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A series of aniline-substituted tetrahydroquinoline C5a receptor antagonists were discovered. A function-
ality requirement of ortho substitution on the aniline was revealed. Secondary anilines, in general, out-
performed tertiary analogs in inhibition of C5a-induced calcium mobilization. Further enhancement of
activity was realized in the presence of an ortho hydroxyalkyl side chain. The functional IC50 of selected
analogs was optimized to the single-digit nanomolar level.

� 2008 Elsevier Ltd. All rights reserved.
Figure 1. Representative aminonaphthalene-substituted tetrahydroquinoline C5aR
antagonists.5
Complement component C5a, a pro-inflammatory serum pro-
tein, is generated during activation of the complement cascade
by proteolysis of C5. Its interaction with the membrane bound G-
protein coupled C5a receptor (C5aR) mediates anaphylatoxic and
chemotactic effects. Excessive complement activation may contrib-
ute to many inflammatory and autoimmune conditions.1,2 Prevent-
ing the formation of C5a (as well as C5b) using antibodies that bind
to and block proteolysis of complement component C5 has been
clinically validated as a therapeutic strategy with the recent mar-
keting approval of SolirisTM (eculizumab) by the U.S. Food and Drug
Administration as the first therapy approved for paroxysmal noc-
turnal hemoglobinuria.3 C5aR has also been an important thera-
peutic target for complement modulation.2 The search for C5aR
antagonists has resulted in the discovery of different types of li-
gands, including peptides and peptidomimetics, as well as non-
peptidic small molecules.2,4

Recently, we have disclosed a tetrahydroquinoline series of
small molecule C5aR antagonists.5 A key feature of the series was
the existence/requirement of a tertiary amine substituent at the
5-position of the tetrahydroquinoline scaffold, as illustrated by
the activities of tertiary aminonaphthalenes 1 and 2 as contrasted
to the less active secondary amine 3 (Fig. 1). Optimization of the
aminonaphthalene portion was challenging, as only a limited
number of aminonaphthalenes were accessible and activity was
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sensitive to naphthalene ring modifications. We considered ani-
lines as truncated aminonaphthalenes, with the potential advan-
tage that their wide accessibility would offer more opportunity
for optimization. Here, we report our exploration of anilines as 5-
position substituents within the series. This subseries has revealed
distinct structure-activity relationships (SAR) as compared to the
aminonaphthalenes and has yielded analogs with excellent po-
tency as C5aR antagonists.

A general synthetic approach to the secondary (2�) and tertiary
(3�) aniline analogs is outlined in Scheme 1. The well-optimized
2,6-diethyl/dimethyl phenyl group was selectively installed in 5
via Suzuki coupling of dichloroquinolinone 4 with the correspond-
ing phenylboronic acids. Substitution of the 4-chloro group in 5
with a sodium alkoxide, reduction of the ketone with NaBH4, and
treatment of the alcohol with SOCl2 resulted in chloride 6. Alkyl-
ation of primary anilines with chloride 6 yielded 2� anilines.6 Tar-
geted 3� anilines were generated by reductive methylation of the
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Scheme 1. Reagents and conditions: (a) 2,6-di-R1-PhB(OH)2 (R1: Me or Et), Pd(PPh3)4, Na2CO3, H2O/toluene, reflux; (b) R2ONa/R2OH, reflux (R2: Me or CHMe2); (c) NaBH4,
MeOH; (d) SOCl2, CH2Cl2; (e) A-PhNH2, K2CO3, MeCN or DMF; (f) paraformaldehyde, NaBH(OAc)3, ClCH2CH2Cl, lW, 120 �C, 10 min.

Table 2
C5a-induced calcium mobilization results for secondary anilines
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corresponding 2� anilines. Phenylether analogs 49 and 50 shown in
Fig. 3 were prepared similarly by alkylation of phenols with chlo-
ride 6.

Previously demonstrated SAR within the aminonaphthalene
series suggested the importance of a tertiary amine substituent
at the 5-position of the tetrahydroquinoline core.5 Accordingly, a
set of tertiary anilines, listed in Table 1, were prepared initially
and tested in a C5a-induced calcium mobilization functional as-
say.7 Unsubstituted aniline analog 7 only offered weak
activity (IC50: 7.9 lM), and was much (46-fold) less potent than
aminonaphthalene analog 2. However, certain substituted anilines
offered improved activities. For instance, the ortho-methyl-substi-
tuted compound 8 improved potency over 7 by 10-fold to 0.79 lM
and an additional methyl or methoxy group at the m0-position was
favorable (11: IC50 0.69 lM and 12: IC50 0.56 lM, respectively).
Combining the preferred o-methyl, m0-methoxy aniline group with
a 2,6-dimethylphenyl substituent at the tetrahydroquinoline 2-po-
sition resulted in a modest decrease in activity relative to 12 (16:
IC50 3.2 lM); therefore the 2,6-diethylphenyl group was generally
retained in subsequent analogs.
Table 1
C5a-induced calcium mobilization results for tertiary anilines

Compounda R1 A Ca2+ flux Inhibition IC50 (lM)

7 Et H 7.9
8 Et o-Me 0.79
9 Et o-Me, m0-Cl 2.6
10 Et o-Me, m0-Ph >10
11 Et o-Me, m0-Me 0.69
12 Et o-Me, m0-OMe 0.56
13 Et o-Me, p-OMe 6.2
14 Et o-OMe, m0-OMe 2.6
15 Et o-Cl, m0-OMe 0.95
16 Me o-Me, m0-OMe 3.2
17 Me o-Me, m-OMe >10
18 Me o-Me, o0-Me >10

a All compounds were tested as racemates.
Secondary anilines were originally prepared as precursors for
the targeted tertiary anilines. Some of these precursors were se-
lected and tested in the functional assay in comparison to tertiary
analogs. Surprisingly, those 2� anilines were not only active, but in
most cases were even more potent than their 3� counterparts (see
Table 2). For example, 2� aniline 25 was 4-fold more potent than
the corresponding 3� aniline 12. SAR trends in the 2� anilines were
similar to those in the 3� anilines. For instance, the synergistic
Compound A Ca2+ flux Inhibition IC50

(lM)
IC50 Ratio (NCH3/
NH)a

19 o-Me 0.91 0.87
20 m0-OMe 7.4
21 o-Me, m0-Cl 1.5 1.7
22 o-Me, m0-F 1.4
23 o-Me, m0-Ph 2.5 >4
24 o-Me, m0-Me 0.43 1.6
25 o-Me, m0-OMe 0.14 4.0
26 o-Me, m0-CF3 0.29
27b o-Me, m0-OH >10
28 o-Me, m0-

CH2OH
>10

29 o-Me, p-OMe 2.4 2.6
30 o-OMe, m0-

OMe
0.42 6.2

31 o-Cl, m0-OMe 0.38 2.5
32 o-Ph, m0-OMe >10
33 o-Et 0.73
34 o-CH2NH2 5.0
35 o-CO2H 0.41
36 o-CONH2 >10
37 o-CO2Me >10
38 o-COMe >10
39 o-CF3 >10
40 o-CN 4.9

a Values are IC50 ratios between tertiary anilines in Table 1 and corresponding
secondary aniline counterparts in Table 2.

b Compound 27 was prepared by treatment of 25 with BBr3 in CH2Cl2.
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effect of o-methyl and m0-methoxy substitutions on activity was
again observed (disubstituted aniline 25: IC50 0.14 lM). While
holding the ortho-position constant as methyl, in addition to the
methoxy group at the m0-position, an optionally trifluorinated
methyl group was also preferred, halo and phenyl groups were tol-
erated, and hydroxy and hydroxymethyl substituents reduced
activity (compounds 21–28). An initial screen of additional 2�
o-monosubstituted anilines failed to identify compounds offering
significant further potency increases (compounds 33–40).

The introduction of functional groups on the anilines was in-
tended to pick up additional interactions between ligand and bind-
ing site (as discussed later) to improve potency. Although initial
results with m0-hydroxy in 27 and m0-hydroxymethyl in 28 were
disappointing, a significant advancement in potency was observed
in the case of o-hydroxyalkyl anilines (Table 3). o-Hydroxymethyl
analog 41 possessed impressive activity with an IC50 of 0.12 lM.
The potency was further improved to double-digit nanomolar with
either additional substituents on the aniline ring (compounds 42–
45), or homologation to o-hydroxyethyl analog 46. A single-digit
nanomolar IC50 was achieved when the methoxy group on the tet-
rahydroquinoline core in 46 was replaced by i-propoxy in 47.

Compound 47 was docked into a homology model of human
C5aR.8 Fig. 2 depicts the putative ligand binding site9 and the pro-
posed binding mode of 47.10 In this binding mode, the diethylphe-
nyl group sits in the hydrophobic pocket close to residues Ile116
Table 3
C5a-induced calcium mobilization results for o-hydroxyalkyl anilines

Compound R2 n A Ca2+ flux Inhibition IC50 (lM)

41 Me 1 H 0.12
42 Me 1 m0-Cl 0.026
43 Me 1 m0-CF3 0.022
44 Me 1 p-F 0.053
45 Me 1 p-Cl 0.071
46 Me 2 H 0.030
47 CHMe2 2 H 0.007

Figure 2. Binding mode of 47 in human C5aR homology model.
and Val286, which have been proposed to be involved in triggering
activation of the receptor.9 The i-propoxy oxygen in the central
part of the molecule forms a hydrogen bond to Tyr258. The
o-hydroxyethyl-phenyl moiety is involved in two interactions: a
cation-p interaction between Arg206 and the phenyl ring, and a
direct hydrogen bond between Ser138 and the hydroxyl group in
the o-hydroxyethyl chain. This binding mode can serve as a start-
ing point to understand the SAR in this series of compounds.

Further SAR extension was briefly explored, as represented by
the examples in Fig. 3. Aminopyridine 48 was about 30-fold less
potent than aniline analog 41. Replacement of the N-linkage in ter-
tiary aniline 12 or secondary aniline 25 with an O-linkage in phen-
ylether 49 offered comparable submicromolar activity. For aniline
46, the phenylether linked analog 50, however, lost potency by
about 80-fold, which indicated SAR differences between anilines
and phenylether analogs.

Representative compounds were also tested in a [125I]C5a radi-
oligand binding assay.11 The results are listed in Table 4. Selected
compounds showed activity in this assay, with K 0is ranging from
submicromolar (unsubstituted tertiary aniline 7) to low double-di-
git nanomolar (substituted secondary anilines 25, 45, and 46). Fur-
ther in vitro characterization, including receptor and species
selectivity, will be published separately.

Compound 2512 was selected for a pharmacokinetic (PK) study
in rats and results are presented in Table 5. Upon intravenous dos-
ing at 2 mg/kg, compound 25 had a fairly long terminal elimination
half-life of over 6 h. Volume of distribution and systemic clearance
were relatively high. When compound 25 was dosed orally at
10 mg/kg, systemic exposure was achieved with t1/2 over 5 h and
bioavailability of 21%.13

In summary, a novel aniline-substituted tetrahydroquinoline
series of C5aR antagonists were discovered. Distinct SAR was
revealed as compared with those of the previously disclosed
aminonaphthalene-substituted antagonists. Micromolar to submi-
cromolar IC50s of initial tertiary anilines were improved with sec-
ondary aniline analogs. Further enhancement of activity was
realized with the introduction of an ortho hydroxyalkyl side chain.
The receptor binding affinity, putative binding mode, and PK prop-
Figure 3. Aminopyridine and phenylether analogs.

Table 4
[125I]-C5a binding assay results for selected compounds

Compound 7 25 45 46

Ki (lM) 0.68 0.010 0.013 0.021

Table 5
Rat PK resultsa for compound 25

IV (2 mg/kg) PO (10 mg/kg)

t1/2: 6.3 (±1.2) h t1/2: 5.3 (±1.8) h
Vss: 4.5 (±0.2) L/kg Cmax: 0.29 (±0.3) mg/mL
Cl: 21 (±9) mL/min/kg AUC: 42 (±12) min �mg/mL

F: 21 (±6)%

a Values are means of four rats, standard deviation is given in parentheses.
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erties of representative compounds were also explored. We hope
that these studies may aid in the eventual development of orally
bioavailable C5aR antagonists capable of modulation of the com-
plement response.
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