

Phytochemistry, Vol. 48, No. 4, pp. 739-742, 1998 © 1998 Elsevier Science Ltd. All rights reserved Printed in Great Britain 0031-9422/98 \$19.00+0.00

PII: S0031-9422(97)01043-1

TWO FLAVONOID TRIGLYCOSIDES FROM BUDDLEJA MADAGASCARIENSIS

A. M. EMAM, R. ELIAS,*¶ A. M. MOUSSA,† R. FAURE,‡ L. DEBRAUWER§ and G. BALANSARD

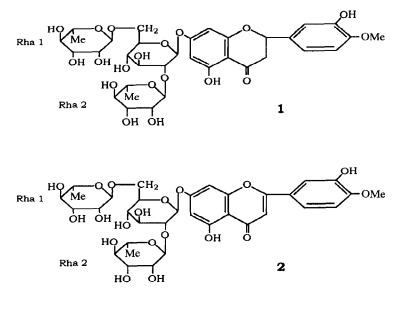
Laboratoire de Pharmacognosie, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, cedex 5, France; † Dept. of Biochemistry, Faculty of Agriculture, Fayoum, Cairo University, Egypt; ‡ URA 1411, Université d'Aix-Marseille III, Avenue Escadrille Normandie Niemen, 13397 Marseille, cedex 20, France; § INRA Centre de Recherche de Toulouse, Laboratoire des Xénobiotiques, 180, chemin de Tournefeuille, BP 3, 31931 Toulouse, France

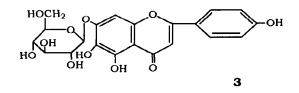
(Received in revised form 29 September 1997)

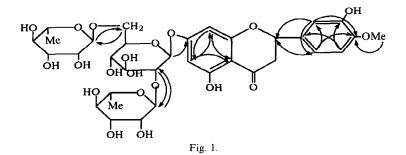
Key Word Index—*Buddleja madagascariensis*; Loganiaceae; flavanone and flavone glycosides; hesperetin and diosmetin 7-(2",6"-dirhamnosyl) glucosides; ¹H, ¹³C and 2D NMR.

Abstract—The structures of two new flavonoid triglycosides isolated from leaves of *Buddleja madagascariensis* have been established as hesperetin and diosmetin 7-O (2",6"-di-O- α -L-rhamnopyranosyl)- β -D-glucopyranosides using mass and NMR spectroscopy. Scutellarein 7-glucoside is reported from this plant for the first time. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION


Buddleja madagascariensis Lamk. (Loganiaceae), a shrub indigenous to Madagascar, is widely distributed in Egypt. The leaves are used in traditional medicine and also as a soap substitute [1]. An earlier chemical study of the leaf tissue indicated the presence of *n*-alkanes, sitosterol, stigmasterol and amyrin [2] and we have isolated iridoids, phenylpropanoids and saponins [3–6]. In the present paper we report the isolation and structural elucidation of two new flavonoid triglycosides (1-2), and scutellarein 7-glucoside (3) in leaves of this plant.


RESULTS AND DISCUSSION


Compound 1 was obtained as a pale yellow amorphous powder, with the molecular formula $C_{34}H_{44}O_{19}$ (FAB-MAS: m/z 755 [M-H]⁻). Acid hydrolysis yielded glucose and rhamnose identified by direct TLC comparison with authentic samples. The ¹H 400 MHz NMR spectrum of 1 displayed five aromatic protons [δ 6.96 (d, J = 2.1 Hz), 6.92 (dd, J = 8.6, 2.1 Hz), 6.91 (d, J = 8.6 Hz), 6.16 (d, J = 2.2 Hz) and 6.13 ppm (d, J = 2.2 Hz)] which constitute respectively, ABX and AB spin systems. In addition to a methoxyl signal at δ 3.85 ppm, three aliphatic resonances, arising from a partial structure -OCH-CH₂-, where observed at δ 5.34 (dd, J = 13.0, 3.0 Hz), 3.11 (dd, J = 17.2, 12.8 Hz) and 2.78ppm (dd, J = 17.1, 3.2 Hz). Finally, three anomeric protons [δ 5.23 (d, J = 1.5 Hz), 5.05 (d, J = 7.5 Hz) and 4.67 ppm (d, J = 1.4 Hz) and two tertiary methyl groups at δ 1.45 (d, J = 6.8 Hz) and 1.25 ppm (d, J = 6.9 Hz) were indicative of two rhamnose and one glucose as sugar moieties. The ¹H and ¹³C chemical shift assignments, the structure of the aglycone and the sugar linkage of 1 were established from the concerted use of 2D NMR experiments including COSY, HMQC [7] and HMBC [8] diagrams. In Fig. 1, selected long-range proton-carbon coupling constant connectivities are presented, especially correlation signals indicative of the sugar locations. From these results, 1 was identified as hesperetin 7-O(2",6"-di-O-a-Lrhamnopyranosyl)- β -D-glucopyranoside.

The molecular formula for 2, a yellow amorphous powder, was established as C₃₄H₄₂O₁₉ (FAB-MAS: m/z 753 [M – H]⁻). Acid hydrolysis of 2 afforded diosmetin, glucose and rhamnose. The occurrence of diosmetin was clearly determined from the ¹H 400 MHz NMR spectrum which displayed six aromatic protons at δ 6.47 (d, J = 2.1 Hz), 6.63 (S), 6.70 (d, J = 2.1 Hz), 7.07 (d, J = 8.5 Hz), 7.38 (d, J = 2.0 Hz) and 7.48 ppm (dd, J = 8.5, 2.0 Hz)] and one methyl proton singlet at δ 3.73 ppm. The remaining ¹H resonances indicated three anomeric signals at δ 5.28 (d, J = 1.5Hz), 5.14 (d, J = 7.4 Hz) and 4.69 (d, J = 1.4 Hz). ¹³C NMR data (Table 1) confirmed the presence of two rhamnose and one glucose. Finally, the interglycosidic linkage of 2 was deduced from the similar NMR spectral data of sugars (Table 1) between 1 and 2. There-

^{*} Author to whom correspondence should be addressed.

fore, the structure of **2** was established as diosmetin 7- $O(2'', 6''-di-O-\alpha-L-rhamnopyranosyl)-\beta-D-gluco-pyranoside.$

Scutellarein 7- $O-\beta$ -D-glucopyranoside (3) was identified by comparison of ¹³C NMR chemical shifts with previously reported data [9]. It is reported here for the first time in *Buddleja madagascariensis* and in the family Loganiaceae.

EXPERIMENTAL

Plant material

Buddleja madagascariensis Lamk. leaves, collected in Fayoum (Egypt) in May 1994, were identified by the Taxonomic Department, Faculty of Science, Cairo University, Fayoum, Egypt. A voucher specimen has

and 2					
		1		2	
	δ'H	δ ¹³ C	δ 'Η	δ ¹³ C	
Aglycone					
2	5.34	80.36		166.57	
3	3.11, 2.78	44.07	6.63	104.85	
4		198.26		184.00	
5		164.38		163.08	
6	6.13	96.91	6.47	101.04	
7		166.48		164.39	
8	6.16	97.92	6.70	96.04	
9		165.19	_	158.95	
10		105.06	_	107.16	
1′		132.91		124.83	
2′	6.96	114.68	7.38	114.08	
31	-	147.79		148.29	
4′		149.42		152.84	
5′	6.91	112.63	7.07	112.79	
6'	6.92	119.13	7.48	120.28	
OCH ₃	3.85	56.45	3.73	56.51	
Glucose					
1	5.05	99.38	5.14	99.78	
2	3.65	78.97	3.68	78.72	
3	3.35	77.01	3.36	77.03	
4	3.59	72.37	3.60	72.41	
5	3.66	79.04	3.68	78.99	
6	3.55, 3.97	67.35	3.56, 3.98	67.39	
Rhamnos	e l				
1	4.67	102.13	4.69	102.09	
2	3.88	72.18	3.90	72.22	
3	3.68	72.04	3.67	71.81	
4	3.36	74.14	3.35	74.08	
5	3.65	69.98	3.67	70.01	
6	1.45	18.24	1.43	18.20	
Rhamnos	e 2				
1	5.23	102.51	5.28	102.53	
2	3.89	72.18	3.90	72.09	
3	3.69	71.45	3.71	71.42	
4	3.37	73.93	3.37	73.99	
5	3.87	69.78	3.88	70.01	
6	1.25	17.91	1.24	17.90	

Table 1. ¹H and ¹³C NMR chemical shifts for compounds 1 and 2

* In ppm from TMS; CD₃OD as solvent.

been deposited at the Department of Biochemistry, Faculty of Agriculture, Cairo University.

Extraction and isolation

Dried powdered leaves (1 kg) were extracted with MeOH (101) at room temp. 10 g of the MeOH extract (200 g) were fractionated on a silica gel column (1 kg; Merck 230–400 Mesh) using CHCl₃–MeOH–H₂O [14:6:1) as eluant. Thirteen frs were collected. Fraction 6 (1 g) was partitioned on a RP-18 column (Jobin-Yvon) with a gradient of MeOH in H₂O. The fr. H₂O– MeOH (3:2) gave a residue (78.8 mg) which was submitted to silica gel CC using CHCl₃–MeOH–H₂O (35:15:1) as eluant to yield 1 (22.8 mg). Compounds 2 (25 mg) and 3 (19 mg) were isolated by the same technique from the fraction (115 mg) eluted with MeOH-H₂O (1:1).

Analytical TLC

TLC analysis was performed on precoated Silica gel plates (Kieselgel G-60 F-254, 0.25 mm, Merck) using the following systems: (a) $EtOAc-HCO_2H HOAc-H_2O$ (100:11:11:27); (b) $CHCl_3-MeOH-H_2O$ (14:6:1). The plates were visualized by 1% methanolic aminoethyldiphenyl-borinate followed by 5% methanolic polyethyleneglycol 400. FAB-MS spectra were obtained on a Nermag R 10-10H mass spectrometer in the negative-ion mode in a thioglycerol matrix. NMR spectra were recorded on a Bruker AMX-400 spectrometer in CD₃OD solutions using TMS as int. standard (¹H at 400 MHz, ¹³C at 100.61 MHz). Standard Bruker pulse sequences were used for homonuclear and heteronuclear correlation experiments (for other experimental details, see [10]).

Hesperetin 7- $O(2^{"},6^{"}-di-O-\alpha-L-rhamnopyranosyl)-\beta-D-glucopyranoside (1). TLC (system a) <math>R_f$ 0.51 and (system b) R_f 0.35; ¹H and ¹³C NMR (CD₃OD) (Table 1).

Diosmetin 7- $O(2'',6''-di-O\cdot\alpha-L-rhamnopyranosyl)-\beta-$ D-glucopyranoside (2). TLC (system a) R_f 0.54 and (system b) R_f 0.32; ¹H and ¹³C NMR (CD₃OD) (Table 1).

Scutellarin 7-*O*-β-D-*glucopyranoside* (**3**). Yellow powder; FAB-MS m/z = 447 [M-H]⁻; C₂₁H₂₀O₁₁; ¹³C NMR (CD₃OD): δ 166.82 (C-2), 103.45 (C-3), 184.42 (C-4), 147.95 (C-5), 131.95 (C-6), 152.79 (C-7), 95.81 (C-8), 151.30 (C-9), 107.48 (C-10), 123.20 (C-1'), 129.58 (C-2'), 117.05 (C-3'), 162.96 (C-4'), 102.65 (C-1"), 74.73 (C-2"), 78.59 (C-3"), 71.42 (C-4"), 77.52 (C-5"), 62.55 (C-6").

Acknowledgement—We thank G. Boudon for technical assistance.

REFERENCES

- 1. Houghton, P. J., Journal of Ethnopharmacology, 1984, 11, 293.
- Kapoor, V. K., Chawla, A. S., Gupta, Y. C., Passannanti, S. and Paternostro, M. P., *Fitoterapia*, 1981, 52, 235.
- Emam, A. M., Moussa, A. M., Faure, R., Debrauwer, L. Elias, R. and Balansard, G., *Phar-maceutical and Pharmacological Letters*, 1995, 5, 103.
- Emam, A. M., Moussa, A. M., Essa, M. A., Faure, R., Elias, R. and Balansard, G., *Phar-maceutical and Pharmacological Letters*, 1995, 5, 177.
- Emam, A. M., Moussa, A. M., Faure, R., Elias, R., Favel, A., Delmas, F. and Balansard, G., *Planta Medica*, 1996, 62, 92.
- 6. Emam, A. M., Moussa, A. M., Faure, R., Elias,

R. and Balansard, G., Journal of Ethnopharmacology, 1996, (in press, Ref. LR523).

- 7. Bax, A. and Subramanian, S., Journal of Magnetic Resonance, 1986, 67, 565.
- 8. Bax, A. and Summers, M. F., Journal of American Chemical Society, 1986, **108**, 2093.
- 9. Harborne, J. B. and Williams, C. A., Zeitschrift Naturforsch, 1984, 39C, 18.
- Raharivelomanana, P., Bianchini, J. P., Cambon, A., Azzaro, M. and Faure, R., Magnetic Resonance in Chemistry, 1995, 33, 233.