

Available online at www.sciencedirect.com

Mendeleev Communications

Unexpected fragmentation of 16β -acetoxy-22-oxocholestanes on the action of methylenetriphenylphosphorane

Zuleykha R. Valiullina,^{*a*} Lidiya S. Khasanova,^{*a*} Natalya K. Selezneva,^{*a*} Fanuza A. Gimalova,^{*a*} Kasimir K. Pivnitsky^{*b*} and Mansur S. Miftakhov^{**a*}

^a Institute of Organic Chemistry, Ufa Scientific Center of the Russian Academy of Sciences, 450054 Ufa,

Russian Federation. Fax: +7 347 235 6066; e-mail: bioreg@anrb.ru

^b N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow,

Russian Federation. Fax: +7 499 135 5328; e-mail: kpiv@mail.ru

DOI: 10.1016/j.mencom.2014.09.008

Treatment of 16 β -acetoxy-22-oxocholestanes with methylenetriphenylphosphorane results in the cleavage of C²²–C²³ bond and formation of bisnorcholanic (22 \rightarrow 16)-lactones. The analogous fragmentation also partially proceeds on Bu^tOK action.

Methylenetriphenylphosphorane (CH₂=PPh₃) has wide synthetic application for methylenation of ketones, aldehydes, esters, *etc.*^{1,2} Olefination reactions usually proceed successfully under mild conditions and in good yields, nevertheless, some difficulties may be encountered in the case of enolisable and sterically hindered ketones.^{3,4} Moreover, numerous 'deviations' from the normal reaction course with the formation of abnormal products are known for CH₂=PPh₃.^{5,6}

During the development of synthesis of anticancer steroid saponin OSW-1⁷ structural analogues from diosgenin **1a**, we have discovered the unexpected side-chain fragmentation of cholestanic 22-ketones **2a–c** (Scheme 1).[†] The latter were derived from diosgenin **1a** (for the synthesis⁸ see Online Supplementary Materials).

When attempting olefination of ketones **2a–c** with $CH_2=PPh_3$ under standard conditions the formation of bisnorcholanic lactones **3a,b** as the single products was observed as a result of cleavage of the ($C^{23}-C^{27}$) side chain fragment and loss of the 16-acetyl group. Formation of lactone **3a** (vespertilin acetate) with other side-chain fragmentation of diosgenin derivatives has already been reported.^{9,10} Taking into account the necessity to generate the enolate in the start of the fragmentation, we treated **2a** with Bu^tOK. As a result, the same fragmentation was also observed with formation of lactone **3a** (10%). Competitive process was deacetylation of hindered 16-OAc group primarily by $16\rightarrow 22$ migration and then

 $^{3\}beta$ -Benzyloxy-16 β -hydroxydinorchol-5-enoic acid (22 \rightarrow 16)-lactone 3b. The 1.0 M solution of BuLi in hexane (0.32 ml, 0.32 mmol) was added dropwise at -50 to -40 °C under argon to a suspension of methyltriphenylphosphonium iodide (130 mg, 0.32 mmol) in anhydrous THF (10 ml) and the mixture was stirred for 1 h at the same temperature. Then a solution of ketone 2b (60 mg, 0.106 mmol) in THF (5 ml) was added. The mixture was allowed to warm to room temperature and stirred for 2 h, then quenched with saturated NH4Cl solution. THF was removed from the mixture in vacuo before the aqueous layer was extracted with EtOAc. The extract was washed with brine, dried over Na2SO4 and concentrated in vacuo. The crude product was purified by silica gel chromatography using EtOAc-light petroleum (1:9) as the eluent to obtain lactone 3b (25 mg, 56%), mp 232–233 °C, $[\alpha]_D^{20}$ –18 (c 1.00, CHCl₃), R_f (EtOAc– light petroleum, 3:7) 0.38. IR (Nujol, ν_{max} /cm⁻¹): 2930, 1763, 1462, 1456, 1377, 1366, 1307, 1239, 1188, 1180, 1113, 1102, 1075, 1035, 737. ¹H NMR (500 MHz, CDCl₃) δ: 0.78 (s, 3 H, Me), 1.04 (s, 3 H, Me), 1.33 (d, 3 H, Me, J 7.5 Hz), 1.57 (s, 3H, Me), 2.28 (m, 2H, C¹⁵H), 2.41–2.47 (m, 1H, CH), 2.59 (q, 1H, C²⁰H, J7.7 Hz), 3.28 (m, 1H, C³H), 4.57 (s, 2H, OCH₂), 4.96 (dt, 1H, C¹⁶H, J 4.7 and 7.7 Hz), 5.35 (d, 1H, C⁶H, J 5.2 Hz), 7.34 (m, 5H, Ph). ¹³C NMR (125.77 MHz, CDCl₃) δ: 13.73 (Me), 18.02 (Me), 19.39 (Me), 20.34 (C¹¹), 28.36 (C²), 31.24 (C⁸), 31.92 (C⁷), 33.10 (C¹⁵), 36.01 (C²⁰), 36.98 (C¹⁰), 37.19 (C¹²), 38.22 (C⁴), 39.06 (C¹), 41.46 (C¹³), 50.16 (C⁹), 54.83 (C14), 58.94 (C17), 69.92 (OCH2), 78.34 (C3), 82.70 (C16), 120.87 (C6), 127.42, 127.55, 128.35 and 138.97 (Ph), 141.09 (C⁵), 181.32 (C=O). MS (EI), m/z (%): 434 (0.03, M⁺), 377 (1), 330 (3), 328 (100 [MH - OCH₂Ph]⁺), 311 (30), 287 (22), 269 (8), 255 (6), 145 (13), 121 (14), 91 (36), 79 (8).

removal to form lactol 4a (10%) and its 3-deacetylated analogue 4b (50%). The latter was unstable on silica gel, converting into diosgenin 1a.

Most likely, the unexpected reaction of ketones **2** is due to two features of their structure – the well known sterically hindered nature of 22-carbonyl group and its proximity to 16β -acetoxyl group. As a result, the bulky phosphorane reagent is hardly able to form a Wittig intermediate and provides instead an easier reaction – enolization of 22-keto group, because CH₂=PPh₃ also possesses the base properties (Scheme 2). Generated enolate Z-A attacks closely located carbonyl group of C¹⁶-acetoxyl and the resulting intermediate **B** fragmentizes to lactones **3** by retro-Claisen mechanism. The distinction of Bu^tOK (from CH₂=PPh₃ as the base) is that it is much more basic. Weak base (CH₂=PPh₃) enolizes under thermodynamic conditions, producing a more stable

 3β -Acetoxy-16 β -hydroxydinorchol-5-enoic acid (22 \rightarrow 16)-lactone **3a**. Method A. Similarly, reaction of ketone 2a (108 mg, 0.209 mmol) with CH₂=PPh₃ (0.836 mmol) produced lactone 3a, yield 43 mg (60%), mp 216–217 °C, $[\alpha]_D^{20}$ –106 (c 1.0, CHCl₃) [lit.,¹¹ mp 212–215 °C, $[\alpha]_D^{20}$ –90 (CHCl₃); lit.,¹⁰ mp 225–228 °C], $R_{\rm f}$ (EtOAc–light petroleum, 3:7) 0.30. IR (Nujol, *v*_{max}/cm⁻¹): 2925, 2854, 1748, 1723, 1463, 1377, 1308, 1246, 1193, 1030, 963. ¹H NMR (300 MHz, CDCl₃) δ: 0.77 (s, 3 H, Me), 1.04 (s, 3H, Me), 1.32 (d, 3H, C²¹H, J 7.7 Hz), 2.04 (s, 3H, MeCO), 2.26 (m, 1H, C¹⁵H), 2.34 (m, 2H, CH), 2.59 (dq, 1H, C²⁰H, J 7.7 and 0.9 Hz), 4.56–4.64 (m, 1H, C³H), 4.96 (td, 1H, C¹⁶H, J 4.6 and 7.7 Hz), 5.38 (d, 1H, C⁶H, J 5.0 Hz). ¹³C NMR (75.47 MHz, CDCl₃) δ: 13.73 (Me), 18.02 (Me), 19.33 (Me), 20.30 (C¹¹), 21.43 (MeCO), 27.69 (C²), 31.21 (C⁸), 31.88 (C⁷), 33.11 (C¹⁵), 36.05 (C²⁰), 36.68 (C¹⁰), 36.96 (C¹), 38.03 (C⁴), 38.15 (C¹²), 41.47 (C¹³), 50.01 (C⁹), 54.75 (C¹⁴), 58.94 (C¹⁷), 73.74 (C³), 82.72 (C¹⁶), 121.94 (C⁶), 139.83 (C⁵), 170.59 (MeCO), 181.32 (C=O). MS (EI), m/z (%): 326 (100, [M-AcOH]⁺), 311 (24), 255 (4), 237 (3), 145 (12), 121 (13), 107 (14), 91 (7), 43 (6). Method B. Analogously, ketone 2c (140 mg, 0.24 mmol) and CH₂=PPh₃ (0.72 mmol) provided lactone 3a in 40% yield at 71% conversion.

enolate Z-A, whereas strong base (Bu^tOK) enolizes under kinetic conditions, leading to less stable enolate *E*-A. Nucleophilic attack of 16-OAc group in enolate *E*-A is sterically hindered for the anionic C^{23} center and is more preferable for anionic O^{22} center. Therefore, for Bu^tOK catalyzed reaction the main route is through intermediates **B**' and **E** followed by the migration and removal of acetyl group to form products **4**.

In general, we have discovered a new fragmentation of 16β acetoxy-22-oxocholestanes with formation of bisnorcholanic (22 \rightarrow 16)-lactones, which proceeds under the action of methylenetriphenylphosphorane reacting as a base.

The study was supported by the Russian Foundation for Basic Research (project no. 11-03-00780) and the Presidium of the Russian Academy of Sciences (grant 2012–2013).

Online Supplementary Materials

Supplementary data associated with this article (syntheses and characteristics for the starting compounds **1b** and **2a–c**) can be found in the online version at doi:10.1016/j.mencom.2014.09.008.

References

- 1 A. Maereker, Org. React., 1965, 14, 270.
- 2 (*a*) B. E. Maryanoff and A. B. Reitz, *Chem. Rev.*, 1989, **89**, 863; (*b*) S. H. Pine, G. S. Shen and H. Hoang, *Synthesis*, 1991, 165.
- 3 A. Ghosh, I. Chakraborty, N. N. Adarsh and S. Lahiri, *Tetrahedron*, 2010, 66, 164.
- 4 L. Clawson, S. L. Buchwald and R. H. Grubbs, *Tetrahedron Lett.*, 1984, 25, 5733.
- 5 H. A. C. M. Keuss and J. Lakeman, Tetrahedron, 1976, 32, 1541.
- 6 (a) H. J. Bestmann and E. Kranz, Angew. Chem., Int. Ed. Engl., 1967, 6, 81; (b) K. Okuma, K. Tsubakihira, Y. Tanaka, G. Koda and H. Ohta, *Tetrahedron Lett.*, 1995, **36**, 5591; (c) R. A. Aitken, L. P. Cleghom, R. M. Leitr, L. C. Morril and A. M. Z. Slawin, Eur. J. Org. Chem., 2010, **17**, 3211.
- 7 (a) S. Kubo, Y. Mimaki, M. Terao, Y. Sashida, T. Nikaida and T. Ohmato, *Phytochem.*, 1992, **31**, 3969; (b) Y. Mimaki, M. Kuroda, A. Kameyama, Y. Sashida, T. Hirano, R. Maekawa, T. Wada, K. Sugita and A. J. Beutler, *Bioorg. Med. Chem. Lett.*, 1997, **7**, 633.
- 8 M. A. Fernández-Herrera, H. López-Muñoz, J. M. V. Hernández-Vázquez, M. López-Dávila, M. L. Escobar-Sánchez, L. Sánchez-Sánchez, B. Mario-Pinto and J. Sandoval-Ramírez, *Bioorg. Med. Chem.*, 2010, **18**, 2474.
- 9 A. M. Nafady, M. A. El-Shanawany, M. H. Mohamed, H. A.-H. Hassanean, X.-H. Zhu, T. Yoshihara, M. Okawa, T. Ikedaa and T. Nohara, *Tetrahedron Lett.*, 2003, 44, 3509.
- 10 M. A. Iglesias-Arteaga and A. A. Alvarado-Nuño, *Tetrahedron Lett.*, 2006, 47, 5351.
- 11 Y. Sato and N. Ikekawa, J. Org. Chem., 1960, 25, 789.

Received: 21st January 2014; Com. 14/4292

Reaction of ketone **2a** with Bu'OK. Potassium tert-butoxide (43 mg, 0.38 mmol) was added to a stirred solution of the ketone **2a** (100 mg, 0.19 mmol) in anhydrous THF (6 ml) at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred overnight, then quenched with saturated NH₄Cl solution. Further treatment as above afforded the mixture which according to TLC contained one major product as the most polar spot and several minor ones. This major product was identified as most probably an unstable triol **4b** because it completely converted into diosgenin **1a** (yield 50%) in the course of column chromatography on silica gel. Lactone **3a** (10%), lactol **4a** (10%) and traces of vespertilin (4%) were also isolated by chromatography.

(25R)-3β-Acetoxyfurosi-5-ene-22,26-diol 4a. ¹H NMR (500 MHz, CDCl₃) δ: 0.85 (s, 3H, Me), 0.88 (d, 3H, Me, J 7.0 Hz), 1.02 (d, 3H, Me, J 7.0 Hz), 1.07 (s, 3H, Me), 1.98 (s, 3H, MeCO), 3.35–3.42 (m, 1H, C²⁶H), 3.50 (br. s, 1H, OH), 4.48 (m, 1H, C³H), 4.55 (m, 1H, C¹⁶H), 5.38 (d, 1H, C⁶H, J 4.9 Hz). ¹³C NMR (125.77 MHz, CDCl₃) δ: 16.19 (Me), 16.73 (Me), 17.24 (Me), 19.64 (Me), 21.20 (Me), 21.54 (C¹¹), 28.22 (C²⁴), 28.49 (C²), 32.26 (C⁸), 32.70 (C⁷), 32.76 (C¹⁵), 37.08 (C²⁵), 37.28 (C¹), 37.49 (C¹⁰), 37.80 (C⁴), 38.88 (C¹²), 40.47 (C²³), 40.48 (C¹³), 41.32 (C²⁰), 51.02 (C⁹), 57.16 (C¹⁴), 64.10 (C¹⁷), 67.87 (C²⁶), 74.23 (C³), 81.27 (C¹⁶), 110.83 (C²²), 122.96 (C⁶), 140.78 (C⁵), 170.37 (MeCO).