Preparation and Reactions of 1,2-Thiaphospholes

Shinichi MOTOKI,* Takaya SAKAI, Ikuo SHINODA, Takao SAITO, and Tokiko UCHIDA+
Department of Chemistry, Faculty of Science, Science University of Tokyo,
Kagurazaka, Shinjuku-ku, Tokyo 162
+Department of Industrial and Engineering Chemistry, Faculty of Science and Technology,
Science University of Tokyo, Noda, Chiba 278

Treatment of 2,9-dithia-1-phosphabicyclo[4.3.0]-nona-3,7-diene 1-sulfides with $n\text{-Bu}_3P$ afforded 1,2-thiaphospholes in good yields. The thiaphospholes reacted thermally with norbornene to produce 1:2 double Diels-Alder cycloadducts, whereas they reacted with acrylic esters in the presence of Lewis acid to give tandem Diels-Alder / β -addition adducts.

We previously reported that 2,9-dithia-1-phosphabicyclo[4.3.0]-nona-3,7-diene 1-sulfides 1 prepared by the reaction of α,β -unsaturated ketone with excess P4S10 in the presence of triethylamine, 1) generated 1,2-thiaphosphole 2-sulfides 2 and the corresponding α,β -unsaturated thioketones 3 by thermolysis and that both of these heterodienes could be trapped with dienophiles (X=Y) as [4+2] cycloadducts. 2)

This paper deals with new and efficient preparaion of 1,2-thiaphospholes 4 via desulfurization of 1 and with their novel reactions with norbornene or acrylic esters.

A solution of 1a (Ar¹=Ar²=Ph , 2 mmol) and n-Bu₃P (6 mmol) in dichlorometane (12 ml) was refluxed for 7 h. The reaction mixture was chromatographed on silica gel using benzene-hexane (1:30) as an eluent to give 3,5-diphenyl-1,2-thiaphosphole $4a^3$) in a 79% yield along with $5a^4$) (18% yield). In contrast to the transient property of 2, 4a was found to be sufficiently stable for isolation. In a similar way, some other thiaphospholes 4b-e were obtained in 74-84% yields. The results are shown in Table 1.5) To our knowledge, 1,2-thiaphospholes are very inaccessible compounds and there are only two reports on their preparation in very low yields (8% or below). Accordingly, the present results provide a useful and convenient method for the preparation of these heterocycles.

The thiaphosphole **4a** (0.78 mmol) was allowed to react with norbornene (4.68 mmol) at 180 °C for 18 h in *o*-dichlorobenzene (12 ml) to afford the 1:2 Diels-Alder adduct **8**⁷) in 34% yield. Cleavage of the C-S bond in the initially formed [4+2] cycloadduct **6**, generates 2,3-dihydrophosphorin 1-sulfide **7**, which reacts further with another molecule of norbornene to give **8** as the final product.

Because **4** is reluctant for the thermal reaction with dienophiles, ⁸⁾ we next examined the reaction of **4** with methyl acrylate using AlCl₃ as a catalyst. When **4a** (0.78 mmol) was treated with an excess amount of methyl acrylate (4.68 mmol) in dichloromethane (12 ml) in the presence of AlCl₃ (2.34 mmol), the reaction proceeded readily even at room temperature. Usual work up and chromatography on silica gel with ethyl

acetate-hexane (1:10) as an eluent gave the product. The mass spectra indicated a 1:2 adduct but the X-ray analysis proved that the adduct had an unexpected structure 10a. It seems that the first step is cycloaddition reaction of 4a with methyl acrylate to form the intermediate 9 which subsequently undergoes the 1,4-addition with another molecule of methyl acrylate, giving the final product 10a. 1-[2-(Alkoxycarbonyl)ethyl]-1,2-dihydrophosphorin 1-sulfides <math>10b-d were similarly obtained in 61-93% yields. The results are shown in Table 2.

Table 1	Yield and Mp's of	Products from	the Reaction of	of 1 w	ith n-Ruap a)
i abic 1.	i iciu aliu ivib s oi	1 Toducts Hom	the Reaction C	лти	riui n-Dusi ~

Ar ¹	Ar ²	Product	Yield / %	Mp / °C	Product	Yield / %	Mp/°C
Ph	Ph	4 a	79	92-93	5a	18	151-153
p-MeOC ₆ H ₄	Ph	4b	83	112-113	5b	trace	-
<i>p</i> -Tol	Ph	4 c	84	100-102	5c	5	163-164
Ph	p-MeOC ₆ H ₄	4 d	74	112-114	5d	trace	-
Ph	p-Tol	4 e	83	75-76	5e	10	155-156

a) The reaction required 7-9 h in refluxing dichloromethane.

Table 2. The Reaction of 4 with Acrylic Esters

Ar ¹	Ar ²	R	Thiaphosphole	Time / h	Product	Yield / %	Mp/°C
Ph	Ph	Me	4a	1	10a	80	138-139
p-MeOC ₆ H ₄	Ph	Me	4 b	1	10b	71	124-125
<i>p</i> -Tol	Ph	Me	4c	1	10c	61	84-86
Ph	Ph	Et	4a	2	10d	93	64-66

It is noteworthy that the formation of $\bf 9$ is the first example of Lewis acid-promoted hetero Diels-Alder reaction of a phosphadiene system. Tandem Diels-Alder / β -addition process to form phosphorus compound $\bf 10$ would be also interesting. Remarkable difference of the reactivity toward dienophiles between $\bf 2$ and $\bf 4$ may be due to the valence states of the phosphorus in $\bf 2$ (pentavalent) and $\bf 4$ (trivalent).

The authors wish to thank Mr. Abduaini for performing the X-ray analysis and also Professor Shu Kobayashi of this Faculty for measuring ³¹P-NMR spectra.

$$Ar^{1} \xrightarrow{P_{4}S_{10}} Ar^{2} \xrightarrow{Ar^{2}} Ar^{1} \xrightarrow{S} \xrightarrow{S} Ar^{1} \xrightarrow{S} Ar^{1} \xrightarrow{S} Ar^{2} \xrightarrow{Ar^{2}} Ar^{1} \xrightarrow{Ar^{2}} Ar^{2} \xrightarrow{Ar^{2}} Ar^{1} \xrightarrow{Ar^{2}} Ar^{2} \xrightarrow{$$

References

- 1) H. Yamaguchi, S. Kametani, T. Karakasa, T. Saito, and S. Motoki, *Tetrahedron Lett.*, 23, 1263 (1982).
- 2) H. Tanaka, S. Kametani, T. Saito, and S. Motoki, Bull. Chem. Soc. Jpn., 58, 667 (1985).
- 3) **4a**: Colorless needles. ¹H-NMR (CDCl₃): δ=8.18 (d, H-4, J_{HP} = 8.25 Hz). ¹³C-NMR (CDCl₃, DEPT): δ=132.6 (d-CH, C-4, J_{CP} = 13.5 Hz), 159.0 (d-C, C-5, J_{CP} = 5.80 Hz), 183.2 (d-C, C-3, J_{CP} = 56.1 Hz). ³¹P-NMR (CDCl₃): δ=203.8. MS *m/z* 254 (M⁺, 100) , 191 (M⁺-PS , 30) , 121 (PhCP⁺ , 6). HRMS Found: *m/z* 254.0319. Calcd for C₁₅H₁₁PS₂:M⁺,254.0320. UV (Cyclohexane): 335 nm (11770), 276 (23604), 235 (11141).
- **5a**: Colorless cubes. 1 H-NMR (CDCl₃): δ=4.94 (dd, H-5, J_{4,5} = 2.97, J_{HP} = 10.88 Hz), 5.96 (dd, H-4, J_{4,5} = 2.97, J_{HP} = 2.97 Hz), 6.37 (d, H-7, J_{HP} = 35.96 Hz). 13 C-NMR (CDCl₃, DEPT): δ=47.7 (CH, C-5), 66.5 (d-C, C-6, J_{CP} = 56.1 Hz), 108.2 (d-CH, C-4, J_{CP} = 9.8 Hz), 123.5 (d-CH, C-7, J_{CP} = 7.4 Hz). 31 P-NMR(CDCl₃): δ=122.4. MS m/z (rel. intensity.): 478 (M⁺, very weak), 414 (M⁺-2S, 0.4), 254 (**4a**⁺, 100). HRMS Found: m/z 478.0964. Calcd for C₃₀H₂₃PS₂:M⁺,478.0981. mp 151-153 °C.
- 5) It seems that another component **3** was decomposed by *n*-Bu₃P. Any identified product other than **4** and **5** was not obtained.
- 6) G. Märkl and W. Hölzl, Tetrahedron Lett., 29, 4535 (1988); ibid., 30, 4501 (1989).
- 8: Colorless cubes. 13 C-NMR (CDCl₃,DEPT): δ=34.7 (CH₂, C-17), 47.5 (d-C, C-8, J_{CP} = 40.3 Hz), 49.4 (d-CH, C-2, J_{CP} = 48.8 Hz), 57.8 (d-CH, C-3 or C-7, J_{CP} = 6.1 Hz), 135.7 (d-C, C-15, J_{CP} = 54.9 Hz). 31 P-NMR (CDCl₃): δ= 23.7. MS m/z (rel. int.): 442 (M⁺, 6), 348 (M⁺-norbornene, 60), 316 (M⁺-norbornene-S, 4), 254 (4a⁺, 100). HRMS Found: m/z 442.1885. Calcd for C₂₉H₃₁PS: M⁺,442.1886. mp 243 °C.
- 8) The reaction of **1** with the other dienophiles such as methyl acrylate, acrolein and acrylonitrile did not proceed in boiling benzene or xylene and only decomposition reaction of the material took place in boiling *o*-dichlorobenzene.
- 9) **10a**: Pale yellow needles. ¹H-NMR (CDCl₃): δ=2.34 (m, 2H), 2.71 (m, 2H), 3.44 (dd, 2H, H-2,2', J₂,2' = 13.52, J_{HP} = 15.83 Hz), 3.52 (s, 3H), 3.67 (s, 3H), 6.76 (d, H-5, J_{HP} = 30.35 Hz). ¹³C-NMR (CDCl₃,DEPT): δ=26.8 (CH₂, C-8), 26.9 (d-CH₂, C-7, J_{CP} = 57.4 Hz), 33.2 (d-CH₂, C-2, J_{CP} = 56.2 Hz), 52.0 (CH₃), 52.1 (CH₃), 121.6 (d-C, C-3, J_{CP} = 9.7 Hz), 136.4 (d-C, C-6, J_{CP} = 70.8 Hz), 167.8 (C=O), 172.4 (C=O). ³¹P-NMR (CDCl₃): δ=28.2. MS *m/z* (rel. int.): 426 (M+, 75), 393 (M+-SH, 100), 307 (M+-2COOCH₃, 11). HRMS Found: *m/z* 426.1061. Calcd for C₂₃H₂₃PSO₄:M+,426.1056. mp 138-139 °C. IR (KBr): 1736 cm⁻¹ (C=O), 1700 (C=O). The X-ray data of **10a** will be published elsewhere.

(Received June 22, 1993)