Tetrahedron Letters 54 (2013) 2221-2225

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Ligand-free palladium-catalyzed intramolecular arylation of chromones: an expedient synthesis of 1-benzopyrano[3,2-c]quinolines

Jaydip Ghosh^a, Pritam Biswas^a, Sourav Maiti^a, Tapas Sarkar^b, Michael G. B. Drew^c, Chandrakanta Bandyopadhyay^{a,*}

^a Department of Chemistry, R.K. Mission Vivekananda Centenary College, Rahara, Kolkata 700 118, West Bengal, India ^b Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur 700 032, West Bengal, India ^c Department of Chemistry, The University of Reading, PO Box 224, Whiteknights, Reading RG6 6AD, UK

Department of Chemistry, the University of Reduing, to box 224, whiteknights, Reduing Roo ond, o

ARTICLE INFO

Article history: Received 2 January 2013 Revised 16 February 2013 Accepted 19 February 2013 Available online 26 February 2013

Keywords: Arylation Palladium-catalyst Chromone Ugi reaction Chroman-3-carbaldehyde 1-Benzopyran

Chromones, flavones, isoflavones, and the heterocycles derived from them are widely distributed in nature¹ and possess a broad range of activities of pharmaceutical importance.² Arylation of chromone at the C-2 or C-3 position generates flavones or isoflavones, respectively. Arylation at the C-3 position has been accomplished using 3-halochromone and arylboronic acid or triarylbismuth in the presence of a palladium catalyst.³ Alkenylation or alkynylation has also been accomplished using 3-halochromone.⁴ Recently 3-alkynylation has been achieved by C-H activation at the 3-position of the chromone ring.⁵ Although C-3 arylation or olefination has been well-studied, direct C-2 arylation on the chromone ring is scarce in the literature.⁶ Pd-catalyzed 1,4addition of arylboronic acid has been achieved using Fe(OTf)₃ as Lewis acid. The addition product on subsequent oxidation by DDQ and KNO₂ led to the formation of 2-arylchromone.⁷

1-Benzopyranoquinolines possess versatile biological activities depending on the nature of fusion between the chromone and quinoline rings. 1-Benzopyrano[4,3-*b*]quinolines are antispasmodic and antihistaminic,⁸ whereas 1-benzopyrano[3,4-*f*]quinoline acts as a nonsteriodal human progesterone receptor (HPR) agonist.⁹ Recently, a naphthopyrano[4,3-*b*]quinoline-based fluorescent off-on probe has been established for bioimaging.¹⁰ Earlier

* Corresponding author. *E-mail address*: kantachandra@rediffmail.com (C. Bandyopadhyay).

ABSTRACT

Synthesis of hitherto unreported 1-benzopyrano[3,2-c]quinolin-12-ones has been accomplished by a ligand-free Pd-catalyzed intramolecular C–H arylation protocol at the C-2 position of a chromone moiety in an Ugi product.

© 2013 Elsevier Ltd. All rights reserved.

we have reported the synthesis of 1-benzopyrano[4,3-b]quinolines¹¹ and 1-benzopyrano[2,3-b]quinolines¹² and herein we report a ligand-free Pd-catalyzed intramolecular C–H arylation at the C-2 position of the chromone moiety for the synthesis of hitherto unreported 1-benzopyrano[3,2-c]quinolines of biological interest.

The Ugi product $(5)^{13}$ derived from a 3-formylchromone (1), a 2-haloaniline (2), an isocyanide (3), and a carboxylic acid (4) provides a privileged structure for the synthesis of polycyclic heterocycles (Scheme 1). A close look at the α -arylaminoamides (5) bearing a chromone and α -halophenyl moiety reveals that there are two possible modes for Pd-catalyzed cyclization: (i) C–N coupling between the *o*-halophenyl and the amide NH group¹⁴ to form the ketopiperazine **7** or (ii) C–C coupling between the C-2 or C-3 position of the chromone ring and the *o*-halophenyl group. Considering all these possibilities a mixture of **5b** (0.2 mmol), Pd(OAc)₂ (10 mol %), K₂CO₃ (0.4 mmol), and Ph₃P (20 mol %) was heated in DMF (10 mL) at 100–110 °C under argon atmosphere for 2 h (Scheme 1). After the usual work-up the reaction mixture produced **6b** in 24% yield (Scheme 1) (Table 1, entry 1).

Enlightened by this selective cyclization, attempts were made to improve the yield of **6**. The intramolecular Heck reaction was standardized using **5b** as the substrate and varying the source of palladium, base, and solvent. The effect of the ligand was also tested (Table 1). $PdCl_2$ was found to be a more effective catalyst

^{0040-4039/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.02.057

Scheme 1. Synthesis of 6.

Table 1						
Optimization of reaction	conditions f	or the	synthesis	of 6b	from	5b

Entry	Catalyst	Base	Solvent	Ligand	Additives	6b (%)
1	10% Pd(OAc) ₂	K ₂ CO ₃	DMF	Ph₃P	_	24
2	10% PdCl ₂	K_2CO_3	DMF	Ph_3P	_	30
3	10% Pd(OAc) ₂	Cs_2CO_3	DMF	Ph_3P	_	10
4	10% PdCl ₂	Cs_2CO_3	DMF	Ph ₃ P	-	15
5	10% PdCl ₂	Et ₃ N	DMF	Ph ₃ P	-	5
6	10% PdCl ₂	NaOAc	DMF	Ph₃P	-	14
7	10% PdCl ₂	KOAc	DMF	Ph ₃ P	-	40
8	10% PdCl ₂	KOAc	CH ₃ CN	Ph ₃ P	-	20
9	10% PdCl ₂	KOAc	Dioxan	Ph ₃ P	-	15
10	10% PdCl ₂	KOAc	PhCH ₃	Ph ₃ P	-	15
11	10% PdCl ₂	KOAc	DMF	dba	-	-
12	10% PdCl ₂	KOAc	DMF	Phen	-	7
13	10% PdCl ₂	KOAc	DMF		-	54
14	15% PdCl ₂	KOAc	DMF		-	52
15	5% PdCl ₂	KOAc	DMF		_	25
16	10% PdCl ₂	KOAc	DMF		TBAB	35
17	10% PdCl ₂	KOAc	DMF		PA	30
18	10% Pd(OAc) ₂	KOAc	DMF		-	26

'Phen' stands for 9,10-phenanthroline; 'dba' for dibenzylideneacetone; 'TBAB' for $({}^{n}Bu_{4}N)Br$; 'PA' for Pivalic acid.

than Pd(OAc)₂ (entries 1–4). Different bases such as K₂CO₃, Cs₂CO₃, Et₃N, NaOAc, and KOAc were tested and KOAc was found to be the base of choice (entries 1–7). Among the solvents DMF, CH₃CN, dioxane, and toluene, DMF was the best solvent (entries 7–10). Use of ligands showed a detrimental effect. A much better yield was obtained without adding any ligand (entries 7 and 11–13). Regarding catalyst loading, 10% PdCl₂ was found to be the optimal (entries 13–15). Additives like TBAB or pivalic acid lowered the yield (entries 16 and 17). Use of Pd(OAc)₂ in place of PdCl₂ in the absence of ligand lowered the yield of **6** markedly (entries 13 and 18). The detrimental effects of ligands, additive (pivalic acid), or of using Pd(OAc)₂ instead of PdCl₂ may be due to steric crowding across the palladium center in the intermediate **8** (Scheme 2). Bulky groups attached to palladium hinder the achievement of the required conformation for cyclization as shown in **8**.

After finding the optimized reaction conditions¹⁵ (entry 13), the scope of the reaction was explored using various substrates. The versatility of substrate **5** arises from the four components utilized in the Ugi reaction. Different *o*-haloanilines (**2**, Z = H, X = Cl, Br and I) were used for the formation of **5**, which was then employed for the synthesis of **6**. During the synthesis of **5a**–**j** (Table 2), it was ob-

Scheme 2. Mechanism for the formation of 6 from 5.

served that the yield of **5** was much better (94–99%) (entries 1, 2, 6, and 9) using **2a** as the amine component compared to that when **2b** or **2c** was used (entries 3–5), whereas changing the acid component from acetic acid to propanoic acid, was found to decrease the

Table 2			
Synthesis	of Ugi	product	5

Entry	R ¹ in 1	2	3	\mathbb{R}^3 in 4	Product	mp (°C)	Yield (%)
1	Н	2a	3a	CH3	5a	188-190	98
2	CH ₃	2a	3a	CH_3	5b	232-234	94
3	CH ₃	2b	3a	CH_3	5c	212-214	80
4	CH_3	2c	3a	CH ₃	5d	224-226	79
5	Н	2b	3b	CH ₃	5e	212-214	75
6	Н	2a	3b	CH_3	5f	206-208	94
7	CH_3	2d	3a	CH_3	5g	176-178	90
8	CH_3	2d	3b	C_2H_5	5h	218-220	82
9	CH_3	2a	3b	CH_3	5i	162-164	99
10	CH_3	2a	3a	C_2H_5	5j	224-226	71

J.	Ghosh et	al./	Tetrahedron	Letters 54	(2013)	2221-2225
----	----------	------	-------------	------------	--------	-----------

Table 3 Synthesis of 1-benzopyrano[3,2-c]quinolines 6 from 5 Entry Substrate

Entry	Substrate	Product	mp (°C)	Yield (%)
1	HN O 5a Cyclohexyl	O HN 6a Cyclohexyl	242-243	50
2	$H_{3}C$ $H_{1}O$ $H_{1}O$ $H_{1}O$ $H_{1}O$ $H_{1}O$ $H_{1}O$ $H_{1}O$ $H_{1}O$ G	H ₃ C H ₁ C H ₁ C H ₁ C Gb Cyclohexyl	182-184	54
3	H ₃ C H ₁ C H ₁ C H ₁ C H ₁ C C H ₁ C C H ₁ C C H ₃ C C H ₃ C	6b	182–184	59
4	H ₃ C HN 5d Cyclohexyl	6b	182–184	25
5	HN O 5e	O HN O O O O O O O O O O O O O O O O O O	248-250	70
6	Br Br CH ₃ CH ₃ CH ₃	6e ⇔	248–250	58
7	$H_{3}C$ $H_{3}C$ $H_{1}C$ $H_{1}C$ $H_{1}C$ $H_{1}C$ $H_{1}C$ $H_{1}C$ $H_{1}C$ $H_{1}C$ C C C C C C C C C	H ₃ C 6g Cyclohexyl CH ₃	216–218	59
8	$H_{3}C$	$H_{3}C$ $H_{1}C_{2}H_{5}$ H	220-222	66
			(co:	ntinued on next page)

2224

Figure 1. ORTEP diagram of 6i.

yield of **5** (entries 7–10) and when pivalic acid (**4**, $R^3 = CMe_3$) was used as the acid component, **5** ($R^3 = CMe_3$) could not be isolated.

Transformation of **5a–j** to the corresponding compounds **6a–j** was successfully accomplished. It was observed that the arylation reactions using iodo-compounds gave better yields than those using the corresponding bromo or chloro compounds (Table 3, entries 2–4). Ugi products (**5**) having the *N-tert*-butylamide group produced **6** in slightly better yields than those with the *N*-cyclohexylamide group (entries 1, 6, 2, and 9). It has been reported earlier that in a Pd-catalyzed isocyanide-insertion reaction *tert*-butyl isocyanide acted more efficiently than cyclohexyl isocyanide.¹⁶ Use of **5e** having both *N-tert*-butylamide and iodoaryl moieties yielded **6e** in 70% yield (entry 5). The small effect of an extra methyl group was reflected in the yields of **6g** (entries 2 and 7) and **6j** (entries 2 and 10).

The structure of **6** was determined on the basis of ¹H, ¹³C NMR, IR, and mass spectral analyses.¹⁷ In the ¹H NMR spectrum of **6**, the disappearance of the singlet peak for H-2 of the chromone moiety in **5** and the presence of a broad doublet signal for the cyclohexyl NH or the broad singlet of the ^{*t*}butyl NH rule out the possibility of the formation of **7**. One observation in support of structure **6** (R³ = CH₃) is that after cyclization the CH₃ protons of the NCOCH₃ group are highly deshielded [$\sim \delta$ 1.86 in **5** (R³ = CH₃) to $\sim \delta$ 2.36

in **6**]. This may be explained by considering the extended conjugation of the ring nitrogen with the carbonyl functionality of the chromone ring in **6**. Finally the structure of **6i** was confirmed by single crystal X-ray diffraction analysis (Fig 1).¹⁸

Formation of **6** from **5** may be rationalized by considering the oxidative addition of Pd(0) to the aryl halide moiety of **5** to form **8**, which undergoes intramolecular palladation at the C2–C3 double bond of the chromone moiety (\rightarrow **9**). Compound **6** is produced from **9** by the elimination of HPdX, which regenerates Pd(0) by the action of base (Scheme 2).

In conclusion, we have achieved the synthesis of hitherto unreported 1-benzopyrano[3,2-*c*]quinolin-12-ones by an intramolecular C–H arylation at the C-2 position of the chromone moiety in the Ugi product derived from 3-formylchromone (**1**), *o*-haloanilines (**2**), isocyanides (**3**), and carboxylic acids (**4**).

Acknowledgments

We gratefully acknowledge CSIR, New Delhi [Project no. 02(0029)/11/EMR-II] for financial assistance; IICB, Jadavpur for spectral analysis and finally the college authority for providing research facilities. J.G. thanks CSIR for Junior Research Fellowship.

References and notes

- (a) Harborane, J. B.; Mabry, T. J.; Mabry, H. *The Flavonoids*; Academic Press: New York, 1975; (b) Pietta, P. G. J. Nat. Prod. **2000**, 63, 1035–1042.
- (a) Valenti, P.; Bisi, A.; Rampa, A.; Belluti, F.; Gobbi, S.; Zampiron, A.; Carrara, M. Bioorg. Med. Chem. 2000, 8, 239–246; (b) Larget, R.; Lockhart, B.; Renard, P.; Largeron, M. Bioorg. Med. Chem. Lett. 2000, 10, 835–838; (c) Boumendjel, A.; Bois, F.; Beney, C.; Mariotte, A.-M.; Conseil, G.; Pietro, A. D. Bioorg. Med. Chem. Lett. 2001, 11, 75–77; (d) Yasuzawa, T.; Saitoh, Y.; Sano, H. J. Antibiot. 1990, 43, 485–491.
- (a) Hoshino, Y.; Miyaura, N.; Suzuki, A. Bull. Chem. Soc. Jpn. 1988, 61, 3008– 3010; (b) Yokoe, I.; Sugita, Y.; Shirataki, Y. Chem. Pharm. Bull. 1989, 37, 529– 530; (c) Dawood, K. M. Tetrahedron 2007, 63, 9642–9651; (d) Rao, M. L. N.; Venkatesh, V.; Jadhav, D. N. Synlett 2009, 2597–2600.
- (a) Davies, S. G.; Mobbs, B. E.; Goodwin, C. J. J. Chem. Soc., Perkin Trans. 1 1987, 2597–2604; (b) Larock, R. C.; Tian, Q. J. Org. Chem. 1998, 63, 2002–2009; (c) Patonay, T.; Vasas, A.; Kiss-Szikszai, A.; Silva, A. M. S.; Cavaleiro, J. A. S. Aust. J. Chem. 2010, 63, 1582–1593.
- 5. Kim, D.; Hong, S. Org. Lett. 2011, 13, 4466-4469.
- (a) Kim, K. H.; Lee, H. S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2012, 53, 2761– 2764; (b) Min, M.; Choe, H.; Hong, S. Asian J. Org. Chem. 2012, 1, 47–50.
- 7. Kim, D.; Ham, K.; Hong, S. Org. Biomol. Chem. 2012, 10, 7305-7312.
- Mohanty, N.; Rath, P. C.; Rout, M. K. J. Indian Chem. Soc. 1967, 44, 1001–1004.
 Zhi, L.; Tegley, C. M.; Kallel, E. A.; Marschke, K. B.; Mais, D. E.; Gottardis, M. M.; Jones, T. K. J. Med. Chem. 1998, 41, 291–302.
- Kand, D.; Kalle, A. M.; Varma, S. J.; Talukdar, P. Chem. Commun. 2012, 48, 2722– 2724.
- 11. Bandyopadhyay, C.; Sur, K. R.; Patra, R.; Sen, A. Tetrahedron 2000, 56, 3583-3587.

- Bandyopadhyay, C.; Sur, K. R.; Patra, R.; Banerjee, S. J. Chem. Res. (S) 2003, 459–460. J. Chem. Res. (M) 2003, 847–856.
- 13. General synthesis of 5: A mixture of chromone-3-carboxaldehyde (1, 0.5 mmol), o-haloaniline (2, 0.5 mmol) and isocyanide (3, 0.6 mmol) in acetic acid (5 mL) was stirred at room temperature for 30 min. The reaction mixture was poured into ice-water (50 g) to get a faint yellow solid, which was filtered, washed with water, dried in air and crystallized from toluene-light petroleum to produce a white crystalline solid 5. Although compound 5 developed a single spot in TLC, its NMR spectrum showed a mixture of diastereomers. Earlier reports¹⁹ also mentioned the presence of a mixture of diastereomers in the Ugi product when o-substituted anilines were used as the amine component.

Characterisation data of **5i** (mixture of diastereomers $D_1:D_2::4:1$). White crystalline compound, mp 162–164 °C; yield 99%; IR (KBr): 3310, 2932, 2852, 1655, 1642, 1542 cm⁻¹; ¹H NMR (CDCl₃) δ 8.53 (1H, s, H-2, D₂), 7.98 (1H, br s, H-5, D_1+D_2), 7.66 (1H, br d, J = 7.8 Hz, ArH, D_1+D_2), 7.62 (1H, s, H-2, D₁), 7.51 (1H, br d, J = 7.8 Hz, ArH, D₁+D₂), 7.45-7.40 (2H, m, ArH, D1+D2), 7.29-7.17 (2H, m, ArH, D1+D2), 6.66 (1H, br s, exchangeable, NH, D₁), 6.64 (1 H, s, methine H, D₁), 6.36 (1H, br s, exchangeable, NH, D₂), 5.93 (1H, s, methine H, D₂), 2.45 (3H, s, ArCH₃, D₂), 2.44 (3H, s, ArCH₃, D₁), 1.88 (3H, s, COCH₃, D₂), 1.86 (3H, s, COCH₃, D₁), 1.34 (9H, s, CMe₃, $\begin{array}{c} \text{1.50} \quad (51, 3, -22, -1.50, -1.51, -2.51, -1.51,$ (D₂), 153.8 (D₁), 141.3 (D₂), 138.7 (D₂), 135.5 (D₂), 135.3 (D₁), 135.2 (D₂), 134.9 (D₁), 133.5 (D₂), 133.4 (D₁), 132.2 (D₁), 131.5 (D₂), 130.4 (D₁), 129.9 (D₂), 128.8 (D₁), 128.7 (D₂), 128.3 (D₁), 126.7 (D₁), 125.5 (D₁), 125.3 (D₂), 123.2 (D₁), 119.2 (D₂), 117.9 (D₂), 117.7 (D₁), 116.5 (D₁), 57.9 (D₂), 53.1 (D₁), 51.4 (D₁), 31.6 (D₂), 28.6 (3C, D₁+D₂), 23.2 (D₁), 23.1 (D₂), 22.6 (D₂), 20.9 (D1), 14.1 (D2); MS: m/z 509 (M+2+Na⁺), 507 (M+Na⁺), 487 (M+2+H⁺), 485 (M+H⁺); Anal. Calcd for C₂₄H₂₅BrN₂O₄: C, 59.39; H, 5.19; N, 5.77. Found: C, 59.48; H, 5.09; N, 5.66.

- 14. Kalinski, C.; Umkehrer, M.; Ross, G.; Kolb, J.; Burdack, C.; Hiller, W. *Tetrahedron Lett.* **2006**, 47, 3423–3426.
- 15. General Procedure for the synthesis of 2-acyl-1-N-substitutedcarbamoyl-1,2-dihydro-12H-1-benzopyrano[3,2-c]quinolin-12-one (6): A mixture of 5 (0.2 mmol), PdCl₂ (10 mol %) and KOAc (0.4 mmol) was heated in DMF (10 mL) at 100-110 °C for 2 h. The resultant reaction mixture was cooled and poured into ice-water (300 g) with stirring. Saturated brine solution (20 mL) was added and stirred vigourously for 1 h when a grey solid separated out. The separated solid was filtered and dissolved in CHCl₃. The CHCl₃ solution was washed with water, dried over Na₂SO₄ and chromatographed over silica gel to yield 6 when eluted with 40% ethyl acetate in light petroleum.
- 16. Wang, Y.; Wang, H.; Peng, J.; Zhu, Q. Org. Lett. 2011, 13, 4604-4607.
- 17. *Characterisation data of* **6i**. White crystalline compound, mp 246–248 °C; yield 56%; IR (KBr): 3305, 2914, 1687, 1673, 1635, 1603 cm⁻¹; ¹H NMR (CDCl₃) δ 8.07 (1H, br s, H-11), 7.95 (1H, br d, *J* = 7.8 Hz, ArH), 7.58–7.49 (4H, m, ArH), 7.33–7.28 (1H, m, ArH), 7.03 (1H, br s, NH), 6.59 (1H, br s, H-1), 2.50 (3H, s, ArCH₃), 2.36 (3H, s, COCH₃), 1.24 (9H, s, CMe₃); ¹³C NMR (CDCl₃) δ 175.9, 169.8, 167.3, 153.8, 139.6, 135.7(2C), 135.4 (2C), 132.2, 125.2 (2C), 125.1, 124.5, 124.3, 122.9, 117.8, 77.2, 51.2, 28.7 (3C), 22.8, 20.9; MS: *m*/*z* 427 (M+Na⁺), 405 (M+H⁺); Anal. Calcd for C₂₄H₂₄N₂O₄: C, 71.27; H, 5.98; N, 6.93. Found: C, 71.15; H, 6.04; N, 6.87.
- CCDC 917221 contains the supplementary crystallographic data for this Letter. This data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/ retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).
- (a) Bararjanian, M.; Hosseinzadeh, S.; Balalaie, S.; Bijanzadeh, H. R. *Tetrahedron* 2011, 67, 2644–2650; (b) Zhang, Y.; Wang, L.; Ding, M.-W. *Tetrahedron* 2011, 67, 3714–3723.