
Pergamon 
Tetrahedron Letters 39 (1998) 9063-9066 

TETRAHEDRON 
LETTERS 

Enantioselective Intramolecular C-H Insertion Route to a Key Intermediate 
for the Synthesis of Trinem Antibiotics 

Masahiro Anada and Shun-ichi  Hashimoto* 

Graduate School of Pharmaceutical Sciences. Hokkaido University, Sapporo 060-0812, Japan 

Received 7 September 1998; revised 18 September 1998; accepted 25 September 1998 

Abstract 

A new route to the enantiomerically pure azetidin-2-one 3, a key intermediate for the synthesis of trinems, has been 
developed, incorporating enantioselective intramolecular C-H insertion of ct-methoxycarbonyl-ot-diazoacetamide 
catalyzed by chiral Rh(II) complexes and diastereoselective arene hydrogenation as the key steps. The use of 
dirhodium(II) tetrakis[N-phthaloyl-(S)-tert-leucinate] as a catalyst produced the desired azetidinone in 84% ee, 
whereas catalysis with dirhodium(II) tetrakis[N-phthaloyl-(S)-alaninate] afforded its enantiomer in 84% ee. 
© 1998 Elsevier Science Ltd. All rights reserved. 
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The ongoing challenge of  bacterial resistance to existing chemotherapeutic drugs provides a 

constant driving force for the discovery and development of  novel antibacterial compounds. In this 

respect, the discovery of  a new family of  synthetic [3-1actam antibiotics, the trinems of  general  

structure 1, by scientists at Glaxo Wellcome Laboratories is a notable recent landmark. Sanfetrinem 

(GV104326) 2a and its metabolically labile ester 2b in this class have shown excellent activity 

against a wide range of  bacteria including [3-1actamase producing strains and are currently in phase II 

clinical studies. 1 Due to their particular structure bearing five stereogenic centers as well as the large 

amount of  final drug material required to support development studies, they have also presented a 

considerable synthetic challenge. While most of  the reported syntheses rely on condensation of  

commercially available (I'R, 3R,4R)-4-acetoxy-3- [ l '-(tert-butyldimethylsilyloxy)ethyl]azetidin-2-one 

with properly designed cyclohexenylmetals  2 or metal enolates of  2-methoxycyclohexanone,  3 an 

alternative route to 2 involving the [2+2] cycloaddition between N-trimethylsilylimine derived from 

(1S,2R)-2-( ter t -buty ld imethyls i ly loxy)-1-e thoxycarbonylcyclohexane and the lithium enolate of  tert- 

butyl acetate has recently been developed. 4 Recently, we reported a highly enantioselective 

construct ion o f  3 -oxa- l -azab icyc lo [4 .2 .0 ]oc tanes  by intramolecular  C-H insertion of  ct- 

." " f'30"  H o4LANI B / ~ -  _ TBD R,,. N R = Bn: Rh2(S-PTPA)4 
~" 1 0 ~ ' . 0 / ~ . . 4  ~ R = Me: Rh2(S-PTA)4 

O,P"- 11~'~ OMe R = ipr: Rh2(S-PTV)4 
O/I/--I~IH O Rh--Rh R = Ph: Rh2(S-PTPG)4 CO2R CO2R I / I / 

1 2a: R = Na (GV104326) 3 / 1  / I  R = tBu: Rh2(S-P'VIL) 4 
2b: R = CH(Me)O2COC6HI 1 
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methoxycarbonyl-tx-diazoacetamides catalyzed by dirhodium(II) tetrakis[N-phthaloyl-(S)-alaninate], 
Rh2(S-PTA)4, which lead to the key azetidin-2-ones for the synthesis of 1-unsubstituted and 11]- 
methylcarbapenem antibiotics. 5 In continuation of our work on the enantioselective synthesis of 

nitrogen-containing heterocycles, 6 we now report a new route to the key intermediate 3 for the 
synthesis of 2, wherein the key steps involve enantioselective intramolecular C-H insertion and 

diastereoselective arene hydrogenation. 

The azetidinone 3 has been well demonstrated to serve as a key synthetic intermediate to 2 and 
their analogues,l,7 since a regiocontrolled formation of olefin or enol phosphate from 3 could be 
followed by an amide-directed stereocontrolled epoxidation and subsequent regiocontrolled 
epoxide ring-opening with nucleophiles to produce the advanced intermediate for the elaboration of 

the target molecule. On the basis of our recent finding that a tetrahydro-l,3-oxazine ring tethered to 
t~-methoxycarbonyl<t-diazoacetamides plays a role not only as a protecting group for amine and 

alcohol groups but also as a rigid template for controlling enantioselectivity during the Rh(II)- 
catalyzed intramolecular C-H insertion, 5 we selected N,O-cyclohexylidene acetal 6 as an ideal 
carbene precursor (Scheme 1). Consequently, enantiocontrol in the C-H insertion as well as 

diastereocontrol in hydrogenation of the benzene ring to create a stereogenic center at C8 (trinems 

numbering) was crucial to the success of our scenario. 
The requisite ~-methoxycarbonyl-o~-diazoacetamide 6 was uneventfully prepared from 

salicylamine (4) 8 by condensation with cyclohexanone followed by N-acylation with methyl 

malonyl chloride and subsequent diazo transfer. We initially explored cyclization of 6 with the aid 

of 5 mol % of Rh2(S-PTA)4 (Table 1, entries 1-3). The reaction in CH2C12 proceeded sluggishly to 
give the 3,4-trans-azetidin-2-one derivative (-)-7, [tX]D 25 -12.3 (c 0.95, CHCI3), in 62% yield. The 
enantioselectivity in this reaction was determined to be 41% ee by IH NMR spectroscopy using 
Eu(hfc)3 as a chiral shift reagent. After screening of solvents, toluene was found to enhance the 
cyclization rate to give (-)-7 in 60% yield and 70% ee. Furthermore, lowering the reaction 

temperature to 0 °C enhanced the enantioselectivity to 84% ee. At this stage, we attempted to 

transform (-)-7 of 84% ee, [(t]D25 -23.4 (c 1.10, CHC13), to the known azetidin-2-one 9, a synthetic 
intermediate of 10-ethyl trinem, 4c in order to determine the preferred absolute configuration at the 

NH2 OH 

4 5 6 

1. LiBI--I4, THF H H . ~  I. CH212, Zn 
HH H i ~  2. H2, RhCI3-Aliquat®-336 OHG H H .~ Me3AI, THF 

MoO2C (CH2CI)2-H20 . 2. H2, Pd-C, EtOH 

O/~ ,--- N ~ O  3. Des s-Martin O/~--- N ~ O  3. aq. Ac OH, 70 °C 
periodinane, CH2C12 4. Me2C(OMe)2 

BFyOEt2, CH2C12 
(-)-7 51% (+)-8 58% 

Scheme 1. 

A A 

l.cyclohexanone " - ^ lu t a l " l  .~N f ' /1~2~ flJ Rh2(S-PTA)4 
toluene, reflux ?eu2~ . . _  ~ p-AcNHC6I-I4SO2N3 MeO2C (5 mol %) 

2. MeO2CCH2COCI O. / , ~ v  DBU, MeCN O/~----N-~<. O toluene, 0 °C 
PhNMe2 I 1 91% ~ , ~  96 h 

V 72% 71% 

H H -  

(-)-9 



9065 

Table 1. Enantioselective Intramolecular C-H Insertion of ct-Diazoacetamide 6 Catalyzed by Chiral Rh(II) Complexes a 

Azetidin-2-one 

Entry Rh(II) catalyst Solvent Temp, °C Time, h Yield, % Ee, %b 

1 Rh2(S-PTA)4 CH2CI 2 25 i 20 (-)-7 62 41 
2 Rh2(S-PTA)4 toluene 25 72 (-)-7 60 70 
3 RhE(S-PTA)4 toluene 0 96 (-)-7 71 84 
4 RhE(S-PTPA)4 toluene 0 96 (-)-7 51 83 
5 Rh2(S-PTV)4 toluene 0 96 (-)-7 56 45 
6 RhE(S-I~PG)4 toluene 0 72 (-)-7 78 l0 
7 Rh2(S-PT~)4 toluene 0 96 (+)-7 66 84 

a Reactions were carried out as follows: 5 mol % of the catalyst was added to a stirred solution of ct-diazo 
amide 6 (1 mmol) in anhydrous solvent (5 mL) under argon, b Determined by tH NMR analysis using 
Eu(hfc)3 as a chiral shift reagent. 

insertion site. Reduction of (-)-7 with LiBH4 was followed by hydrogenation promoted by RhCI3- 

methyltrioctylammonium chloride (Aliquat®-336) 9 and subsequent oxidation with the Dess-Martin 

periodinane to give aldehyde (+)-8, [Ct]D 25 +13.2 (c 1.01, CHC13), in 51% yield. Sequential 

methylenation 10 and hydrogenation followed by protective group interchange afforded (-)-9, 

[O~]D 25 -13.2 (c 1.28, CHC13) [lit., 4c [tX]D 25 +16 (c 0.49, CHCI3) for the known intermediate], in 58% 

yield. Thus, the chemical correlation disclosed that the present insertion reaction occurred 

predominantly at the C-H bond enantiomeric to that we expected from the previous result. 5 

However, it should be noted that the crucial hydrogenation of the benzene ring catalyzed by the 

solvated ion pair [(C8H17)3NCH3]+[RhCI4]" proceeded stereoselectively from the same side as the 

hydroxymethyl group, suggesting the chelation effect of the hydroxy group. 

Thus, we next screened other chiral dirhodium(II) carboxylates, Rh2(S-PTPA)4, Rh2(S-PTV)4, 

Rh2(S-PTPG)4,  and Rh2(S-PTTL)4,  derived from N-phthaloyl-(S)-phenylalanine,  valine, 

phenylglycine, and tert-leucine, respectively (Table 1, entries 4-7). To our great surprise, Rh2(S- 

PTTL)4 proved to be the only catalyst for achieving the desired sense of enantioselection as well as 

the highest enantioselectivity (84% ee), whereas catalysis of 6 with the aid of the other 

dirhodium(II) complexes provided the undesired (3S,4R)-azetidinone (-)-7 as with the case of Rh2(S- 

PTA)4. While the effects of bridging ligands on the sense and magnitude of enantioselection have 

yet to be elucidated, it is worthy of note that a decrease in enantioselectivity was observed on 

increasing the steric bulk of the substituent (methyl = benzyl < isopropyl < phenyl), 11 and that a 

dramatic reversal in enantioselection was observed with the exceptionally bulky tert-butyl group.12 

With a facile access to (+)-7 of 84% ee secured, we proceeded to the elaboration of the target 

intermediate (Scheme 2). Fortunately, it was found that this amorphous material crystallized by a 

laborious trituration. One recrystallization from ipr20-hexane produced the optically pure sample, 

mp 96-97 °C, [tZ]D 25 +27.6 (c 1.53, CHC13), which was transformed to aldehyde (-)-8, [Ct]D 25 -15.0 

(c 1.68, CHC13), under the foregoing conditions. Alkylation of (-)-8 with Me3A116 followed by 

oxidation with the Dess-Martin periodinane and stereocontrolled reduction with K-Selectride ®17 

produced alcohol 10, [~]D 25 +6.53 (c 1.73, CHC13), in 63% yield. Protection of the hydroxy group 

with benzyl chloroformate and subsequent deblocking of the cyclohexylidene group was followed 
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o-N ° :_N©o o.NHo 
J F 11: R = BnO2C 

(+)-7 (-)-8 10 ~" 3: R = TBDMS 

S c h e m e  2. Reagents and conditions: (a) Trituration and recrystallization (ipr20-hexane), 79%; (b) LiBH4, 
THF, 0 °C, 2 h, 82%; (c) H2, cat. RhCI3-(CsHIT)3NMeCI, (CH2CI)2-H20, 25 °C, 38 h, 57%; (d) Dess-Martin 
periodinane, CH2CI2, 0 °C, 4 h, 91%; (e) Me3Al, CH2CI2, 0 °C, 2 h, 83%; (f) Dess-Martin periodionane, 
CH2CI2, 0 °C, 2 h, 96%; (g) K-Selectride ®, THF, 0 °C, 1.5 h, 79%; (h) BnO2CCI, DMAP, Et3N, CH2CI2. 3 h, 
89%; (i) i. aq. AcOH, 70 °C, 6 h; ii. Dess-Martin periodinane, CH2C12, 0 °C, 2 h, 91%; (j) i. H2, cat. Pd-C, 
EtOH, 0 °C, 1.5 h; ii. TBDMSCI, imidazole, DMF, 0 °C, 3 h, 91%. 

by Dess-Martin oxidation to afford ketone 11, [Ct]D 25 -32.2 (c 1.58, CHCI3), in 81% yield, which, 
upon protective group interchange, furnished the known intermediate 3, [(X]D 25 +33.9 (c 1.04, 

CH2C12) [lit., 3d [Ct]D 20 +33.9 (c 0.54, CH2C12)], in 91% yield. 

In conclusion, we have developed a new, efficient and general method for the catalytic 

enantioselective synthesis of trinems. It is also worthy of note that either of the (+) and (-) 

enantiomers could be obtained by choosing Rh2(S-PTTL)4 or Rh2(S-PTA)4 as a chiral catalyst. 
Mechanistic and stereochemical studies on the present C-H insertion reaction are currently in 
progress.18 
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