3.4 \mathrm{s}$
(VII)	74-76	71	0,38	38,01	2.51	4,59	C ₁₀ H ₇ NO ₄ F ₆	-1.3 s. 0.2 s
x · · y			1:12	37,61	2,19	4.38		-1.3 s, 0.2 s
(VIII)	110-112	68	0,50	40.09	2.82	8,93	$C_{11}H_{10}N_2O_3F_6$	-3.2 s, -3.0 s
			1:12	39,75	3.01	8,43		-0.2 5, -0.0 5
(1X)	175-176	65	0,32	44.98	2,30	7.76	C14H10N2O3F6	$-6.8 \mathrm{s}, -3.0 \mathrm{s}$
			1:3	45,65	2.71	7,60		0,00, -0,03
(X)	136-137	81	0,57	47,05	3.24	7.51	C15H12N2O3F6	$-7.9 \mathrm{s}, -2.6 \mathrm{s}$
			1:3	47,12	3.14	7,32		
(XI)	144-146	90	0,68	45.33	3.11	9,85	C ₁₆ H ₁₃ N ₃ O ₄ F ₆	$-6.0 \mathrm{s}, -1.5 \mathrm{s}$
			1:1	45,17	3,05	9,98		
(XII)	145-148	63	0,41	44,38	2,12	7.80	$C_{13}H_8N_2O_3F_6$	$-6.1 \mathrm{s}, -3.3 \mathrm{s}$
((dec.)		1:1	44,06	2,25	7,90		
(XIII)	150-153	72	0,55	44,32	2,80	8,87	$C_{12}H_8N_2OF_6$	-4.6 d2.7 s
(37737)	00 100	-	1:3	44,17	2,45	8,58	0 77 77 0 7	$(J_{H-F}=8,0 \text{ Hz})$
(XIV)	98-100	70	0,42	53,15	4.17	40,35	$C_{12}H_{11}N_2O_2F_3$	−3,2 s
(XV)	145-147			52,94	4,04	10,29	CHNE	
(AV)	140-14/	61	0.52	56,37	3,95	12,83	$C_{10}H_9N_2F_3$	-1.5 d
(XVI)	98	65	0.42	35,28	4,20 2.01	13,08	C ₉ H₅NO₄F ₆	$(J_{H-F} = 8,0 \text{ Hz})$
	(dec.)	00	1:6	35,40	$\frac{2.01}{1.63}$	4.14	0911511041.6	-2.2s, 0.5s
(XVII)	48-49	61	0.41	37.15	2.22	4,59	C ₈ H ₅ NO ₂ F ₆	12- 00-
,,	10 10	v.		36,78	in the second	5,36		-1.3 s, 0.2 d $(J_{H-F}=7.6 \text{ Hz})$

*Hexane served as the crystallization solvent. **The acetone:CCl₄ ratio in the system for determination of the R_f value.

TABLE 2. PMR Spectra of Synthesized Compounds

Compound	2	4	5	6	7	CH-CF3	JH-F. Hz
(IX) (X) (XII) (XIII) (XIV) (XV)	7,52 7,41 7,53 7,55 7,45	7,65 7,77 7,55 7,55 7,71 7,81	7,20 7,16 7,10 7,15 7,15 7,15 7,12	7,11 7,02 6,95 7,13 7,15 7,17	7,47 7,58 7,38 7,43 7,45 7,47	- - 6,13 - 5,41	

The PMR spectra of (IX), (X), and (XIV) have signals corresponding to the signals of the OMe-group.

tion was evaporated. The residue was neutralized with 5% aq. NaOH and extracted with ether to give 1.6 g (XIV).

 $3-(\alpha-Aminotrifluoroethyl)$ indole (XV) was obtained by analogy to (XII).

 $\frac{2 - (\alpha - Carboxy) - (XVI) \text{ and } (\alpha - hydro) - \alpha - trifluoroacetamidotrifluoroethyl)furans were obtained by analogy to (XII) and (XIII). PMR spectra in acetone - d₆ (<math>\delta$, ppm): XVI) 7.72 m and 6.63 m (3H, H^{3,4,5}); XVII) 9.91 d (1H, NH, J_{H-H} = 7.6 Hz), 7.78 d.d. (1H, H⁵, J_{H⁵-H⁴} = 1.9, J_{H⁵-H³} = 0.8 Hz), 6.81 d.d (1H, H³, J_{H³-H⁴} = 3.3, J_{H³-H⁵} = 0.8 Hz), 6.69 d.d (1H, H⁴, J_{H⁴-H³} = 3.3, J_{H⁴-H⁵} = 1.9 Hz), 6.15 pent (1H, CH-CF₃).

LITERATURE CITED

 S. N. Osipov, N. D. Chkanikov, A. F. Kolomiets, and A. V. Fokin, Izv. Akad. Nauk SSSR, Ser. Khim., No. 6, 1384 (1986).