

Contents lists available at ScienceDirect

# **Bioorganic & Medicinal Chemistry Letters**



journal homepage: www.elsevier.com/locate/bmcl

# Hit to lead studies on (hetero)arylpyrimidines—Agonists of the canonical Wnt-β-catenin cellular messaging system

Adam M. Gilbert <sup>a,\*</sup>, Matthew G. Bursavich <sup>a</sup>, Nippa Alon <sup>a</sup>, Bheem M. Bhat <sup>c</sup>, Frederick J. Bex <sup>c</sup>, Michael Cain <sup>d</sup>, Valerie Coleburn <sup>c</sup>, Virginia Gironda <sup>c</sup>, Paula Green <sup>c</sup>, Diane B. Hauze <sup>b</sup>, Yogendra Kharode <sup>c</sup>, Girija Krishnamurthy <sup>f</sup>, Matthew Kirisits <sup>a</sup>, Ho-Sun Lam <sup>c</sup>, Yao-Bin Liu <sup>c</sup>, Sabrina Lombardi <sup>a</sup>, Jeanne Matteo <sup>c</sup>, Richard Murrills <sup>c</sup>, John A. Robinson <sup>c</sup>, Sally Selim <sup>c</sup>, Michael Sharp <sup>c</sup>, Raymond Unwalla <sup>b</sup>, Usha Varadarajan <sup>e</sup>, Weiguang Zhao <sup>c</sup>, Paul J. Yaworsky <sup>d</sup>

<sup>a</sup> Chemical Sciences, Wyeth Research, 401 North Middletown Road, Pearl River, NY 10965, United States

<sup>b</sup> Chemical Sciences, Wyeth Research, 500 Arcola Road, Collegeville, PA 19426, United States

<sup>c</sup> Tissue Repair, Wyeth Research, 500 Arcola Road, Collegeville, PA 19426, United States

<sup>d</sup> Tissue Repair, Wyeth Research, 200 Cambridge Park Drive, Cambridge, MA 02140, United States

<sup>e</sup> Biological Technologies, Wyeth Research, 87 Cambridge Park Dr Cambridge, MA 02140, United States

f Screening Sciences, Wyeth Research, 401 North Middletown Road, Pearl River, NY 10965, United States

## ARTICLE INFO

Article history: Received 17 September 2009 Revised 20 October 2009 Accepted 21 October 2009 Available online 25 October 2009

Keywords: Wnt-β-catenin agonist (Hetero)arylpyrimidines Osteoporosis Calvaria

# ABSTRACT

A series of (hetero)arylpyrimidines agonists of the Wnt- $\beta$ -catenin cellular messaging system have been prepared. These compounds show activity in U2OS cells transfected with Wnt-3a, TCF-luciferase, Dkk-1 and tk-Renilla. Selected compounds show minimal GSK-3 $\beta$  inhibition indicating that the Wnt- $\beta$ -catenin agonism activity most likely comes from interaction at Wnt-3a/Dkk-1. Two examples **1** and **25** show in vivo osteogenic activity in a mouse calvaria model. One example **1** is shown to activate non-phosphorylated  $\beta$ -catenin formation in bone.

© 2009 Elsevier Ltd. All rights reserved.

Activation of the Wnt- $\beta$ -catenin signaling pathway has been shown to play important roles in development, tissue regeneration, stem cell control, tumor progression and metastases.<sup>1,2</sup> This pathway has also been implicated in the regulation of bone homeostasis. The Wnt co-receptor LRP5 is central to this function where both gain- and loss-of-function mutations have been described in humans resulting in high bone mass or an osteoporosis pseudoglioma syndrome, respectively.<sup>3–5</sup> Murine models of both genetic conditions have been successfully generated.<sup>6,7</sup> Pharmacologic inhibition of either Dickkopf-1 (Dkk-1) or Sclerostin, two LRP5binding negative regulators of Wnt- $\beta$ -catenin signaling, results in increased bone mineral density in rodents.<sup>8,9</sup> These data provide additional evidence that agonists of Wnt- $\beta$ -catenin activity could yield an osteogenic agent.

Signaling by the Wnt-β-catenin pathway has been extensively studied in many systems.<sup>1,2,10</sup> Briefly, secreted Wnt ligands bind to cells via Frizzled receptors and the LRP5 or LRP6 co-receptors. This ligand-receptor interaction activates the cytoplasmic protein

\* Corresponding author. E-mail address: gilbera@wyeth.com (A.M. Gilbert). Disheveled which in turn inactivates a protein complex comprising Axin, Adenomatous Polyposis Coli, and Glycogen Synthase Kinase- $3\beta$  (GSK- $3\beta$ ). The resulting repression of GSK- $3\beta$  activity leads to an accumulation of unphosphorylated  $\beta$ -catenin enabling it to translocate to the nucleus and form a transcriptional co-activator complex with T-cell factor/lymphoid enhancer-binding factor (TCF/LEF). Extracellularly, this mechanism can be antagonized by several secreted molecules including Dkk-1, Sclerostin and the Secreted Frizzled Related Proteins.

Both pharmacologic and genetic data support that the Wnt- $\beta$ catenin pathway is a key mediator of the normal adaptive response to mechanical loading in bone.<sup>11–13</sup> As a result, agents capable of mimicking the beneficial effects of Wnt- $\beta$ -catenin activation on the skeleton would represent a novel approach for the treatment of osteoporosis and other bone disorders. In this Letter, we report on the hit to lead studies on a class of (hetero)arylpyrimidines: agonists of the Wnt- $\beta$ -catenin pathway and their use as potential anabolic agents to increase bone mass starting from **1**, a (hetero)arylaminopyrimdine found from high-throughput screening.

ero)arylaminopyrimdine found from high-throughput screening. Compounds **4** are generally prepared according to Scheme 1.<sup>14</sup> Thus 2-chloropyrimidine **2** when reacted with aryl/heteroaryl



**Scheme 1.** Reagents and conditions: (a) (1)  $Ar^1Li$ ,  $Et_2O$ , -78 to 0 °C; (2) DDQ, THF, 23 °C; (b)  $H_2N(CHR)_nAr^2$ , NMP, 90 °C or  $H_2N(CHR)_nAr^2$ , NaH, DMSO, 80 °C.

lithiums in Et<sub>2</sub>O produces the corresponding 4-aryl/heteroaryl compounds.<sup>15,16</sup> Target compounds **4** are prepared by reacting **3** with amines in hot NMP or by first deprotonating the amine with NaH in DMSO and then heating with **3** in hot DMSO.



Wnt-3a/Dkk-1/TCF-Luci EC  $_{50}$ : 4.2  $\mu M$  (2.9 Fl @ 20  $\mu M$ ) GSK-3 $\beta$  IC  $_{50}$ : 51  $\mu M$ 

Compounds were assayed using U2OS cells transfected with Wnt-3a, TCF-luciferase, Dkk-1 and tk-Renilla as a signal normalizer compared to control U2OS cells transfected with Wnt-3a, TCF-Luciferase and tk-Renilla.<sup>17</sup> The signal from the TCF-luciferase is reduced in the presence of the inhibitor Dkk-1. Compounds that modulate Dkk-1 activity or act downstream of the Wnt-3a/Dkk-1 complex (i.e., GSK-3 $\beta$  inhibition) cause an increase in the luciferase signal. For all compounds in this manuscript, EC<sub>50</sub>s were determined as well as the fold-induction response at 20  $\mu$ M compared to the control U2OS cells. A [<sup>32</sup>P]-GSK-3 $\beta$  was used to assay compounds for Wnt/ $\beta$ -catenin activity downstream (of, from) Wnt-3a/Dkk-1.

Compound 1 shows a robust TCF-Luciferase response at 20  $\mu$ M as well as a  $\mu$ M-EC<sub>50</sub>(1: TCF(20  $\mu$ M): 2.9; EC<sub>50</sub>: 4.2  $\mu$ M)(Table 1). Since arylamino-pyrimidines are well-known kinase inhibitors,<sup>18</sup> 1 was assayed for GSK-3 $\beta$  inhibition but little kinase inhibition was seen (IC<sub>50</sub>: 51  $\mu$ M). Modulation of the R<sup>1</sup> substituent to ethylpyridines (5 and 6) produces compounds of comparable efficacy/potency to 1. The replacement of R<sup>1</sup> with a propyl(dimethylpyrazole) group

#### Table 2

Wnt-β-catenin activities of compounds 1, 10-11



| Compd | R <sup>1</sup>                         | R <sup>2</sup>        | TCF <sup>a</sup> (20 μM) | $\text{EC}_{50}{}^{b}\left(\mu M\right)$ |
|-------|----------------------------------------|-----------------------|--------------------------|------------------------------------------|
| 1     | CH <sub>2</sub> -1 <i>H</i> -Imidazole | 4-(Pyridin-4-yl)      | 2.9                      | 4.2                                      |
| 10    | CH <sub>2</sub> -1H-Imidazole          | 4-(Pyridin-3-yl)      | 4.7                      | 8.8                                      |
| 11    | CH <sub>2</sub> -1 <i>H</i> -Imidazole | 4-(3-Nitrophenyl)     | 3.6                      | 46.3                                     |
| 12    | 4-Pyridine                             | 4-(Pyridin-3-yl)      | 3.4                      | 20.2                                     |
| 13    | 3-(1H-Indole)                          | 4-(Pyridin-3-yl)      | 10.0                     | 4.1                                      |
| 14    | 3-(2-Methyl-1 <i>H</i> -indol-5-ol)    | 4-(pyridin-3-yl)      | 5.1                      | 12.2                                     |
| 15    | 4-(1H-Imidazole)                       | 4-(Pyridin-3-yl)      | 3.1                      | 28.8                                     |
| 16    | 4-(1H-Imidazole)                       | 2-(Benzo[b]thiophene) | 3.7                      | 3.3                                      |
| 17    | 4-(1H-Imidazole)                       | 2-(Naphthyl)          | 1.1                      | 12.1                                     |

<sup>a</sup> U2OS: Wnt-3a/Dkk-1/TCF-Luci fold induction at 20  $\mu$ M. Values are the average of 2 or 3 runs. Error ±20%.

 $^{\rm b}$  U2OS: Wnt-3a/Dkk-1/TCF-Luci EC\_{50}. Values are the average of 2 or 3 runs. Error ±20%.

#### Table 1

Wnt-β-catenin activities of compounds 1, 5-9



| Compd | R <sup>1</sup>                              | TCF <sup>a</sup><br>(20 μM) | ЕС <sub>50</sub> <sup>в</sup><br>(µМ) |  |
|-------|---------------------------------------------|-----------------------------|---------------------------------------|--|
| 1     | N-(3-(1H-Imidazol-1-yl)propane)             | 2.9                         | 4.2                                   |  |
| 5     | N-(2-(Pyridin-4-yl)ethane)                  | 4.3                         | 6.8                                   |  |
| 6     | N-(2-(Pyridin-3-yl)ethane)                  | 2.8                         | 4.6                                   |  |
| 7     | N-(3-(3,5-Dimethyl-1H-pyrazol-1-yl)propyl)  | 2.1                         | 29.6                                  |  |
| 8     | N-(2-(1H-Indol-3-yl)ethane)                 | 7.5                         | 2.7                                   |  |
| 9     | N-(S)-3-(1H-Indol-3-yl)-2-propan-1-ol amine | 2.2                         | FTC <sup>c</sup>                      |  |
|       |                                             |                             |                                       |  |

 $^a$  U2OS: Wnt-3a/Dkk-1/TCF-Luci fold induction at 20  $\mu M.$  Values are the average of 2 or 3 runs. Error ±20%.

 $^{\rm b}$  U2OS: Wnt-3a/Dkk-1/TCF-Luci EC\_{50}. Values are the average of 2 or 3 runs. Error  $\pm 20\%$ 

<sup>c</sup> FTC: EC<sub>50</sub> determination failed to converge.

produces a less potent compound (**7**) while the ethylindole derivative (**8**) gives a 2.5-fold more efficacious analog of **1** (**8**: TCF (20  $\mu$ M): 7.5; EC<sub>50</sub>: 2.7  $\mu$ M). The more complex **9** containing a propanolindole substituent possesses similar efficacy to **1** but the EC<sub>50</sub> fails to converge.

Table 2 outlines the effects of varying the 4-pyrimidine position on compounds similar to **1**. Changing  $R^2$  from a pyridine-4-yl to a pyridine-3-yl results in a slight increase in efficacy (**10**: TCF (20 µM): 4.7) while a 3-NO<sub>2</sub>-phenyl group gives a much less potent compound (**11**: EC<sub>50</sub>: 46.3 µM). Compound **13** where  $R^1 = 3-(1H$ indole) shows µM-potency with large fold-induction (**13**: TCF (20 µM): 10.0; EC<sub>50</sub>: 4.1 µM).

Of the 4-(1*H*-imidazole) indole compounds **15–17**, the 2-(benzo[*b*]thiophene) analog **16** possesses the best combination of potency and efficacy (EC<sub>50</sub>: 3.3  $\mu$ M, TCF (20  $\mu$ M): 3.7). Several phenethyl analogs were also prepared, but they showed poor Wnt- $\beta$ -catenin agonism.

To follow-up compound **16** which shows  $\mu$ M potency and moderate efficacy in the Wnt-3a/Dkk-1/TCF-Luci assay, 2-(naphthyl)-2-(benzo[*b*]thiophene)-derivatives were prepared according to the



**Scheme 2.** Reagents and conditions: (a) SOCl<sub>2</sub>, MeOH, 60 °C; (b) Trit–Cl, TEA, MeCN, 23 °C; (c) LiAlH<sub>4</sub>. THF 0 to 23 °C; (d) NaH, R<sup>1</sup>X, DMF, 50 °C; (e) HCl, THF, reflux; (f) Scheme 1, step b.

chemistry outlined in Schemes 2 and 3. Histidine **18** may be converted to methyl ester **19** using standard conditions. After being bis(tritylated) to produce **20**, reduction with LiAlH<sub>4</sub> produces the primary alcohol **21**. Alkylation with various alkyl and aryl bromides produces **22**. Deprotection with HCl yields the derivatized histidines **23** which were incorporated into products **4** using the procedure of Scheme 1, Step b. Analogs where the imidazole nitrogen is substituted are prepared by reacting compounds like **25** 



Scheme 3. Reagents and conditions: (a) NaH, R<sup>1</sup>X, THF/DMSO, 23 °C.

### Table 3

Wnt-β-catenin activities of compounds 25-29



| Compd | R <sup>1</sup>                         | R <sup>2</sup>        | TCF <sup>a</sup><br>(20 μM) | EC <sub>50</sub> <sup>b</sup><br>(μΜ) |
|-------|----------------------------------------|-----------------------|-----------------------------|---------------------------------------|
| 25    | Н                                      | 2-(Naphthyl)          | 4.9                         | 6.8                                   |
| 26    | Ethyl                                  | 2-(Naphthyl)          | 1.9                         | 14.4                                  |
| 27    | Methylenecyclohexyl                    | 2-(Naphthyl)          | 2.2                         | 20.8                                  |
| 28    | (2-Fluoro-3-                           | 2-(Naphthyl)          | 1.6                         | 10.9                                  |
| 29    | (trifluoromethyl)benzyl<br>Prop-2-ynyl | 2-(Benzo[b]thiophene) | 3.5                         | FTC                                   |

<sup>a</sup> Values are the average of 2 or 3 runs. Error ±20%.

<sup>b</sup> FTC: EC<sub>50</sub> failed to converge.

with NaH followed by the addition of an alkylating agent to produce **30**.

O-Substituted derivatives in Table 3 show moderate Wnt-3a/ Dkk-1/TCF-Luci efficacy at 20  $\mu$ M, but most of the compounds were not as potent as and efficacious as **16**. This was true for alkyl, aryl and alkynyl derivatives **25–29**. The exception was hydroxyl analog **25**. Analogs of **16** where the imidazole nitrogen is alkylated show similar to greater efficacy compared to the O-substituted analogs as a number of substituents are tolerated (**31**, **32**: benzyl, **33**: propynyl, **34**: acetamide, **35**, **36**: 3-propanitrile), but comparatively weaker potency to **25** (see Table 4).

Example **25** represents a compound with good properties of a chemical lead based on **1**. It has robust Wnt-3a/Dkk-1/TCF-Luci efficacy @ 20  $\mu$ M (FI 4.9), good potency (EC<sub>50</sub>: 6.8  $\mu$ M) and an acceptable ligand efficiency. The calculated physical properties are in line for a molecule with good drug-like properties. Good aqueous solubility, moderate PAMPA permeability and good rat liver microsome stability is also seen.





In order to establish the osteogenic activity of this series, **1** was evaluated in vivo via local subcutaneous injection over the right side of the calvaria of wild type C57BL/6 mice.<sup>11</sup> As a positive control, an inhibitor of GSK-3 $\beta$  (GSKi), 3-(3-chloro-4-hydroxyphenylamino)-4-(2-nitrophenyl)-1*H*-pyrole-2,5-dione),<sup>19</sup> was administered at 1 mg/kg/day as previously described.<sup>11</sup> Vehicle alone was used as the negative control. Using standard dynamic histomorphometry measurements, the mineral apposition rate of new bone formation was

 Table 4

 Wnt-β-catenin activities of compounds 31–38



| Compd | R <sup>1</sup>     | R <sup>2</sup>        | $\text{TCF}^{a}\left(20\;\mu\text{M}\right)$ | $\text{EC}_{50}{}^{\text{b}}\left(\mu M\right)$ |
|-------|--------------------|-----------------------|----------------------------------------------|-------------------------------------------------|
| 31    | 3,5-Difluorobenzyl | 2-(Benzo[b]thiophene) | 1.7                                          | 16.0                                            |
| 32    | 3,5-Difluorobenzyl | 2-(Naphthyl)          | 2.0                                          | FTC                                             |
| 33    | Prop-2-ynyl        | 2-(Benzo[b]thiophene) | 3.0                                          | 14.6                                            |
| 34    | 2-Acetamide        | 2-(Naphthyl)          | 3.9                                          | FTC                                             |
| 35    | 3-Propanitrile     | 2-(Benzo[b]thiophene) | 4.1                                          | FTC                                             |
| 36    | 3-Propanitrile     | 2-(Naphthyl)          | 5.5                                          | FTC                                             |

<sup>a</sup> Values are the average of 2 or 3 runs. Error ±20%.

<sup>b</sup> FTC: EC<sub>50</sub> determination failed to converge.





0.1

Compound 25 (mg/kg/day)

Figure 1. Compounds 1 and 25 are osteogenic in vivo. (A) Quantitative dynamic histomorphometry was performed on murine calvaria following 7 days of 1 treatment. Mineral apposition rates were calculated and are presented as an index of anabolic, osteoblast activity. Veh, vehicle; GSKi, Glycogen synthase kinase-3ß inhibitor,<sup>19</sup> p < 0.01 versus vehicle. (B–D) Immunohistochemical detection of nonphosphorylated β-catenin is enhanced in compound-treated calvaria suggesting that Wnt-\beta-catenin signaling is activated. Positive cells are identified by the pink staining as indicated by the arrowheads. Vehicle (B), GSKi (C), 0.3 mg/kg/day 1 (D), 1.0 mg/kg/day 1 (E). (F) Compound 25 is osteogenic in the same assay showing significantly elevated mineral apposition rates versus vehicle.

calculated exactly as previously described.<sup>11</sup> All doses of **1** showed a significant increase in anabolic bone activity over vehicle with levels equivalent to that attained by the GSKi positive control in all but the lowest tested dose of 1 (Fig. 1A). Mechanistically, this anabolic bone activity could be ascribed to activated Wnt- $\beta$ -catenin signaling as visualized by the immunohistochemical detection of non-phosphorylated β-catenin in the osteoblastic cells lining the periosteal surface of the calvaria (Fig. 1B-E). Furthermore, using the same in vivo model, 25 was also shown to be an anabolic bone agent (Fig. 1F). Together these data support that **1** and **25** are both Wnt- $\beta$ -catenin pathway agonists and efficacious osteogenic agents in vivo.

In conclusion, we have disclosed a series of (hetero)arylpyrimidines that act as agonists of the Wnt- $\beta$ -catenin pathway. While we currently don't know their exact mechanism of action, these compounds don't function via inhibition of GSK-3B. Moreover, examples of this equity show osteogenic in vivo activity in mouse calvaria as well as immunohistochemical data indicating that Wnt-β-catenin activity is activated in bone.

# Acknowledgments

We thank Dr. John Ellingboe for support of this work and the Chemical Sciences Compound Properties group for providing physicochemical profiling data on all analogs disclosed in this work.

# **References and notes**

- Klaus, A.; Birchmeier, W. Nat. Rev. Cancer 2008, 8, 387.
- Nusse, R. Cell Res. 2008, 18, 523. 2.
- Boyden, L. M.; Mao, J.; Belsky, J.; Mitzner, L.; Farhi, A.; Mitnick, M. A.; Wu, D.; 3. Insogna, K.; Lifton, R. P. N. Eng. J. Med. 2002, 346, 1513.
- Little, R. D.; Carulli, J. P.; Del Mastro, R. G.; Dupuis, J.; Osborne, M.; Folz, C.; Manning, S. P.; Swain, P. M.; Zhao, S. C.; Eustace, B.; Lappe, M. M.; Spitzer, L.; Zweier, S.; Braunschweiger, K.; Benchekroun, Y.; Hu, X.; Adair, R.; Chee, L.; FitzGerald, M. G.; Tulig, C.; Caruso, A.; Tzellas, N.; Bawa, A.; Franklin, B.; McGuire, S.; Nogues, X.; Gong, G.; Allen, K. M.; Anisowicz, A.; Morales, A. J.; Lomedico, P. T.; Recker, S. M.; Van Eerdewegh, P.; Recker, R. R.; Johnson, M. L. Am. J. Hum. Genet. 2002, 70, 11.
- Gong, Y.; Slee, R. B.; Fukai, N.; Rawadi, G.; Roman-Roman, S.; Reginato, A. M.; Wang, H.; Cundy, T.; Glorieux, F. H.; Lev, D.; Zacharin, M.; Oexle, K.; Marcelino, J.; Suwairi, W.; Heeger, S.; Sabatakos, G.; Apte, S.; Adkins, W. N.; Allgrove, J.; Arslan-Kirchner, M.; Batch, J. A.; Beighton, P.; Black, G. C.; Boles, R. G.; Boon, L. M.; Borrone, C.; Brunner, H. G.; Carle, G. F.; Dallapiccola, B.; De Paepe, A.; Floege, B.; Halfhide, M. L.; Hall, B.; Hennekam, R. C.; Hirose, T.; Jans, A.; Juppner, H.; Kim, C. A.; Keppler-Noreuil, K.; Kohlschuetter, A.; LaCombe, D.; Lambert, M.; Lemyre, E.; Letteboer, T.; Peltonen, L.; Ramesar, R. S.; Romanengo, M.; Somer, H.; Steichen-Gersdorf, E.; Steinmann, B.; Sullivan, B.; Superti-Furga, A.; Swoboda, W.; van den Boogaard, M. J.; Van Hul, W.; Vikkula, M.; Votruba, M.; Zabel, B.; Garcia, T.; Baron, R.; Olsen, B. R.; Warman, M. L. Cell 2001, 107, 513.
- Babij, P.; Zhao, W.; Small, C.; Kharode, Y.; Yaworsky, P. J.; Bouxsein, M. L.; 6 Reddy, P. S.; Bodine, P. V.; Robinson, J. A.; Bhat, B.; Marzolf, J.; Moran, R. A.; Bex, F. I. Bone Miner. Res. 2003, 18, 960.
- 7 Kato, M.; Patel, M. S.; Levasseur, R.; Lobov, I.; Chang, B. H.; Glass, D. A., 2nd; Hartmann, C.; Li, L.; Hwang, T. H.; Brayton, C. F.; Lang, R. A.; Karsenty, G.; Chan, L. J. Cell Biol. 2002, 157, 303.
- 8 Glantschnig, H.; Hampton, R.; Wei, N.; Scott, K.; Nantermet, P.; Zhao, J.; Chen, F.; Fisher, J.; Su, Q.; Pennypacker, B.; Cusick, T.; Sandhu, P.; Reszka, A.; Strohl, W.; Flores, O.; Wang, F.; Kimmel, D.; An, Z. J. Bone Miner. Res. 2008, 23, S60.
- Li, X.; Ominsky, M. S.; Warmington, K. S.; Morony, S.; Gong, J.; Cao, J.; Gao, Y.; 9. Shalhoub, V.; Tipton, B.; Haldankar, R.; Chen, Q.; Winters, A.; Boone, T.; Geng, Z.: Niu, O. T.: Ke, H. Z.: Kostenuik, P. I.: Simonet, W. S.: Lacev, D. L.: Pasztv, C. J. Bone Miner. Res. 2009, 24, 578.
- 10. Angers, S.: Moon, R. T. Nat. Rev. Mol. Cell Biol. 2009, 10, 468.
- Robinson, J. A.; Chatterjee-Kishore, M.; Yaworsky, P. J.; Cullen, D. M.; Zhao, W.; Li, 11 C.; Kharode, Y.; Sauter, L.; Babij, P.; Brown, E. L.; Hill, A. A.; Akhter, M. P.; Johnson, M. L.; Recker, R. R.; Komm, B. S.; Bex, F. J. J. Biol. Chem. 2006, 281, 31720.
- Armstrong, V. J.; Muzylak, M.; Sunters, A.; Zaman, G.; Saxon, L. K.; Price, J. S.; 12. Lanyon, L. E. J. Biol. Chem. 2007, 282, 20715.
- Sawakami, K.; Robling, A. G.; Ai, M.; Pitner, N. D.; Liu, D.; Warden, S. J.; Li, J.; 13 Maye, P.; Rowe, D. W.; Duncan, R. L.; Warman, M. L.; Turner, C. H. J. Biol. Chem. 2006, 281, 23698.
- All newly prepared compounds were characterized by reversed phases-HPLC/ 14. MS spectroscopy. A selected number of compounds were also characterized by <sup>1</sup>H NMR.
- 15. Harden, D. B.; Mokrosz, M. J.; Strekowski, L. J. Org. Chem. 1988, 53, 4137.

- Strekowski, L.; Harden, M. J.; Grubb, W. B., III; Patterson, S. E.; Czarny, A.; Mokrosz, M. J.; Cegla, M. T.; Wydra, R. L *J. Heterocycl. Chem.* **1990**, *27*, 1393.
   Bhat, B. M.; Allen, K. M.; Liu, W.; Graham, J.; Morales, A.; Anisowicz, A.; Lam, H.
- Bhat, B. M.; Allen, K. M.; Liu, W.; Graham, J.; Morales, A.; Anisowicz, A.; Lam, H. S.; McCauley, C.; Coleburn, V.; Cain, M.; Fortier, E.; Bhat, R. A.; Bex, F. J.; Yaworsky, P. J. *Gene* **2007**, *391*, 103.
- Rewcastle, G. W.; Denny, W. A.; Showalter, H. D. H. *Curr. Org. Chem.* 2000, 4, 679.
   Coghlan, M. P.; Culbert, A. A.; Cross, D. A.; Corcoran, S. L.; Yates, J. W.; Pearce, N. J.; Rausch, O. L.; Murphy, G. J.; Carter, P. S.; Roxbee Cox, L.; Mills, D.; Brown, M.
- J.; Rausch, O. L.; Murphy, G. J.; Carter, P. S.; Roxbee Cox, L.; Mills, D.; Brown, M. J.; Haigh, D.; Ward, R. W.; Smith, D. G.; Murray, K. J.; Reith, A. D.; Holder, J. C. *Chem. Biol.* **2000**, *7*, 793.