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Abstract: A key intermediate ( ) 
in its optically active form. P 

for the total synthesis of streptovaricin A (A) is synthesized 
urther elaboration of 2 is also described. 

Streptovaricin A (J,), produced by Streptomyces spectabilis, is an ansamycin antibiotic with 

notable antitumor activity. 
1 

The streptovaricins were first isolated by Siminoff and co-workers 

in 1957* and the structures were elucidated by Rinehart and co-workers in the early seventies. 
3 

The ansa chain [C(l)-C(16)] (4) of streptovaricin A exhibits intriguing structural features. 

While the chain is rich in chirality with nine asymmetric centers, the presence of hidden sym- 

metry can be easily recognized. Thus, the C(5)-C(9) unit is repeated in the C(lS)-C(l1) unit and 

the utilization of this symmetry will simplify the synthetic scheme leading to 2. Herein is des- 

cribed a highly enantioselective synthesis of a key intermediate (k), which is equivalent to the 

aforementioned C(S)-C(19) unit and will be used twice in the synthesis of the antibiotic. 
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Scheme 1 
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(a) n-Bu2BOTf, (i-Pr)2NEt, CH2C12, O’C, 6 h; methacrolein, O’C, 18 h. (b) 1% HF, 

CH3CN, RT, 2.5 h; NaI04 CH30H/H20, RT, 2 h; t-BuPh2SiC1, imidazole, THF, RT, 12 h. 

(c) WOEt)3, t-BuOOH, NaOAc, CH2C12, O’C, 18 h. (d) 1% HF, CH3CN, RT, 15 min. 

utility of the stereoselective aldol reaction 495 has been amply demonstrated in the 
L 7 

total synthesis of complex macrolide and ansamycin antibiotics.“” Thus, the chiral boron 

enolate is generated by treating S-l-cyclohexyl-l-t-butyldimethylsilyloxybutane-2-one (,$,) with - 

di-n-butylborinyl trifluoromethanesulfonate and diisopropylethylamine in methylene chloride for 

6 h at O°C. Reaction of the enolate with methacrolein proceeded smoothly to provide the aldol 

adduct (2)) mp 33-35OC, in 85% yield with 28:l stereoselection. 
8 

The next transformation involves a stereoselective epoxidation’ on the terminal double bond 

of 2. All attempts toward this goal proved hnsuccessful, therefore 2 was converted to ester R 

in three steps. Treatment of 2 with 1% HF in MeCN gave the desilylated product ,Q, which was in 

turn oxidatively cleaved with sodium meta-periodate. The resulting acid t was silylated with 

t-butyldiphenylsilyl chloride and imidazole to afford ester @, in 78-85% yield based on 2. 

Treatment of 8 with t-butylhydroperoxide in the presence of vanadium triethoxyoxide and 

sodium acetate led to one epoxide product (2) in 80% yield as expected. The stereochemistry shown 

in 2 has been assigned to this epoxide based on spectral data and literature precedent. 
9 Treat- 

ment of 2 with 1% HF in MeCN gave 2, mp 106-106.S°C, in quantitative yield. 
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Scheme 2 
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(e) PhCH20CH2C1, (i-Pr)2NEt, THF, 24 h. (f) LAH, THF, RT, 18 h. (g) acetone, 

CSA, RT, 20 h. 

The key intermediate ,$ has been elaborated further as outlined in scheme 2. Selective pro- 

tection of the primary alcohol with benzyloxymethyl chloride and diisopropylethylamine provided 

in 98% yield ,@ which was in turn reduced with lithium aluminum hydride in THF to give & in 92% 

yield. The 1,3,4-trio1 a was treated with dry acetone and camphorsulfonic acid to yield the 3,4- 

acetonide G in 93% yield with 14:l selectivity for a over the 1,3-acetonide. 10,ll 

The above work completes the construction of six chiral centers out of the nine centers 

present in 2 and work is in progress toward the synthesis of the antibiotic. 12 
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$' (26, 0.91) +26.8; t (26, 1.12) -14.4; & (28, 2.22) +86.5; 1 (27, 0.56) +28.5; 8 (26, 1.23) 
+22.4; 
250 or !z! 

(25, 2.44) +4.7; &Q (26, 0.52) +20.4; 
3 70 MHz proton FTNMR data for new compoun s 

(26, 1.70) +24.0; ,&$ (26, 1.82) -4.0. 
(in CDC13). 2 6 3.92 (d, J=12.18, lH), 

3.91 (dd, J=2.02, 8.88, lH), 3.81 (d, J=12.18, lH), 3.10 (broad, lH), 2.89 (dq, J=7.33, 8.88, 
lH), 1.92 (d, J=2.02, lH), 1.39 (s, 3H), 1.33 (d, J=7.33, 3H); 6 5.15 (s, lH), 4.96 (q, 
J=O.90, lH), 4.32 (dd, J=2.03, 2.05, lH), 3.89 (d, J=5.87, IH), 3 .53 (d, J=2.03, lH), 3.11 
(dq, J=2.05, 7.30, lH), 1.77-1.05 (m, llH), 1.68 (s, broad, 3H), 1.02 (d, J=7.3, 3H), 0.94 
(s, 9H), 0.05 (s, 3H), 0.02 (s, 3H); 
J=3.11, IH), 4.18 (d, J=2.45, lH), 2. % 

(+D20) 6 5.09 (s, lH), 4.95 (d, J=1.22, lH), 4.38 (d, 
3 (dq, J=3.11, 7.26, lH), 1.82-l-14 (m, llH), 1.68 (s, 

broad, 3H), 1.09 (d, J=7.26, 3H); x 6 5.07 (s, IH), 4.95 (s, lH), 4.45 (d, J=3.90, lH), 2.72 
(dq, J=3.90, 7.10, lH), 1.71 (s, 3H), 1.13 (d, J=7.10, 3H); t 6 7.74-7.67 (m, 4H), 7.48-7.36 
(m, 6H), 5.12 (s, lH), 4.96 (q, J=1.71, lH), 4.53 (m, lH), 2.84 (dq, J=3.91, 6.84, lH), 2.51 
(d, J=3.91, IH), 1.74 (s, broad, 3H), 1.23 (d, J=6.84, 3H), 1.13 (s, 9H); 2 (cD 0) 6 7.73- 
7.69 (m, 4H), 7.48-7.34 (m, 6H), 4.40 (d, J=3.20, lH), 3.05 (d, J=4.79, lH), 2.g3 (dq, J=3.20, 
7.14, lH), 2.66 (d, J=4.79, lH), 1.38 (s, 3H), 1.23 (d, J=7.14, 3H), 1.13 (s, 9H); 6 7.38- 
7.30 (m, 5H), 4.78 (d, J=15.16, IH), 4.75 (d, 15.16, lH), 4.62 (d, J=11.78, IH), 4. 2% (d, 
J=11.78, lH), 3.89 (d, J=10.94, lH), 3.84 (dd, J=9.28, 9.98, lH), 3.75 (d, J=10.94, IH), 
2.85 (dq, J=7.31, 9.28, lH), 2.56 (d, J=9.98, lH), 1.40 (s, 3H), 1.32 (d, J=7.31, 3H); ,Q 
(+D20) d 7.36-7.29 (m, 5H), 4.78 (s, 2H), 4.61 (s, 2H), 3.78 (d, J=2.15, lH), 3.66 (dd, 
J=4.04, 10.53, lH), 3.58 (dd, J=6.28, 10.53, lH), 3.55 (s, 2H), 1.87 (m, lH), 1.18 (s, 3H), 
1.03 (d J=7.06 3H); (+D 0) 
lH), 4.;5 (d, J:l2.16,%), t 

6 7.36-7.23 (m, SH), 4.82 (d, J=8.15, IH), 4.79 (d, J=8.15, 
.60 (d, J=12.16, lH), 3.92 (d, J=8.51, lH), 3.69 (d, J=10.49, 

lH), 3.62 (dd, J=4.43, 11.30, lH), 3.59 (d, J=10.49, lH), 3.54 (dd, J=4.59, 11.30, lH), 1.89 
(m, lH);1.44 (s, 3H), 1.35 (s, 3H), 1.21 (s, 3H), 1.14 (d, J=6.69, 3H). 
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