PAPER

Atom-Economic, Solvent-Free, High Yield Synthesis of 2-(Pyrrol-1-yl)propyldiorganylphosphines

Boris A. Trofimov,^{*a} Nina K. Gusarova,^a Boris G. Sukhov,^a Svetlana F. Malysheva,^a Olga A. Tarasova,^a Natalya A. Belogorlova,^a Marina A. Maximova,^a Sergey P. Tunik^b

^a A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, Irkutsk 664033, Russia

Fax +7(3952)419346; E-mail: mal@irioch.irk.ru

^b Department of Chemistry, St.-Petersburg University, St.-Petersburg, Russia

Received 20 October 2004; revised 20 December 2004

Abstract: Free-radical addition of secondary phosphines to 1-isopropenylpyrroles (AIBN, 65 °C) proceeds with 100% regioselectivity to give 2-(pyrrol-1-yl)propyldiorganylphosphines in 89–92% isolated yields. This constitutes a highly efficient, atom-economic, solvent-free ('green') synthesis of new promising ligands for metal complex catalysts, and potent building blocks for designing of drugs and advanced materials.

Key words: free-radical addition, 1-isopropenylpyrroles, phosphorylation, regioselectivity, P,N-ligands, green chemistry

1-Isopropenylpyrroles 1a-c, now readily available thanks to an efficient and convenient method for their synthesis through isopropenylation of corresponding 1*H*-pyrroles with propyne and (or) allene in the superbase system KOH/DMSO,¹ represent reactive building blocks for organic synthesis and prospective monomers. At the same time, available data on the reactivity of 1-isopropenylpyrroles are limited to just one brief communication concerning their interaction with thiols in the presence of radical initiators giving anti-Markovnikov adducts.² In the present work, to gain a better understanding of the synthetic potential of 1-isopropenylpyrroles and to further develop the synthesis of tertiary phosphines by free-radical addition reactions of diverse alkenes,³ we have studied the free-radical reaction of 1-isopropenylpyrroles with secondary phosphines, now directly prepared from elemental phosphorus and electrophiles in superbase systems.⁴ Dialkylphosphinyl radicals are nucleophilic⁵ and the double bond in *N*-vinylpyrroles is electron-rich due to the p- π conjugation,⁶ hence the electron-donating methyl group at the α -position of the ethenyl moiety is to be an additional electronically unfavorable factor, let alone its anticipated steric interference. Therefore, a preparatively meaningful result of the addition of dialkylphosphines to 1-isopropenylpyrroles, a new family of substituted N-vinylpyrroles, was far from being predictable despite positive data for unsubstituted N-vinylpyrroles.⁷ Meanwhile, to harness this reaction would be a principal contribution to the targeted synthesis of phosphines with pyrrole substituents and an unsymmetrical carbon atom, capable of resolving

Advanced online publication: 21.02.2005

DOI: 10.1055/s-2005-861842; Art ID: Z19504SS

© Georg Thieme Verlag Stuttgart · New York

to enantiomers. Such a reaction would open a straightforward atom-economic ('green') approach to the synthesis of a new family of phosphorus-containing pyrroles, promising chelating P,N(π)-ligands for metal complex catalysts of a new generation,⁸ as well as reactive intermediates for the design of drugs and advanced materials.

1-Isopropenylpyrroles **1a–c** were found to add diorganylphosphines **2a–c** regiospecifically in the presence of a radical initiator, azoisobutyronitrile (AIBN), at 65 °C to form 2-(pyrrol-1-yl)propyldiorganylphosphines **3a–e** in 89–92% yield (Scheme 1, Table 1).

Scheme 1

 Table 1
 Hydrophosphination of 1-Isopropenylpyrroles with Secondary Phosphines^a

Entry	Reactants (mmol)		Time Pro (h) uct		d- Yield 3 (%) ^b
	1-Isopropenyl- pyrrole 1	(R ⁴) ₂ PH 2			
1	1a (3.0)	2a (3.0)	288	3a	91
2	1a (2.4)	2b (2.3)	21	3b	92
3	1a (2.1)	2c (2.0)	160	3c	89
4	1b (2.2)	2b (2.1)	317	3d	89
5	1c (3.3)	2b (3.3)	48	3e	89

^a All experiments were carried out under argon at 65 °C with AIBN as an initiator (1-5 wt%).

^b Isolated yields.

SYNTHESIS 2005, No. 6, pp 0965-0970

As anticipated, the reaction conditions have proven to be, for some pairs, substantially different (Table 1) from those found for unsubstituted *N*-vinylpyrroles:⁷ in the former case, up to 13 days (instead of 41 h) is required for the completion of the reaction which is uncommon for AIBN-initiated radical additions.

At the same time, the reaction of isopropenylpyrrole **1a** with bis(2-phenylethyl)phosphine **2b** requires just 21 hours for its completion, whereas full conversion of dibenzylphosphine (**2a**) and bis[2-(pyridin-2-yl)eth-yl]phosphine (**2c**) is attained in 288 and 160 hours, respectively (Table 1), thus implying unusually strong structural effects. The reactivity of the phosphines in this process drops in the following order: **2b** > **2c** > **2a**.

Apart from steric hindrances, this fact can likely be explained by a lower stability of the dibenzylphosphinyl radical generated from dibenzylphosphine, as compared to the corresponding bis(2-phenylethyl)- and bis[2-(pyridin-2-yl)ethyl]phosphinyl radicals, for which a through space stabilization with the formation of a five-membered ring is conceivable (Scheme 2), as, e.g., it is observed for the intermediate radicals formed in the *N*-vinylindole and -carbazole radical polymerization.⁹

In the case of dibenzylphosphinyl radical, such stabilization may be realized, if any, only in a strained, hence, less favorable four-membered structure (Scheme 3).

Comparative analysis of the hydrophosphination of isopropenylpyrroles 1a-c with the phosphine 2b indicates (Table 1) that 1-isopropenyl-2,3-dimethylpyrrole (1a) is the most reactive species in this reaction, while the least reactive is 1-isopropenyl-2-methyl-4,5,6,7-tetrahydroindole (1b). This agrees with spatial structures of the pyrroles 1a-c and may be rationalized by steric hindrances.

Some preliminary information concerning the properties of the polyfunctional compounds synthesized has been obtained on phosphines **3b–d**. Thus, methylation of **3b–d** with MeI proceeds under mild conditions (r.t., 1 h) to quantitatively afford the phosphonium iodides **4b–d** (Scheme 4). When exposed to air, phosphines **3b,c** quantitatively oxidize to phosphine oxides **5b,c** (Scheme 4). Under analogous conditions, conversion of the phosphine **3d** to phosphine oxide **5d** is just 10%.

Scheme 4

In summary, the addition of secondary phosphines to 1isopropenylpyrroles represents a straightforward atomeconomic non-metal-catalyzed ('green') approach to C–P bond formation thus contributing to both pyrrole and phosphine chemistry, especially to the hydrophosphination of heteroethenes (vinyl ethers,¹⁰ alkyl vinyl sulfides and selenides,¹¹ divinyl sulfide,¹² *N*-vinylpyrroles⁷) under free-radical conditions. Unlike *N*-vinylpyrrole-derived phosphines,⁷ phosphines **3** containing an asymmetrical carbon atom can be resolved to enantiomers by common procedures and, therefore, are prospective chiral hemilabile ligands for enantioselective processes.¹³ The synthesis of such ligands is usually complicated and requires the use of organometallic compounds and aggressive highly toxic phosphorus halides.¹⁴

Diorganyl-2-(1-pyrrolyl)propylphosphines 3a–e; General Procedure

A mixture of secondary phosphine $2^{4d,15}$ and 1-isopropenylpyrrole $(1)^1$ was heated at 65 °C in the presence of AIBN (1–5 wt% of the total mass of reactants) in a sealed ampoule (reaction scale and time are given in Table 1). The reaction was monitored using ³¹P NMR by disappearance of signal of the starting secondary phosphine 2 in the –70 ppm to –48 ppm region and appearance of new resonance in the –32 ppm to –20 ppm interval, corresponding to tertiary phosphine 3 (for ³¹P monitoring, the ampoule was unsealed and a probe of the reaction mixture was taken for analysis). The crude product, a viscous undistillable liquid, was purified by column chromatography (Al₂O₃, Et₂O) to give the phosphine 3 (oil). Spectral characteristics of compounds 3–5 are given in Table 2. All experiments were carried out under argon.

[2-(2,3-Dimethyl-1*H*-pyrrol-1-yl)propyl]bis(phenylmethyl)phosphine (3a)

Yield: 91%; light-yellow oil.

Anal. Calcd for $C_{23}H_{28}NP$: C, 79.06; H, 8.08; N, 4.00; P, 8.86. Found: C, 79.21; H, 8.24; N, 3.80; P, 8.75.

[2-(2,3-Dimethyl-1*H*-pyrrol-1-yl)propyl]bis(2-phenylethyl)phosphine (3b)

Yield: 92%; light-yellow oil.

Anal. Calcd for $C_{25}H_{32}NP$: C, 79.54; H, 8.54; N, 3.71; P, 8.20. Found: C, 79.65; H, 8.45; N, 3.84; P, 8.06.

[2-(2,3-Dimethyl-1*H*-pyrrol-1-yl)propyl]bis[2-(2-pyridinyl)eth-yl]phosphine (3c)

Yield: 89%; light-yellow oil.

Anal. Calcd for $C_{23}H_{30}N_3P$: C, 72.80; H, 7.97; N, 11.07; P, 8.16. Found: C, 72.99; H, 8.08; N, 10.93; P, 7.95.

967

Table 2Spectral Data of Compounds 3–5^a

Product	Structure	NMR, δ , J (Hz)			
		¹ H	¹³ C	$^{31}P^{b}$	
3 a ^c	$Me \xrightarrow{3}_{p} \xrightarrow{4}_{p} \xrightarrow{12}_{g} \xrightarrow{13}_{p} 2$ $Me \xrightarrow{7}_{Me} \xrightarrow{6}_{g} \xrightarrow{8}_{g}$	1.28 (d, 3 H, C ⁷ -H, ${}^{3}J_{6,7} = 6.7$), 1.73–1.78 (m, 2 H, C ⁸ -H), 2.06 (s, 3 H, C ³ -CH ₃), 2.13 (s, 3 H, C ² -CH ₃), 2.37, 2.52, 2.63, 2.75 (d, 4 H, C ⁹ -H, ${}^{2}J_{\text{H,H}} = 13.4$), 3.91–3.97 (m, 1 H, C ⁶ -H), 5.95 (d, 1 H, C ⁴ -H, ${}^{3}J_{4,5} = 2.9$), 6.55 (d, 1 H, C ⁵ -H), 7.07–7.32 (m, 10 H, C ^{11–13} -H)	9.32 and 9.52 (C ³ -CH ₃), 10.93 and 11.12 (C ² -CH ₃), 22.39 and 22.49 (C ⁷ , ${}^{3}J_{P,C} = 9.4$), 34.71, 34.88 (C ⁹ , ${}^{1}J_{P,C} = 17.1$), 36.08 (C ⁸ , ${}^{1}J_{P,C} = 20.1$), 49.37 and 49.77 (C ⁶ , ${}^{2}J_{P,C} = 20.1$ and 21.0), 108.42 and 108.51 (C ⁴), 113.71 and 113.84 (C ⁵), 117.77 (C ³), 123.67 (C ² -), 125.44 and 125.58 (C ¹³), 128.06 and 128.09 (C ¹¹), 128.69 and 128.91 (C ¹²), 137.42 and 137.47 (C ¹⁰ , ${}^{2}J_{P,C} = 27.8$ and 28.7)	-20.58	
3b	$Me \xrightarrow{2}{} Me \xrightarrow{7}{} 6 \xrightarrow{8}{} P$	1.47 (d, 3 H, C ⁷ -H, ${}^{3}J_{6,7}$ = 6.7), 1.51–1.80 (m, 6 H, C ^{8,9} -H), 2.0 (s, 3 H, C ³ -CH ₃), 2.13 (s, 3 H, C ² -CH ₃), 2.61–2.70 (m, 4 H, C ¹⁰ -H), 4.20–4.23 (m, 1 H, C ⁶ -H), 5.95 (d, 1 H, C ⁴ -H, ${}^{3}J_{4,5}$ = 2.8), 6.55 (d, 1 H, C ⁵ -H), 7.09–7.27 (m, 10 H, C ^{12–14} -H)	$\begin{array}{l} 9.95({\rm C}^3{\rm -CH}_3),11.38({\rm C}^2{\rm -CH}_3),\\ 23.00({\rm C}^7,{}^3J_{\rm P,C}=8.6),28.81\\ {\rm and}29.38({\rm C}^9,{}^1J_{\rm P,C}=15.1),\\ 32.15{\rm and}32.29({\rm C}^{10},$	-31.29	
3c	$Me \xrightarrow{3}_{12} \xrightarrow{4}_{12} \xrightarrow{12}_{10} \xrightarrow{14}_{15} \xrightarrow{15}_{12}$ $Me \xrightarrow{7}_{Me} \xrightarrow{8}_{8} \xrightarrow{8}_{8}$	1.46 (d, 3 H, C ⁷ -H, ${}^{3}J_{6,7}$ = 6.6), 1.60–1.84 (m, 6 H, C ^{8,9} -H), 1.98 (s, 3 H, C ³ -CH ₃), 2.12 (s, 3 H, C ² -CH ₃), 2.81–2.89 (m, 4 H, C ¹⁰ -H), 4.21–4.25 (m, 1 H, C ⁶ -H), 5.91 (d, 1 H, C ⁴ -H, ${}^{3}J_{4,5}$ = 2.9), 6.55 (d, 1 H, C ⁵ -H), 7.05–7.09 (m, 4 H, C ^{12,14} -H), 7.50–7.51 (m, 2 H, C ¹³ -H), 8.47 (m, 2 H, C ¹⁵ -H)	9.57 (C ³ -CH ₃), 11.05 (C ² -CH ₃), 22.73 (C ⁷ , ${}^{3}J_{P,C} = 8.1$), 26.41 and 26.89 (C ⁹ , ${}^{1}J_{P,C} = 14.6$ and 13.7), 34.07 and 34.13 (C ¹⁰ , ${}^{2}J_{P,C} = 14.6$), 36.59 (C ⁸ , ${}^{1}J_{P,C} = 17.1$), 49.62 (C ⁶ , ${}^{2}J_{P,C} = 18.8$), 108.52 (C ⁴), 113.80 (C ⁵), 117.80 (C ³), 120.75 and 120.80 (C ¹⁴), 122.14 and 122.19 (C ¹²), 123.50 (C ²), 135.91 and 135.98 (C ¹³), 148.81 and 148.87 (C ¹⁵), 161.56 (C ¹¹ , ${}^{3}J_{P,C} = 11.1$)	-31.38	
3d ^d	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	1.51 (d, 3 H, C ¹¹ -H, ${}^{3}J_{10,11} = 7.2$), 1.64–1.82 (m, 10 H, C ^{5,6,12,13} -H), 1.96 (s, 3 H, C ² - CH ₃), 2.42–2.48 (m, 4 H, C ^{4,7} - H), 2.57–2.76 (m, 4 H, C ¹⁴ -H), 4.28–4.31 (m, 1 H, C ¹⁰ -H), 5.62 (s, 1 H, C ³ -H), 7.15–7.21 (m, 10 H, C ^{16–18})	11.88 and 11.65 (C ² -CH ₃), 21.87, 22.55, 23.37, 23.48 (C ^{4–} ⁷), 23.42 (C ¹¹ , ${}^{3}J_{P,C} = 11.0$), 27.30 and 27.98 (C ¹³ , ${}^{1}J_{P,C} = 14.6$ and 14.1), 31.67 and 31.92 (C ¹⁴ , ${}^{1}J_{P,C} = 13.7$), 34.10 (C ¹² , ${}^{1}J_{P,C} = 14.6$), 49.53 and 49.76 (C ¹⁰ , ${}^{2}J_{P,C} = 23.1$ and 22.7), 107.95 (C ³), 113.84 (C ²), 115.95 (C ⁹), 125.52 and 125.72 (C ¹⁸), 126.18 (C ⁸), 127.80, 128.03, 128.09, 128.32 (C ^{16,17}), 142.18 and 142.24 (C ¹⁵ , ${}^{3}J_{P,C} = 10.0$ and 10.7)	-28.66	

Downloaded by: UC Santa Barbara. Copyrighted material.

 Table 2
 Spectral Data of Compounds 3–5^a (continued)

Product	Structure	NMR, δ , J (Hz)		
		¹ H	¹³ C	$^{31}\mathrm{P}^{\mathrm{b}}$
Зе	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	1.43–1.59 (m, 4 H, C ¹³ -H), 1.58 (d, 3 H, C ¹¹ -H, ${}^{3}J_{10,11} = 7.3$), 1.88 and 2.07 (m, 2 H, C ¹² -H), 2.52–2.62 (m, 4 H, C ¹⁴ -H), 4.59–4.63 (m, 1 H, C ¹⁰ -H), 6.49 (d, 1 H, C ³ -H, ${}^{3}J_{2,3} = 3.2$), 6.97–7.16 (m, 13 H, C ^{2,5,6,16–18} - H), 7.17 (d, 1 H, C ⁷ -H, ${}^{3}J_{6,7} = 7.0$), 7.21 (d, 1 H, C ⁴ -H, ${}^{3}J_{4,5} = 7.0$)	$\begin{array}{c} 22.47 \ ({\rm C}^{11},{}^{3}J_{\rm P,C}=8.5), 29.09\\ {\rm and} 29.46 \ ({\rm C}^{13},{}^{1}J_{\rm P,C}=14.2),\\ 32.32 \ {\rm and} 32.39 \ ({\rm C}^{14},$	-31.79
4b	$\begin{bmatrix} Me & 3 & 4 & 12 & 13 \\ Me & N & 4 & 12 & 14 \\ Me & N & 10 & 10 & 12 \\ Me & 0 & 0 & 15 & 10 \\ Me & 0 & Me & 0 \end{bmatrix} -$	1.48 (d, 3 H, C ⁷ -H, ${}^{3}J_{6,7} = 5.8$), 1.79 (d, 3 H, C ¹⁵ -H, ${}^{1}J_{P,H} = 13.4$), 1.91 (s, 3 H, C ³ - CH ₃), 2.09 (s, 3 H, C ² -CH ₃), 2.31–2.71 (m, 4 H, C ⁰ -H), 2.80–2.89 (m, 4 H, C ¹⁰ -H), 3.11–3.50 (m, 2 H, C ⁸ -H), 4.42 (m, 1 H, C ⁶ -H), 5.93 (s, 1 H, C ⁴ -H), 6.65 (s, 1 H, C ⁵ -H), 7.16– 7.27 (m, 10 H, C ^{12–14} -H)	5.37 (C ¹⁵ , ¹ $J_{P,C}$ = 49.7), 10.25 (C ³ -CH ₃), 11.16 (C ² -CH ₃), 21.91 and 22.34 (C ⁹), ¹ $J_{P,C}$ = 44.9 and 45.8), 24.84 (C ⁷ , ³ $J_{P,C}$ = 14.1), 27.48 and 27.51 (C ¹⁰ , ² $J_{P,C}$ = 7.3 and 7.5), 29.22 (C ⁸ , ¹ $J_{P,C}$ = 48.4), 46.82 (C ⁶ , ² $J_{P,C}$ = 7.3), 110.91 (C ⁴), 115.66 (C ⁵), 116.34 (C ³), 122.97 (C ²), 127.25 (C ¹⁴), 128.14 and 128.26 (C ¹²), 128.88 and 128.93 (C ¹³), 137.96 and 138.0 (C ¹¹ , ³ $J_{P,C}$ = 12.9 and 11.2)	30.28
4c	$\begin{bmatrix} Me & 3 & 4 & 13 \\ 2 & 1 & 5 & 12 & 14 \\ Me & N & 10 & 15 \\ Me & 8 & Me & 16 \end{bmatrix} I - I$	$ \begin{array}{l} 1.53 \text{ and } 1.54 \ (\text{d}, 3 \ \text{H}, \text{C}^{7}\text{-H}, \\ {}^{3}J_{6,7} = 6.4), 1.70 \ (\text{d}, 3 \ \text{H}, \text{C}^{16}\text{-H}, \\ {}^{2}J_{\text{P,H}} = 13.6), 1.92 \ (\text{s}, 3 \ \text{H}, \text{C}^{3}\text{-} \\ \text{CH}_{3}), 2.17 \ (\text{s}, 3 \ \text{H}, \text{C}^{2}\text{-}\text{CH}_{3}), \\ 2.61-2.95 \ (\text{m}, 6 \ \text{H}, \text{C}^{8.9}\text{-H}), \\ 3.16-3.47 \ (\text{m}, 4 \ \text{H}, \text{C}^{10}\text{-H}), \\ 4.56-4.57 \ (\text{m}, 1 \ \text{H}, \text{C}^{6}\text{-H}), 5.90 \\ (\text{d}, 1 \ \text{H}, \text{C}^{4}\text{-H}, {}^{3}J_{4.5} = 2.4), 6.67 \\ (\text{d}, 1 \ \text{H}, \text{C}^{5}), 7.17\text{-}7.20 \ (\text{m}, 2 \ \text{H}, \\ \text{C}^{14}\text{-H}), 7.38\text{-}7.41 \ (\text{m}, 2 \ \text{H}, \text{C}^{12}\text{-} \\ \text{H}), 7.64\text{-}7.68 \ (\text{m}, 2 \ \text{H}, \text{C}^{13}\text{-H}), \\ 8.46 \ \text{and} \ 8.47 \ (\text{d}, 2 \ \text{H}, \text{C}^{15}) \end{array} $		31.67
4d	$\begin{bmatrix} 5 & 4 & & & & & & & & & & & & & & & & &$	$\begin{split} &1.54~(\mathrm{d},3~\mathrm{H},\mathrm{C}^{11}\mathrm{-H},\\ ^{3}J_{10,11}=4.5),1.641.74~(\mathrm{m},4~\mathrm{H},\mathrm{C}^{5.6}\mathrm{-H}),1.80~(\mathrm{d},3~\mathrm{H},\mathrm{C}^{19}\mathrm{-H},\\ ^{2}J_{\mathrm{P,H}}=13.8),2.15~(\mathrm{s},3~\mathrm{H},\mathrm{C}^{2}\mathrm{-CH}_{3}),2.20\mathrm{-}2.40~(\mathrm{m},8~\mathrm{H},\mathrm{C}^{4.713}\mathrm{-H}),2.50\mathrm{-}2.75~(\mathrm{m},2~\mathrm{H},\mathrm{C}^{12}\mathrm{-H}),2.80\mathrm{-}2.95~(\mathrm{m},4~\mathrm{H},\mathrm{C}^{14}\mathrm{-H}),4.50~(\mathrm{m},1~\mathrm{H},\mathrm{C}^{10}\mathrm{-H}),5.61~(\mathrm{s},1~\mathrm{H},\mathrm{C}^{3}),6.97\mathrm{-}7.37~(\mathrm{m},10~\mathrm{H},\mathrm{C}^{16\mathrm{-18}}\mathrm{-H}) \end{split}$	5.94 (C ¹⁹ , ¹ $J_{P,C}$ = 49.9), 13.70 (C ² -CH ₃), 22.16 and 23.03 (C ¹³ , ¹ $J_{P,C}$ = 45.7 and 46.3), 23.54, 23.68 (C ⁴⁻⁷), 23.61 (C ¹¹ , ³ $J_{P,C}$ = 13.6), 28.05 (C ¹⁴ , ² $J_{P,C}$ = 12.9), 28.62 (C ¹² , ¹ $J_{P,C}$ = 48.4), 46.23 (C ¹⁰ , ² $J_{P,C}$ = 5.9), 107.94 (C ³), 120.0 (C ²), 126.22 (C ^{8,9}), 127.50 and 127.59 (C ¹⁸), 128.20 and 128.43 (C ¹⁶), 129.10 and 129.21 (C ¹⁷), 137.93 and 138.02 (C ¹⁵ , ³ $J_{P,C}$ = 12.0)	30.20

Table 2	Spectral	Data o	of Cor	npounds	3–5 ^a	(continued	I)
---------	----------	--------	--------	---------	-------------------------	------------	----

Product	Structure	NMR, δ , J (Hz)				
		$^{1}\mathrm{H}$	¹³ C	$^{31}\mathrm{P}^\mathrm{b}$		
5b°	$Me \xrightarrow{2} f \xrightarrow{7} g \xrightarrow{7}$	1.49 (d, 3 H, C ⁷ -H, ${}^{3}J_{6,7} = 6.8$), 1.97 (s, 3 H, C ³ -CH ₃), 1.80– 2.15 (m, 6 H, C ^{8,9} -H), 2.21 (s, 3 H, C ² -CH ₃), 2.61–2.85 (m, 4 H, C ¹⁰ -H), 4.63–4.67 (m, 1 H, C ⁶ - H), 5.95 (d, 1 H, C ⁴ -H, ${}^{3}J_{4,5} = 2.8$), 6.52 (d, 1 H, C ⁵), 7.01–7.22 (m, 10 H, C ^{12–14})	9.69 (C ³ -CH ₃), 11.26 (C ² -CH ₃), 24.65 (C ⁷ , ${}^{3}J_{P,C} = 9.9$), 27.66 and 27.69 (C ¹⁰ , ${}^{2}J_{P,C} = 17.4$ and 17.1), 28.86 and 30.88 (C ⁹ , ${}^{1}J_{P,C} = 62.1$ and 63.0), 36.75 (C ⁸ , ${}^{1}J_{P,C} = 62.5$), 45.67 (C ⁶ , ${}^{2}J_{P,C} = 3.9$), 110.21 (C ⁴), 113.81 (C ⁵), 114.59 (C ³), 124.50 (C ²), 126.32 and 126.50 (C ¹⁴), 127.94 and 128.06 (C ¹²), 128.49 and 128.69 (C ¹³), 140.71 and 140.75 (C ¹¹ , ${}^{3}J_{P,C} = 12.8$)	45.06		
5c°	M = 3 + 4 + 12 + 13 + 14 + 15 + 2 $M = 7 + 6 + 6 + 10 + 10 + 15 + 2 + 10 + 10 + 15 + 2 + 10 + 10 + 10 + 10 + 10 + 10 + 10$	1.45 (d, 3 H, C ⁷ -H, ${}^{3}J_{6,7} = 6.8$), 1.56–1.70 (m, 4 H, C ⁹ -H), 1.88 (s, 3 H, C ³ -CH ₃), 2.08–2.27 (m, 2 H, C ⁸ -H), 2.17 (s, 3 H, C ² - CH ₃), 2.76–3.15 (m, 4 H, C ¹⁰ - H), 4.60–4.67 (m, 1 H, C ⁶ -H), 5.84 (d, 1 H, C ⁴ -H, ${}^{3}J_{4,5} = 2.4$), 6.48 (d, 1 H, C ⁵ -H), 6.96–7.28 (m, 4 H, C ^{12,14} -H), 7.50–7.53 (m, 2 H, C ¹³ -H), 8.38–8.44 (m, 2 H, C ¹⁵ -H)	9.30 (C ³ -CH ₃), 10.85 (C ² -CH ₃), 24.10 (C ⁷ , ${}^{3}J_{P,C} = 9.4$), 26.28 and 28.20 (C ⁹ , ${}^{1}J_{P,C} = 63.8$ and 64.7), 29.50 and 29.52 (C ¹⁰ , ${}^{2}J_{P,C} = 24.4$), 36.45 (C ⁸ , ${}^{1}J_{P,C} = 62.6$), 45.36 (C ⁶ , ${}^{2}J_{P,C} = 3.9$), 109.55 (C ⁴), 113.48 (C ⁵), 113.97 (C ³), 121.05 and 121.19 (C ¹⁴), 122.14 and 122.46 (C ¹²), 124.13 (C ²), 136.10 and 136.25 (C ¹³), 148.66 and 148.88 (C ¹⁵), 159.65 and 159.80 (C ¹¹ , ${}^{3}J_{P,C} = 13.9$ and 15.8)	45.60		

^{a 1}H, ¹³C and ³¹P NMR spectra were recorded on a Bruker DPX 400 spectrometer (400.13, 100.69 and 161.98 MHz, respectively) in CDCl₃. ^{b 31}P NMR for **5d**: δ = 49.02.

^c Nonequivalence of all protons in P–C⁸H₂ and P(C⁹H₂)₂ fragments in the ¹H NMR spectrum is caused by the presence of a chiral center (C⁶). Splitting of signals of CH₃ groups (at C², C³ and C⁶ carbon atoms) in the ¹³C NMR spectrum is likely to occur due to the 'propeller' asymmetry of the phosphorus atom in the phosphine **3a** (analogous to tribenzylamine¹⁶). The possibility of such diastereomerism is being studied. ^d Splitting of signals of the atoms C² and C¹⁰ and methyl groups attached thereto in the ¹³C NMR spectrum may be explained by hindered rotation about the N–C¹⁰, C¹⁰–C¹² and C¹²–P bonds owing to the steric effect of methyl groups at C² and C¹⁰.

^e IR spectra (Specord IR-75 spectrometer, KBr) of phosphine oxides **5b**, **c** contain an absorption band at 1150 cm⁻¹ (P=O).

[2-(2-Methyl-4,5,6,7-tetrahydro-1*H*-indol-1-yl)propyl]bis(2-phenylethyl)phosphine (3d)

Yield: 89%; light-yellow oil.

Anal. Calcd for $C_{28}H_{36}NP$: C, 80.54; H, 8.69; N, 3.35; P, 7.42. Found: C, 80.56; H, 8.73; N, 3.49; P, 7.23.

[2-(1*H*-Indol-1-yl)propyl]bis(2-phenylethyl)phosphine (3e) Yield: 89%; light-yellow oil.

Anal. Calcd for C₂₇H₃₀NP: C, 81.17; H, 7.57; N, 3.51; P, 7.75. Found: C, 81.10; H, 7.61; N, 3.68; P, 7.61.

Methyl [2-(2,3-Dimethyl-1*H*-pyrrol-1-yl)propyl]bis(2-phenylethyl)phosphonium Iodide (4b)

Yield: 97%; mp 186-188 °C (EtOH).

Anal. Calcd for $C_{26}H_{35}INP$: C, 60.12; H, 6.79; I, 24.43; N, 2.70; P, 5.96. Found: C, 60.35; H, 7.05; I, 24.39; N, 2.94; P, 5.68.

Methyl [2-(2,3-Dimethyl-1*H*-pyrrol-1-yl)propyl]bis[2-(2-pyridinyl)ethyl]phosphonium Iodide (4c) Yield: 97%; mp 110–111 °C (Et₂O).

Anal. Calcd for C₂₄H₃₃IN₃P: C, 55.28; H, 6.38; I, 24.34; N, 8.06; P, 5.94. Found: C, 55.52; H, 6.46; I, 24.16; N, 8.17; P, 5.83.

Methyl [2-(2-Methyl-4,5,6,7-tetrahydro-1*H*-indol-1-yl)propyl]bis(2-phenylethyl)phosphonium Iodide (4d) Yield: 97%; mp 180–181 °C (EtOH).

Anal. Calcd for $C_{29}H_{39}INP$: C, 62.25; H, 7.03; I, 22.68; N, 2.50; P, 5.54. Found: C, 61.98; H, 6.86; I, 22.96; N, 2.77; P, 5.67.

Methyl [2-(2-Methyl-4,5,6,7-tetrahydro-1*H*-indol-1-yl)propyl]bis(2-phenylethyl)phosphonium Iodide (4d) Yield: 97%; mp 180–181 °C (EtOH).

Anal. Calcd for $C_{29}H_{39}INP$: C, 62.25; H, 7.03; I, 22.68; N, 2.50; P, 5.54. Found: C, 61.98; H, 6.86; I, 22.96; N, 2.77; P, 5.67.

[2-(2,3-Dimethyl-1*H*-pyrrol-1-yl)propyl]bis(2-phenylethyl)phosphine Oxide (5b)

Yield: 96%; light-yellow oil.

Anal. Calcd for $C_{25}H_{32}$ NOP: C, 76.31; H, 8.20; N, 3.56; P, 7.87. Found: C, 76.05; H, 8.00; N, 3.34; P, 7.60.

[2-(2,3-Dimethyl-1*H*-pyrrol-1-yl)propyl]bis[2-(2-pyridinyl)eth-yl]phosphine Oxide (5c)

Yield: 96%; yellow oil.

Anal. Calcd for $C_{23}H_{30}N_3OP$: C, 69.85; H, 7.65; N, 10.63; P, 7.83. Found: C, 69.65; H, 7.55; N, 10.44; P, 7.58.

969

Acknowledgment

Financial support from the Ministry of Industry, Science and Technologies of Russian Federation (Grant No. NSH-2241.2003.3), and from the Competition Center for Fundamental Natural Sciences (grant No. E-02-5.0-60) is gratefully acknowledged.

References

- (a) Trofimov, B. A.; Tarasova, O. A.; Mikhaleva, A. I.; Kalinina, N. A.; Sinegovskaya, L. M.; Henkelmann, J. Synthesis 2000, 1585. (b) Trofimov, B. A.; Tarasova, O. A.; Shemetova, M. A.; Afonin, A. V.; Klyba, L. V.; Baikalova, L. V.; Mikhaleva, A. I. Zh. Org. Khim. 2003, 39, 437; Russ. J. Org. Chem. 2003, 39, 408.
- (2) Trofimov, B. A. Curr. Org. Chem. 2002, 6, 1121.
- (3) Valentine, D. H. Jr.; Hillhouse, J. H. Synthesis 2003, 2437.
- (4) (a) Trofimov, B. A.; Gusarova, N. K.; Brandsma, L. Main Group Chem. News 1996, 4, 18; Chem. Abstr. 1996, 125, 142810n. (b) Gusarova, N. K.; Malysheva, S. F.; Arbuzova, S. N.; Trofimov, B. A. Russ. Chem. Bull. 1998, 47, 1645.
 (c) Trofimov, B. A.; Arbuzova, S. N.; Gusarova, N. K. Russ. Chem. Rev. 1999, 68, 215. (d) Malysheva, S. F.; Arbuzova, S. N. In Sovremenniy organicheskiy sintez (Modern Organic Synthesis); Rakhmankoulov, D. L., Ed.; Chemistry: Moscow, 2003, 160–177.
- (5) Nonhebel, D. C.; Walton, J. C. Free-Radical Chemistry, Structure and Mechanism; University Press: Cambridge, 1974.
- (6) Trofimov, B. A. In *The Chemistry of Heterocyclic Compounds, Pyrroles*, Vol. 48; Jones, R. A., Ed.; Wiley: New York, **1992**, 131–298.
- (7) Trofimov, B. A.; Malysheva, S. F.; Sukhov, B. G.; Belogorlova, N. A.; Schmidt, E. Yu.; Sobenina, L. N.; Kuimov, V. A.; Gusarova, N. K. *Tetrahedron Lett.* **2003**, *44*, 2629.

- (8) (a) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. *Comprehensive Asymmetric Catalysis*; Springer: Berlin, **1999**. (b) Brunner, H.; Limmer, S. *J. Organomet. Chem.* **1991**, *417*, 173. (c) Roucoux, A.; Suisse, I.; Devocelle, M.; Carpentier, J. F.; Agbosson, F.; Mortreux, A. *Tetrahedron: Asymmetry* **1996**, *7*, 379. (d) Clarke, M. L.; Cole-Hamilton, D. J.; Slavin, M. Z.; Woollins, J. D. *Chem. Commun.* **2000**, 2065. (e) Jang, H.-Y.; Seo, H. H. J. W.; Chung, Y. K. *Tetrahedron Lett.* **2000**, *41*, 5083. (f) Guo, R.; Li, X.; Wu, J.; Kwok, W. H.; Chen, J.; Choi, M. C. K.; Chan, A. S. C. *Tetrahedron Lett.* **2002**, *43*, 6803. (g) Braunstein, P.; Naud, F. *Angew. Chem. Int. Ed.* **2001**, *40*, 680.
- (9) Priola, A.; Gatti, G.; Cesca, S. *Makromol. Chem.* **1979**, *180*, 1.
- Malysheva, S. F.; Gusarova, N. K.; Belogorlova, N. A.; Nikitin, M. V.; Gendin, D. V.; Trofimov, B. A. *Zh. Obshch. Khim.* **1997**, *67*, *63*; *Russ. J. Gen. Chem.* **1997**, *67*, 58.
- Trofimov, B. A.; Gusarova, N. K.; Malysheva, S. F.; Ivanova, N. I.; Sukhov, B. G.; Belogorlova, N. A.; Kuimov, V. A. Synthesis 2002, 2207.
- (12) Trofimov, B. A.; Gusarova, N. K.; Malysheva, S. F.; Sukhov, B. G.; Belogorlova, N. A.; Kuimov, V. A.; Al'pert, M. L. Sulfur Lett. 2003, 26, 63.
- (13) Chelucci, G.; Orrù, G.; Pinna, G. A. *Tetrahedron* **2003**, *59*, 9471.
- (14) (a) Cozzi, P. G.; Zimmermann, N.; Hilgraf, R.; Schaffner, S.; Pfaltz, A. Adv. Synth. Catal. 2001, 143, 450. (b) Gurevich, P. A.; Yaroshevskaya, V. A. Chem. Heterocycl. Comp. 2000, 36, 1361. (c) Moloy, K. G.; Petersen, J. L. J. Am. Chem. Soc. 1995, 117, 7707.
- (15) Trofimov, B. A.; Brandsma, L.; Arbuzova, S. N.; Malysheva, S. F.; Gusarova, N. K. *Tetrahedron Lett.* **1994**, *35*, 7647.
- (16) Potapov, V. M. *Stereokhimia (Stereochemistry)*; Khimia: Moscow, **1988**.