The vibrational spectra of germane and silane derivatives—XII. A reassignment of the dimethylhalosilanes

Allan J. F. Clark,* John E. Drake, Raymond T. Hemmings[†] and Quang Shen[‡]

Department of Chemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada

(Received 14 November 1980)

Abstract—The i.r. and Raman spectra of the dimethylhalosilanes, Me_2SiHZ and Me_2SiDX (X = F, Cl, Br, I) have been recorded and the fundamental vibrations assigned. Analysis of the spectra of the deuterated compounds indicate that existing assignments for Me_2SiHX are in error.

INTRODUCTION

A report on the vibrational assignments of halogen derivatives of dimethylsilane has appeared in the literature[1]. This naturally included the monohalodimethylsilanes, and the authors recognized the difficulty in assigning the SiH bends and methyl rocks, and suggested that a study of isotopic species would be useful. This report responds to the suggestion and in light of the added information, concludes that the original assignments are questionable.

EXPERIMENTAL

The dimethylsilanes Me₂SiH₂ and Me₂SiD₂ were prepared by the reduction of Me₂SiHCl and Me₂SiCl₂ by LiAlH₄ and LiAlD₄, respectively, in dibutyl ether. They were separated from unreacted and partially reduced starting material by passage of the volatile products through a trap at -95° C, which retained any chloromethylsilanes and allowed for collection of dimethylsilane in a -196°C following trap. Purity was checked by ¹H NMR, i.r.[2] and Raman spectroscopy, for the detection of unreacted Si-Cl. Preparation of the iodo- and bromo- species was (i) by the reaction of the parent silane with HI (at 0°C) and HBr (at -78° C) for 1 h in the presence of the corresponding aluminum halide [3] and (ii) by the cleavage of (Me₂SiH)₂NH with excess HX, in a clean and facile reaction[4] which only produces the monohalogenated species and an involatile co-product. Salt exchange reactions of the iodo- or bromo- species with HgCl₂[4] and SbF₃[5] afforded the chloro- and fluoro- derivatives, whose purity was checked by ¹H NMR spectroscopy[6].

Infrared spectra were recorded on a Beckman IR-12 instrument, using a 9 cm gas cell fitted with KBr windows and, for some less volatile derivatives, a liquid cell fitted with CsI plates. Raman spectra were recorded on the neat liquid in capillary tubes (o.d. *ca.* 2 mm) on a Spectra-Physics 700 spectrometer, using the argon ion line at 488.0 mm. Strong, sharp lines are estimated to ± 1 cm⁻¹, and weaker features to ± 4 cm⁻¹. ¹H NMR spectra were recorded on a JEOL C60-HL spectrometer on the neat liquid in sealed capillary tubes.

CALCULATIONS

The normal co-ordinate analyses were performed using an IBM S/360-50 series computer with a program written by Dr J. L. HENCHER of this department, in which the force constants are adjusted to fit the frequencies from the normal and deuterated molecules simultaneously. The following dimensions, taken from related molecules [7] were assumed; C-H 110, Si-C 185, Si-H 148 and Si-X 160(F), 203(Cl), 224(Br) and 246 pm(I). All angles were assumed to be tetrahedral. The methyl groups were defined such that all bonds were staggered when sighted along each C-Si bond.

VIBRATIONAL SPECTRA

The numbering and description of the modes are shown in Table 1 and typical Raman and i.r. spectra in Figs. 1 and 2. For the chloride, bromide and iodide, the expected band contours are A and/or C for the a' modes and B for the a'' modes. Me₂SiHF is almost an accidental symmetric top and although A-type bands are predicted for a'modes, hybrid band shapes might be anticipated.

Table 1. Fundamental modes and approximate descriptions for (CH₃)₂SiHX molecules

Description	<u> </u>	<u>ı</u> "	<u>a</u> "	<u>a</u> "		
CH ₃ str. (asym)	٧	v ₂	^v 16	v17		
CH ₃ str. (sym)	v	3	81 ^۷			
SiH str.	ν _z	Ļ				
CH ₃ def. (asym)	^v 5	^v 6	۶I ^۷	^v 20		
CH ₃ def. (sym)	v	,	^v 21			
CH ₃ rock	°8	و٧	^v 22	^v 23		
SiC ₂ str.	v	0	^v 24			
SiH def.	ابر	1	^v 25			
SiX str.	v	2				
SiC ₂ def.	v	3				
CSiX def.	וי	4	^v 26			
torsion	۲۷	5	v ₂₇			

Present addresses:

^{*}Department of Chemistry, McGill University, Montreal, Quebec, Canada.

[†]Department of Chemistry, Scarborough College, University of Toronto, West Hill, Ontario, Canada.

[‡]Department of Chemistry, Colgate University, Hamilton, New York, U.S.A.

Fig. 1. The Raman spectrum of chlorodimethylsilane.

Fig. 2. The gas i.r. spectrum of bromodimethylsilane.

(i) The region 3000–1000 cm^{-1}

The CH₃ stretching regions in both spectra are almost identical for both homologues, with the asymmetric CH₃ stretches resolved into two bands in the Raman spectra. They appear as featureless weak to medium intensity bands in the i.r. spectra.

The Si-H and Si-D stretches are strong bands in both effects, those in the fluoride having the expected A-type contours. A weak shoulder is observed to the high wavenumber side of the Si-D band in both spectra, but not for the Si-H band. It is thus probably an overtone or combination band enhanced by Fermi resonance with v_4 . The highest rock is at *ca*. 820 cm⁻¹, and this fundamental, v_q , is moderately strong (for a rock) in the Raman spectra and is intense in the i.r. spectra.

The asymmetric deformations appear as two depolarized bands in the Raman spectra, with a C-type maximum to the high frequency side of the i.r. envelope. The a' and a'' symmetric deformations are both observed in the Raman spectra, where they are clearly distinguished in the polarized scan.

(ii) The region 1000–350 cm^{-1}

This region is interpreted mainly from the Raman spectra (Fig. 3-6) and the liquid i.r. spectra (e.g. Fig. 7). The Si-X stretches (X = Cl, Br, I) are

Fig. 5. Partial Raman spectrum of bromodimethylsilane.

Fig. 7. Gas and liquid phase i.r. spectra of bromodimethylsilane.

intense, polarized bands at characteristic frequencies. The rest of the Raman spectrum is typical of the Me₂SiH-group, and is almost identical to the pattern observed in the $(Me_2SiH)_2E$ series (E =S, Se, Te)[8]. The bands between 500-600 cm⁻¹ in the Raman spectrum of the 'heavy' molecule are without doubt the two Si-D bands, with a decreasing separation as the halogen becomes heavier; the two appearing exactly overlapped in the iodide. This suggests that the depolarized Raman band at ca. 634 cm⁻¹ in all four compounds is ν_{25} , the a" SiH band. The strongest remaining Raman band in the spectra of both isotopic species at about (65 cm^{-1}) is presumably the symmetric Si-C stretch. The rest of the assignment is less immediately obvious, although the intense envelope at *ca*. 850 cm^{-1} in the i.r. spectra must involve methyl rocking modes.

These methyl rocking modes $(\nu_8, \nu_9, \nu_{22} \text{ and } \nu_{23})$, the *a'* SiH deformation, ν_{11} , and the *a''* SiC stretch, ν_{24} , can give rise to three apparently reasonable, yet different sets of assignments, depending on the method of approach. These possibilities, together with the data from DURIG and HAWLEY[1] are presented in Table 2, where frequencies for the chloride have been used. It is difficult to see how the intense, polarized band at about 670 cm^{-1} can be assigned to anything but the a' SiC stretch, as is done here and in an earlier study of Me₂SiHCl[9]. This is especially true because the methyl rocking modes, which have been suggested as an alternative, are notoriously weak in the Raman effect. Further, the assignment of methyl rocks to a region $632-667 \text{ cm}^{-1}$ places them only a little higher than the CD₃ rocking modes observed for CD_3Si -compounds[10, 11] or $(CD_3)_3SiCl[12]$. The position of the two Si-D deformations suggests a lower value for the a' SiH deformation than that arrived at by DURIG and HAWLEY[1] and the polarized band at 726 cm^{-1} , with corresponding bands at 742(F) 710(Br) and $694 \text{ cm}^{-1}(I)$, appears a more reasonable assignment for this mode. This steady decrease with increasing mass of halogen is to be expected as the a' SiH deformation is mainly

		Ref [1]	/	1		B		C
		Н	Н	D	н	D	н	D
^v 10		724	670	676	670	676	670	676
v ₂₄ }	SiC stretch	777	776	705	776	765	705	705
V22]		904	905	812	905	844	905	844
V.0		879	883	844	883	822	883	822
ູ }	CH ₃ rocks	667	843	822	843	812	843	812
v ₂₃		667	843	765	705	705	776	765
יוו]		842	726	553	726	553	726	553
^v 25	SiH def.	• 639	633	530	633	530	633	530

Table 2. Possible assignments within the region 550-910 cm⁻¹ for chlorodimethylsilane

dependent on fHSiX, whereas the a'' band depends mainly on fCSiH, and is thus relatively unchanged with the changing mass of the halogen.

Assignment A in Table 2 is arrived at by treating both isotopic series independently. In both the Raman and liquid i.r. spectra there are three bands above 840 and 810 cm^{-1} for the light and heavy molecules, respectively, which contain three (possibly all four) methyl rocking modes. Despite the weakness of the Raman spectra, two of these bands appear to be polarized, leaving the remaining rocking mode (if not coincident with one of the other three) to be assigned to a depolarized band. It will be noticed that ν_{24} , the *a*"SiC stretch, is assigned to widely different frequencies, and that the weak band at 705 cm^{-1} in the light compound is ignored. This band appears more distinctly in the fluoride, but not in the bromide or iodide where, if it is real, it is almost certainly overlapped by ν_{11} . However, the band is evident in the (Me₂SiH)₂E compounds (E = S, Se, Te). An assignment that ignores this feature is unlikely to be valid, since it cannot be explained as a combination or overtone band, even with the proposed torsional modes[1].

The large difference between the a' and a'' SiC stretching modes is not compatible with calculated product rule ratios, which require, for good agreement, similar values for both the a'' stretches in the isotopic series. It was also impossible to

duplicate these splitting patterns (100 and 30 cm^{-1} for H and D, respectively) with NCA calculations Assignment A is therefore rejected as a possibility.

This requirement from the product rule ratio satisfies both assignments B and C, where ν_{24} is now similar for both series of compounds. If we assume that the band at *ca*. 705 cm⁻¹ does correspond to a fundamental mode in the spectra of all of the compounds, then it is either the remaining methyl rock (B) or ν_{24} , the *a*"SiC stretch (C). Both assignments do produce acceptable product rule ratios (Table 3). Little reliable data exist for Me₂SiX₂ compounds except for that of DURIG and HAWLEY [1], where for Me₂SiI₂ depolarized bands

Table 3. Product rule ratios for Me₂SiHX

	calc.	obs. Ra	obs. i.r.
ĝ	0.517	0.521	0.519
<u>a</u> "	0.725	0.721	0.705
<u>a</u> '	0.512	0.501	0.502
<u>a</u> "	0.726	0.727	0.752
<u>a</u> '	0.509	0.508	0.492
<u>a</u> "	0.726	0.723	0.709
a'	0.508	0.509	0.511
	0.726	0.741	0.742
	<u>ब</u> ् ब् ब् ब्	calc. a' 0.517 a" 0.725 a' 0.512 a' 0.726 a' 0.509 a" 0.726 a' 0.508 a" 0.508 a" 0.726	calc. obs. Ra à' 0.517 0.521 à" 0.725 0.721 à' 0.512 0.501 à" 0.726 0.727 à' 0.509 0.508 à" 0.726 0.723 à' 0.508 0.509 à" 0.726 0.723

Table 4. The vibrational spectra of the fluorodimethylsilanes

	Me ₂ SiNF		assign-	Me2SIDF			
i.r.(gas)	Raman(liq.)	calc.	ment	i.r.(gas)	Raman(liq.)	calc.	
2981 mw	2974 mw dr	2978	^V 1/ ^V 16	2981 mw	2975 mw dp	2978	
2974 mw	7374 Ille CD	2977	^v 2, ^v 17	2974 mw	rata nu ob	2977	
A 2927 2917 w 2909	2912 s p	2911	^v 3' ^v 18	2914 w	2910 s p	2911	
2824 vw			^{2б} ме	2821 vw	2805 vw p 2505 vw		
$A \begin{cases} 2184 \\ 2169 \\ 2156 \end{cases} s$	2166 s p	2177	V ₄	A 1594 1582 s 1568	1578 s p	1571	
1436 w	1430 vw dp	1419	^v 5' ^v 19	1430 w	1415 vw dp	1419	
1422 w	1404 vw dp	1410	v6, v20	1422 w	1409 vw dp	1410	
A 1274 A 1266 ms	1262 vw p	1266	v7	$A \begin{cases} 1272 \\ 1264 \\ s \end{cases}$	1262 vw p	1256	
(1257		1261	^V 21	(1257		1254	
929 vs	917 vw dp	912	v ₁₂	902 vs	889 vw dp	896	
921 vs		911	v ₂₂	821 vs	817 vw dp	841	
844 m	848 vw dp	866	×8	840 msh	837 vw p	839	
$B \begin{cases} 828 \\ 821 \end{cases}$	819 vw p	770	v ₉	769 w	776 vw p?	770	
	775 vw dp	793	^v 23	759 w	757 vw dp	793	
C? 742 m	742 vw p	756	ιι ^ν	584 m	586 mw p	578	
	703 vw dp	714	v24	680 mw	698 vw dp	690	
C? 651 vws	h 653 ys p	659	×10	C 667 mw	668 vs p	659	
638 mw	634 vwsh dp	635	v25	530 m	536 w dp	523	
505 w			v14 ^{+v} 13				
A 287	288 w p?	288	v13		286 w p?	286	
270	262 mw dp?	261	V26		259 mw dp?	260	
	218 mw dp?	218	v14		217 mw dp?	217	

appear at 790, 750 and 705 cm^{-1} ; presenting the same problem of identification as in this paper. More extensive data exist for Me₃SiX compounds [12-14] much of it accompanied by NCA[12, 13] and the consensus points to methyl rocks being assigned to bands observed at ca. 760 cm^{-1} and a"SiC stretches to bands around 710-690 cm⁻¹. The report on Me₃SiCl, which included data on (CD₃)₃SiCl[12], studied the most likely assignments and concluded that the a''SiCstretches were at 695 and 705 cm⁻¹ for the light and heavy molecules, respectively. This comparative data slightly favours assignment C and this is further supported by the fact that NCA calculations cannot calculate the large spread of frequencies (ca. 200 cm^{-1}) required for the methyl rocks in assignment B. Thus, it must be concluded that C represents the most likely set of assignments and this is used in Tables 4-7 for all the halides.

(iii) The region below 350 cm^{-1}

Each compound has three bands in this region, the CSiC deformation and the a' and a''CSiXdeformations. In Me₂SiH₂ the CSiC deformation has a value of 223 cm⁻¹[2], and the CSiX deformations in MeSiH₂X, where these are the only

skeletal deformations possible, occur at frequencies of 176(I), 192(Br), 213(Cl) and $263 \text{ cm}^{-1}(\text{F})$ [10]. The lowest two bands in the Me₂SiHX compounds increase in wavenumber along the series I-Br-Cl more rapidly than does the highest, suggesting that motion of the halogen is involved. Conversely, v_{13} , which is expected to be less sensitive to a change in substituent, is assigned to the band at $ca. 250 \text{ cm}^{-1}$ in the iodide, bromide and chloride. Further, on the basis of mass, it seems unlikely that in the iodide and bromide the two CSiX deformations should be at a higher wavenumber than the CSiC deformation and moreover, from the point of view of intensity, the a'CSiX deformation might also be expected to give rise to a stronger band than the CSiC band in the Raman effect. In the fluoride, the polarization data give no firm clues. The a"CSiX deformation increases in wavenumber more rapidly with lighter halogen substituent, than does its a' mode so that they are nearly coincident in the chloride. Thus, the order of these two modes may be expected to be reversed in the fluoride. The assignment is made on the basis of the NCA, where for the preferred assignment, i.e. with the CSiC deformation at highest frequency, the force constants

Table 5.	The	vibrational	spectra	of	the	chlorodimethylsilanes
----------	-----	-------------	---------	----	-----	-----------------------

r (das) Raman(lid.) Calc				
Tere (945) Raman (Try.) Care.	ment 1.	r.(gas)	Raman(liq.)	cale.
2983 m 2977 mw dp 2975	^v 1, ^v 16	2984 mw	2979 mw dp	2975
2974 m 2971 mw dp 2974	2, V17	2974 mw	2970 mw dp	2974
2916 w 2909 vs p 2909	v_{3}, v_{18} A? 2	2916 w	2908 vs p	2909
2821 vw	2xδ _{Me}	100	2842 vw p 2807 w p 2502 vw p	
2176 vs 2173 sp 2181	N. A.	1591 1581 s	1579 s p	1573
2041 vw v7 1934 vw v7 1815 vw v7	4 /C	1572 1624 vw	-	
1765 VW	ме	1420		1410
1435 w 1427 w dp 1418	^v 5' ¹ 9	1429 W	1414 w dp	1418
1420 w 1402 w dp 1410	^v 6' ^v 20	1419 W	1963	1410
C 1267 s 1263 wp 1271	^ν 7 ^C	1268 s	1263 w p	1254
(1262 s 1258 vw dp 1257	v ₂₁ - (.	1263 S	1253 vw dp	1251
B { 913 905? mssh 905 vw dp 909	^v 22	808 s	812 w dp	847
A 894? 885 vs 883 vw p? 873 873	v ₈	∿840 msh	844 vw p	839
C 845 s 843 vw p 817	v ₉	825 vsbr	822 w p	813
$B \begin{cases} 781 \\ 772 \\ 772 \\ 772 \\ 772 \\ 776 \\ 776 \\ 776 \\ 776 \\ 776 \\ 792 \\ $	^v 23 В	{771 762 ₩	765 w dp	787
$ \begin{array}{r} $	v11	554 m	553 mw p?	554
∿698 vw dp 707	^V 24	715 vw	705 vw dp	694
$\Lambda \begin{cases} 679 \\ 671 \\ 663 \end{cases} 670 \text{ sp} 672$	v10 A	688 680 ms 672	676 s p	676
636 w 633 w dp 644	^V 25	547 m	530 mw dp	522
507 s 489 s p 492	v ₁₂	505 ms	486 s p	484
258 mw dp 255	v13		252 mw p	254
209 m dp 208	V14		207 m đp	208
207 m dp 205	v ² 6		202 m dp	204

i r (ana)	i = (1i - 1)				Me ₂ SiDBr					
I.L. (yas)	1.1.(114.)	Raman(liq.)	calc.	ment	i.r.(gas)	Raman(liq.)	calc.			
2980 m	2978 msh	2977 mw dp	2973	^v 1 ^v 16	2980 m	2977 mw dp	2973			
2974 m	2968 m	2967 mw dp	2972	^v 2 [•] ^v 17	2974 m	2969 mw dp	2973			
2914 w	2905 w	2906 vs p	2906	×31×18	2913 w	2906 mw dp	2906			
2814 vw				2xoMe	2819 vw	2802 w p				
2176 s	2170 s	2173 s р	2182	^۷ 4	1581 s	1500 s p	1573			
2036 vw				+ ^ν 23						
1971 VW 1928 VW				°s ^{Me+v} 11 +v10	1938 vw					
1816 vw				2xpMe ¹⁰	1624 vwsh	1618 wsh p				
1432 w	1428 w	1425 w dp	1417	^v 5' ^v 19	1428 mw	1414 w dp	1417			
∿1417 wbr	1398 w	1401 w dp	1410	^v 6′ ^v 20	∿1418 mw	-	1410			
C 1266 ms	1257	1260 w p	1283	r	C 1266 s	1262 w p	1268			
^B (1261 ms	1257 VS	1252 vwshdp	1270	°2 1	^B {1262	1252 vwshdp	1265			
$B \begin{cases} 913 \\ 903 \end{cases} s$	906 vs	905 w dp	861	^v 22	807 s sh	811 w dp	837			
880 vs	872 vs	870 w p	900	ν ₈	∿843 sh	847 vwsh p	826			
$A \begin{cases} 852\\ 846 \text{ ms}\\ 842 \end{cases}$	843 vs	842 vw dp?	778	9 ^۷	818 vsbr	821 w p	794			
в {780 m 770 m	775 s	775 w dp	801	v ₂₃	в {772 764 w	767 w dp	770			
718	711 e	710 mw p	706	٧.,	537 s	536 mw dp?	535			
A 711 m 706	/11 5	120 100 2	707	v ²⁴	710 w	706 w đp	699			
A 671 665 mw	665 s	665 s p	668	۷10	A_{B} $\begin{cases} 680 \\ 674 \\ 668 \end{cases}$	672 s p	672			
637 w	635 m	635 w dp	624	^V 25	519 mwsh	524 m dp	505			
037 1		572 vw p		^v 12 ^{+v} 13						
402 m	389 vs	385 vs p	386	± 12	397 m	382 vs p	380			
	242 w	244 m dp	242	 13		240 mw dp	241			
		194 ms dp?	194	v14		191 ms dp	194			
		186 ms dp?	183	v ²⁶		183 ms dp	103			

Table 6. The vibrational spectra of the bromodimethylsilanes

		Me	SiH1	[aggign_	Me ₂ SiDI							
i.r.(9	jas)	i.r.(1	.iq)*1	Raman (liq)	calc.	ment	1.r.(g	jas)	i.r.(liq)	Raman (1	iq)	calc.
3136	w					·	V, 16 ^{+V} 12	3138	vw					
2987	msh	2977	m	2978	mw dp	2973	^V 1 ^V 16	2988	wsh	*2976	т	2981 mw	dp	2973
2974	m	2964	m	2965	mw dp	2972	^V 2 ^{,V} 17	2975	πw	*2964	mw	2967 mw	dp	2972
2913	mw	2903	w	2903	sp	2903	² 3' ¹ 18	2913	w	*2901	w	2902 s	p	2903
2860 2813 2512	VW W VW	2793	vw	2849 2796 2503	vw p vw p vw p		28 _а Ме 28 _{ме}	2814	vw	++1611		2799 w	P	
1811	w	1001	vw			2220	2pme	101/	- vw	+1611	w	1612 WS	n p	1671
2172	vs	2167	vs	2170	mр	2180	4	1579	s	*1574	vs	1218 m	р	15/1
2136 2034 1962	wsh vw vw	2030 1956	vw vw				^v 8 ^{+v} 22 ^δ s ^{Me+v} 23	2028	vw	*1920	1760			
1/20	v w	1/25	v w m	1424	w dn	1413	°10	1727		*1420	ms			1413
.£430 ∿1401	whr	1397	m	1396	w dp w dp	1413	5'19 V.V.	1417	wbr	*1405	1112	1411 w	đp	1408
1356 1320	vw vw						$^{10}^{+10}_{2}^{+10}_{2}^{+10}_{2}^{+10}$			†1365 *1328	w vw			
C (1264	s			1258	wp	1261	v ₇	C{1265				1257 w	р	1254
B 1259		1255	vs	1253	wsh dp	1257	v 21	B{1261	ms	*1254	vs	1253 ws	h dp	1253
в { 909 899	s	900	vs	902	vw dp	893	^v 22	806	s si	h †806	vs	808 vw	shdp	840
872	vsbr	862	vs	862	wp	848	٧s	845	s sl	h†*843	vs			827
846	s sh	843	vs	843	vwsh	817	v ₉	822	vsb	r †819	vs	817 mw	р	800
в <mark>(777</mark> 768	m	772	m	773	w dp	783	v ²³	в{772 763	w	*767	m	767 w	đp	772
697	c	694	g	694	mw n	700	^V 24	708	wsh	*705	mw	706 vw	dp	699
0,77	3	054		0.7.1	an p	711	<u>ا ا</u>	526	s	*522	ms	522 mw	р	524
∿710	wsh			668	wsh		² ¹ 2	682	mws	h†659	m	653 vw	sh p?	
656	mw	655	m	656	mw p	652	×10	667	m	*671	s	662 m	р	675
637	mw	634	m	634	wsh dp	643	v25	526	s	*522	ms	522 naw	/ p	507
486	vw	∿490	vwbr	490 392	vw p vvw		$v_{12}^{+v}_{12}^{+v}_{26}^{26}$					488 vw	7 p?	
∿350	sh	335	S	337	vs p	336	¹ 2	342		*329	m	327 vs	вр	327
		238	w	237	mw p	237	v13					236 mw	' p	236
				185	мp	184	v 14					183 ms	вр	184
				167	sh dp	168	v26					166 ms	sh dp	168

Table 7. The vibrational spectra of the iododimethylsilanes

*Neat liquid. †Cyclohexane solution.

Table 8. Force constant values for the series Me_2SiHX

				2-	
	Me2SiHF	Me ₂ SiHCl	Me ₂ SiHBr	Me ₂ SiHI	
1 <u>f</u> CH	477.30	476.35	475.76	475.31	f CH
2 <u>f</u> SiH	271.37	272.46	272.67	272.02	f SiH
3 f SiC	277.96	272.51	278.39	273.57	f SiC
4 f SiX	482.00	241.54	183.19	129.28	f SiX
5 F HCH	47.90	49.46	50.46	49.68	f HCH
6 f HCSi ¹	34.19	35.00	34.88	39.76	Т нсsi
7 f HCSi	54.35	51.22	48.84	47.23	f HCSi
8 F CSIH	57.50	56.32	54.49	52.68	f́ сsін
9 Ê HSiX	59.67	56.10	53.90	44.43	f HSix
10 f csic	90.66	69.37	61.61	57.81	f CSiC
11 f CSiX	46.62	57.95	61.65	72.36	<u>f</u> csix
12 f CH/CH	5.56	5.63	5.48	5.13	f CH/CH
13 F SIC/SIC	25.02	15.13	15.50	19.85	f Sic/SiC
14 E HCH/HCH	-3.98	-2.44	-1.27	-1.80	f HCH/HCH
15 f HCSi ^h /HCSi ¹	-1.97	-3.13	-1.99	-0.33	f HCSi /HCSi
16 f HCSi"/HCSi"	11.19	9.50	9.50	7.75	f HCSi /HCSi
17 ff CSiH∕CSiH	2,60	0.90	1.45	3.42	f CSiH/CSiH
18 f CSiX/CSiX	-15,30	-3.83	2.86	14.70	f CSix/CSix
19 f c-HCSi/CSiH	-11.61	-13.36	-13.57	-10.69	f c-HCSi/CSi
20 f t-HCSi/CSiH	-0.80	-2.60	-1.20	-0.07	f t-HCSi/CSi
21 f CSiH/HSiX	3,26	2.70	3.01	0.85	f CSiH/HSiX
22 f SiC/CSiH	26.33	21.79	20.37	3.29	f Sic/CSiH
23 f SiX/HSiX	9.66	12.90	12.34	5.19	f Six/HSix
24 f SiX/CSiX	-	-	4.68	4,91	f Six/CSix
25 f sic/six	12.70	-	-	_	f sic/six
26 f SiC/HCSi	17.00*	17.00*	17.00*	17.00*	f Sic/HCSi

*Fixed. Units: Nm⁻¹ for stretching and Nm rad⁻² for bending force constants.

Table 9. Frequencies (cm^{-1}) and approximate description of the fundamental modes for halodimethylsilanes

		ne ₂	SiH'F	Me ₂ S	Me ₂ SiH'Cl		ill'Br	Me ₂ SiH'I		
H' =		H	D	H	D	н	D	II	D	
CH, str.	a	2974 2974	2975 2975	2977 2971	2979 2970	2977 2967	2977 2969	2978 2965	2981 2967	
3	s	2912	2910	2909	2908	2906	2906	2903	2902	
ŞiH'str.		2166	1578	2173	1579	2173	1580	2170	1578	
	(a	1430	1415	1427	1414	1425	1414	1424	1411	
CH ₃ def.	a	1404	1409	1402	1414	1401	1414	1396	1411	
5	Í s	1262	1262	1263	1263	1260	1262	1258	1257	
	l s	1262	1262	1258	1253	1252	1252	1253	1253	
	ſa	917	217	905	812	905	811	902	808	
CH ₃ rock	s	848	837	883	844	870	847	862	843	
5	Í s	819	776	843	822	842	821	843	817	
	La	775	757	776	765	775	767	773	767	
	(^a	703	698	698	705	~ 710	706	694	706	
SiC ₂ str.	{ s	653	668	670	676	665	672	656	662	
	(^S	742	586	726	553	710	536	694	522	
SiH' def.	ł.	634	536	633	530	635	524	€34	522	
SiX str.		917	889	489	486	385	382	337	327	
CSiC def.		288	286	258	252	244	240	237	236	
CSiX def.	{	218 262	217 259	209 207	207 202	194 186	191 183	185 167	183	

fCSiC, fCSiF and fCSiF/CSiF all continue general trends found for the other compounds (Table 8). The value of fCSiF is found to be only a little lower than that in $CH_3SiH_2F[10]$ and $CH_3SiF_3[15]$ and like the value of fCSiF/CSiF in the latter compound, the interaction term is large (approximately 1/3 of fCSiF) and negative. If the observation of an A-type band in the i.r. spectrum of Me₂SiHF in the CsI region is taken as proof that the highest frequency in this region is an a'mode, then placing the two CSiF deformations above the CSiC mode, as did DURIG and HAWLEY [1], calls for a reversal of the expected ordering of the two CSiF modes, and changes in the force constant values which then deviate significantly from those in the other compounds.

The frequencies for the preferred assignments are listed in Table 9*, where it can be seen that the frequencies follow smooth trends, except for some of the methyl rocks in the fluoride which are lower than might be expected. Thus, ν_{25} , the asymmetric SiH bend, dependent on a CSiH angle deformation, remains fairly constant, while ν_{11} , the *a'SiH* bend, reflecting changes in both CSiH and HSiX angles, increases with lighter halogen substituent. Thus, we believe that, given the possible alternative assignments, we have identified the most likely set. Acknowledgement—We wish to thank the Natural Sciences and Engineering Research Council of Canada for financial support.

REFERENCES

- [1] J. R. DURIG and C. W. HAWLEY, J. Chem. Phys. 58, 237 (1973).
- [2] D. F. BALL, P. L. GOGGIN, D. C. MCKEAN and L. A. WOODWARD, Spectrochim. Acta 16, 1358 (1960).
- [3] L. G. L. WARD and A. G. MACDIARMID, J. Am. Chem. Soc. 82, 2151 (1960); M. ABEDINI and A. G. MAC-DIARMID, Inorg. Chem. 2, 6088 (1963).
- [4] E. A. V. EBSWORTH and H. J. EMELÉUS, J. Chem. Soc. 2150 (1958).
- [5] L. PIERCE, J. Chem. Phys. 29, 383 (1958).
- [6] E. A. V. EBSWORTH and S. G. FRANKISS, Trans. Faraday Soc. 63, 1574 (1967).
- [7] Tables of Interatomic Distances and Configuration in Molecules and Ions, Special Publications 11 and 18, The Chemical Society, London (1958 and 1965).
- [8] B. GLAVINĚVSKI, Ph.D. Dissertation, University of Windsor, Canada (1978).
- [9] H. KRIEGSMANN and G. ENGELHARDT, Z. Anorg. Allgem. Chem. 310, 320 (1961).
- [10] A. J. F. CLARK, Ph.D. Dissertation, University of Windsor, Canada (1979).
- [11] A. J. F. CLARK and J. E. DRAKE, Can. J. Spectrosc. 22, 79 (1977).
- [12] F. Höfler, Z. Naturforsch. 27a, 760 (1972).
- [13] H. BURGER, V. GOETZE and W. SAWODNY, Spectrochim. Acta 24A, 2003 (1968).
- [14] H. BÜRGER, Organometal. Chem. Rev. A 3, 425 (1968); Spectrochim. Acta 24A, 2013 (1968).
- [15] A. J. F. CLARK and J. E. DRAKE, Spectrochim. Acta 37A, 391.

^{*}Compare with Table 7 in Ref. [1].