

Tetrahedron Letters 40 (1999) 2291-2294

TETRAHEDRON LETTERS

The Macrocyclic Domain of Phorboxazole A. A Stereoselective Synthesis of the C_1 - C_{32} Macrolactone.

David R. Williams* and Michael P. Clark

Department of Chemistry, Indiana University Bloomington, Indiana 47405 U.S.A.

Received 4 January 1999; accepted 20 January 1999

Abstract: A stereoselective synthesis of the C_1-C_{32} macrocyclic domain of phorboxazole A is described. Key steps have examined the convergent linkage of two major components for the formation of the $C_{19}-C_{20}$ (*E*)-alkene, and the subsequent intramolecular (*Z*)-olefination at C_2-C_3 for ring closure of the macrocycle. © 1999 Elsevier Science Ltd. All rights reserved.

The phorboxazoles are exceptionally potent cytostatic agents for the entire panel of sixty NCI human tumor cell lines ($GI_{50} < 1.6 \text{ nM}$).¹ The novel macrolide 1 contains a twenty-one membered lactone which features four heterocyclic rings and ten of the fifteen stereogenic centers of the natural product. Since the mechanism of bio-

logical activity for 1 is unclear, considerable efforts will be devoted toward an understanding of structure-activity relationships. The polyoxane-oxazole construction of the rigid macrocyclic array may offer a fundamental structural contribution for the extraordinary antitumor potency exhibited by phorboxazole A.^{1a.2} As part of a convergent strategy directed toward the total synthesis of $1^{,3}$ we have recently developed stereoselective syntheses of the C₃-C₁₉ bis-tetrahydropyran (4) and the C₂₀-C₃₂ pentasubstituted tetrahydropyran (3).⁴ In this communica-

tion, we report the formation of the phorboxazole macrocycle (2) via our studies of stereoselective olefination reactions at $C_{19}-C_{20}$ and C_2-C_3 for the coupling of 3 and 4.

A study of olefination processes was implemented to provide for the formation of the $C_{19}-C_{20}(E)$ -alkene of 2. For example, the Horner-Emmons reaction of the simple derivative, ethyl phosphonate 5, with aldehyde 7 resulted in a modest preference for the formation of *trans*-2-alkenyloxazole 8 in 83% yield (2.3:1 ratio of *E*:*Z* isomers).⁵ By comparison, the more sterically demanding diisopropyl phosphonate 6 led to substantial improvement in the *E*-selectivity for the reaction process (20:1 ratio of *E*:*Z* isomers in 86% yield).

Olefination reactions using the fully elaborated bis-pyran oxazole component are summarized in the Table. In comparison to our model studies, these reactions exhibited a surprising trend which provided product enriched in the undesired Z alkene. Thus, the Horner-Emmons reaction of ethyl phosphonate 10 and aldehyde 7 (entry 1) led to formation of 15 (R = TBDMS) without stereocontrol. Use of the corresponding diisopropyl phosphonate 11 (entry 2) afforded a mixture of alkenes containing predominantly the desired trans-15 (R = TES; 4:1 ratio of E:Z) in 85% yield. Preparative thin-layer chromatography (2:1 hexanes/ethyl acetate) facilitated the separation and individual characterization of the E and Z isomers. E-Alkene 15 was readily identified by the ¹H NMR chemical shifts of its characteristic vinylic hydrogens (δ 6.63 for H_{C₁₀} and δ 6.32 for H_{C₁₀}; J = 16 Hz) compared to the corresponding signals observed for the Z-olefin (δ 6.02 for H_{C₂₀} and δ 6.29 for H_{C₁₉}; J = 12 Hz).⁶ This tendency was also apparent in Julia olefination reactions for the formation of the $C_{19}-C_{20}$ alkene. Adaptation of the Kocienski modification⁷ of the Julia condensation utilized the potassium carbanion of the N-phenyltetrazole sulfone 12^8 for in situ elimination, and resulted in unusual Z-selectivity (entry 3). When the aldehyde and sulfone functionalities were reversed (entry 4), the reaction proceeded with modest stereocontrol favoring the desired Ealkene. Analogous experiments (entries 5 and 6) employed the Kende modification for condensation of carbanions of imidazole sulfones 9 and 14 with subsequent SmI_2 -promoted reductive elimination with similar results.⁹ Fortunately, our studies demonstrated that the undesired $C_{19}-C_{20}$ Z-alkene was completely isomerized to the Ealkene upon treatment with excess PPTs (25 equiv) in absolute EtOH (reflux, 2 d). Subsequent hydrolysis of the pivaloate ester (LiOH, aqueous THF/MeOH) provided E-alkenyl diol 16 (see Scheme 1) in 63% yield (2 steps). Overall, the Horner-Emmons procedure of entry 2 was the most useful for advancing the synthesis effort.

Closure of the 21-membered macrolactone is described in Scheme 1. Saponification of the pivaloate ester of *trans*-15 (R = TES) with LiOH (aqueous THF/MeOH at 22 °C) resulted in concomitant removal of the C_{24} TES ether, affording diol 16 in 92% yield. Installation of the *bis*(2,2,2-trifluoroethyl)phosphonoacetate¹⁰ was effected with excellent conversion via a transesterification which required initial protection of the C_3 primary alcohol of 16. Subsequent desilylation gave 17 as a key precursor for a mild oxidation¹¹ to the requisite phosphonate-aldehyde 18. The Still modification¹² of the intramolecular Horner-Emmons process resulted in efficient formation (85% yield) of the macrocycle as a mixture of Z- and E-unsaturated esters (ratio 3.5:1 Z:E). Our spectral data for the phorboxazole macrolide 2, as well as its corresponding (E)-C₂-C₃ unsaturated ester were completely consistent with ¹H NMR spectra kindly supplied by Professor Craig Forsyth.¹³

Table: C₁₉–C₂₀ Alkene Synthesis^a

Entry	Pyran (Compound, R ¹)		Oxazole <i>Bis</i> -Pyran (Compound, R ²)		Reaction Conditions	Yield (%)	Selectivity (E:Z)
1	7	СНО	10	O (EtO)₂P ↓ ↓	А	95	1:1
2	7	СНО	11	o (ⁱ PrO) ₂ P	A	85	4:1
3	7	СНО	12	N N N-N N-N Ph	В	46	1 : 10
4	8	N_S N_Ph	13	СНО	В	42	2:1
5	7	СНО	14	N S 32	С	50	1:1
6	9	N_SS21 N_Ne	13	СНО	С	50	4.5 : 1

a. Conditions: (A) NaH, Et₂O, $-10 \text{ °C} \rightarrow 0 \text{ °C}$; (B) KN(SiMe₃)₂, DME, $-65 \text{ °C} \rightarrow 0 \text{ °C}$; (C) 1. *n*-BuLi, Et₂O, -78 °C; 2. Ac₂O, CH₂Cl₂; 3. SmI₂, THF.

^{*a*}Key: (a) TBDMSCl, imid, DMF, 96%; (b) $MeO_2CCH_2P(O)(OCH_2CF_3)_2$, DMAP, toluene, reflux, 80%; (c) PPTs, EtOH, 77%; (d) Dess-Martin periodinane, NaHCO₃, CH₂Cl₂, 70%; (e) K₂CO₃, 18-Crown-6, toluene, 85%.

In summary, two key bond formations have been studies leading to a highly convergent synthesis of the complex macrocyclic domain of phorboxazole A. Further refinements of this approach are underway.

Acknowledgments: Generous financial support for this research was provided by an award sponsored by the National Institutes of Health (GM-41560) and Procter and Gamble (Predoctoral Fellowship for M.P.C.). The support of a Merck Faculty Development Award is also gratefully acknowledged.

References

- (a) Searle, P.A.; Molinski, T.F. J. Am. Chem. Soc. 1995, 117, 8126. (b) Searle, P.A.; Molinski, T.F.; Leahy, J.; Brzezinski, L.J. J. Am. Chem. Soc. 1996, 118, 9422. (c) Molinski, T. Tetrahedron Lett. 1996, 37, 7879.
- (a) Pettit, G.R.; Tan, R.; Gao, R.T.; Williams, M.D.; Doubek, D.L.; Boyd, M.R.; Schmidt, J.M.; Chapuis, J.-C.; Hamel, E.; Bai, R.; Hooper, J.N.A.; Tackett, L.P. J. Org. Chem. 1993, 58, 2538. (b) Phorboxazole A has antitumor potency similar to that observed for spongistatin-1. See: Pettit, G.R.; Cichacz, Z.A.; Gao, F.; Herald, C.L.; Boyd, M.R.; Schmidt, J.M.; Hooper, J.N.A. J. Org. Chem. 1993, 58, 1302.
- 3. Forsyth, C.J.; Ahmed, F.; Cink, R.D.; Lee, C.S. J. Am. Chem. Soc. 1998, 120, 5597.
- 4. Williams, D.R.; Clark, M.P.; Berliner, M.A. Tetrahedron Lett. 1999, 40, 2287.
- 5. Kishi, Y.; Negri, D.P. Tetrahedron Lett. 1987, 28, 1063.
- 6. All new compounds were fully characterized and structures are consistent with spectral data (¹H NMR, ¹³C NMR, IR, HRMS, $[\alpha]_D$).
- 7. Kocienski, P.J.; Blakemore, P.R.; Cole, W.J.; Morley, A. Synlett. 1998, 26.
- The sulfones were prepared from commercially available 1-phenyl-1*H*-tetrazole-5-thiol and 2-mercapto-1-methylimidazole (Aldrich). Mitsunobu conditions were utilized to convert alcohols to the corresponding sulfides (DIAD, Ph₃P, THF). These sulfides were oxidized to the sulfones with ammonium molybdate and 30% aqueous H₂O₂ in EtOH.
- 9. Kende, A.S.; Mendoza, J.S. Tetrahedron Lett. 1990, 31, 7105.
- 10. Takano, S.; Hatakeyama, S.; Satoh, K.; Sakurai, K. Tetrahedron Lett. 1987, 28, 2713.
- 11. Dess, D.B.; Martin, J.C. J. Am. Chem. Soc. 1991, 113, 7277.
- 12. Still, W.C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405.
- 13. The Z-unsaturation at C_2 - C_3 of 2 is readily identified by the overlapping C_2 and C_3 vinyl hydrogen signals at δ 5.92 in the ¹H NMR spectrum. The corresponding *E*-lactone is characterized by individual multiplets centered at δ 6.59 and δ 5.90. We gratefully acknowledge the assistance of Professor Craig Forsyth (Department of Chemistry, University of Minnesota) for supplying proton NMR spectra for our comparisons.