The Modified Julia Olefination in Vitamin D₂ Synthesis

Paul R. Blakemore,^a Philip J. Kocienski,^{*a} Stanislaw Marzcak,^b Jerzy Wicha^{*b}

^a Chemistry Department, Glasgow University, Glasgow G12 8QQ, UK

Fax +44((141)3306867; E-mail: P.Kocienski@chem.gla.ac.uk

^b Institute of Organic Chemistry, Polish Academy of Sciences, ul Kasprzaka 44/52, 01–224 Warsaw, Poland *Received 3 April 1999*

Abstract: A partial synthesis of vitamin D_2 employing fragments derived from a new improved degradation procedure is described. The 7,8-double bond of the vitamin D triene system was synthesised via the modified Julia olefination. The new procedure is more efficient than the classical Julia olefination.

Key words: vitamin D, alkene synthesis, sulfone, benzothiazole, one-pot Julia olefination

The synthesis of vitamin D and its metabolites continues to attract intense interest owing to their potential for the treatment of rickets, renal osteodystrophy, osteoporosis, psoriasis, leukemia, breast and prostate cancer, AIDS, and Alzheimer's disease.¹ Construction of the conjugated triene system has been a major stimulus to the development of new connective olefin syntheses. A conspicuous example is the Julia olefination which was first developed as an alternative to the Horner-Wittig reaction to construct the 7,8-double bond in a synthesis of vitamin D_4 (the 22,23-dihydro analogue of vitamin D_2) in 1979.² The classical Julia olefination has since entered the repertoire as one of the standard fragment linkage reactions in complex natural product synthesis despite its length (3/4 steps) and the need for sodium amalgam in the final stage.³ We now report the construction of the 7,8-double bond of vitamin $D_2(1)$ using the recently reported one-pot modified Julia olefination^{4–6} via union of the benzothiazolyl sulfone 2β and the aldehyde 3 (Scheme 1).

Scheme 1

The requisite fragments for our study were prepared by a modification of a procedure of Toh and Okamura⁷ Thus, the known vitamin D_2 triol 4⁸ (Scheme 2) was converted to the mono-TBS ether 5 and the vicinal diol cleaved with

lead tetraacetate. The resultant mixture of carbonyl compounds was reduced with sodium borohydride in the presence of cerium trichloride according to the procedure of Luche⁹ to give A-ring dienol **7** (81%) and the Windaus– Grundmann C19 ketone **6** (83%)¹⁰ together with 13% of the corresponding CD-ring β -hexahydrindanol **8** β . In the original Okamura procedure, the diol cleavage step is followed by reduction of the mixture of carbonyl compounds with sodium bis(2-methoxyethoxy)aluminium hydride (Red-A1[®]) to give **8** β as the only CD-ring component and A-ring dienol **7** contaminated with varying amounts of the alcohol **9**. In our modification, the absence of contamination by **9** and the formation of ketone **6** rather than alcohol **8** β significantly increased the efficiency of the synthesis (vide infra).

Scheme 2

The next step of the synthesis required substitution of the hydroxy function at C4 of the hexahydroindanol by a 2-sulfanylbenzothiazole unit. Attempts to accomplish this task by a Mitsunobu reaction on the axial alcohol 8β gave mainly recovered starting alcohol together with some elimination products. We therefore required a synthesis of the equatorial alcohol 8α for which the ketone was the most convenient starting material. However, attempts to prepare 8α by Bouveault-Blanc reduction of ketone 6 (Scheme 3) were complicated by competing base-cataly-

sed epimerisation of the *trans*-hydrindanone and subsequent reduction of the *cis*-hydrindanone. However, the epimerisation reaction could be suppressed by conducting the reduction in the presence of dried Amberlite IR118 acidic exchange resin to give pure 8α in 81% yield. Mitsunobu reaction of 8α with 2-sulfanylbenzothiazole now occurred in good yield to afford the corresponding β -thioether 10 β . Synthesis of the vitamin D₂ CD-ring sulfone 2β was completed by an extremely sluggish Mo(VI)-cataly-sed oxidation.

Scheme 3

In order to quantify the extent of the epimerisation problem and its suppression by the ion exchange resin, we conducted a similar reduction on Grundmann's ketone **11** (the CD fragment of vitamin D_3) and the product distribution of the alcohols ascertained by gas chromatography and of the ketones by ¹³C NMR spectroscopy (using the C18 methyl resonance) before complete consumption of ketone **11**. The results are summarised in Scheme 4.

Dess-Martin oxidation of the pure A-ring dienol 7 (Scheme 5) led to the rapid formation of the dienal 3 which exists in equilibrium with its cyclic tautomer 15. Shortly after isolation, the ratio of 3 to 15 was approximately 8:2 according to ¹H NMR spectroscopy of the mixture and at equilibrium the final ratio is 7:3. Complete separation of these ring-chain tautomers is impossible owing to rapid interconversion and pointless since the pyran acts as a latent aldehyde equivalent in the Julia olefination.

Scheme 5

The synthesis of vitamin D_2 was completed (Scheme 6) by metallation of the sulfone 2β (1 equiv.) with NaHMDS (1.2 equiv.) at $-78 \,^{\circ}\text{C}$ followed by addition of the equilibrium mixture of aldehyde 3 and its ring tautomer 15 (4:1, 2.8 equiv.) at -100 °C. On gradual warming, the modified Julia olefination went to completion to give a mixture of vitamin D_2 TBS ether and its 7Z isomer (7E:7Z = 72:28, ca 70%) along with 16% recovered aldehyde and 18% of the sulfone 2α . The chromatographically purified mixture of isomeric vitamin D₂ TBS ethers was deprotected with TBAF in quantitative yield and the isomers separated by careful chromatograpy to give crystalline vitamin D_2 (1) and its rather unstable 7Z isomer 16. A separate experiment established the configurational instability of the β sulfone 2β : treatment of 2β with NaHMDS (6 equiv.) in Et₂O at -78 °C for 1.5 h followed by quenching at low temperature with MeOH gave epimeric sulfones 2α and **2** β in 92% yield with **2** α predominating (α : β = 85:15). Attempts to improve the efficiency of the coupling by inverting the role of the two fragments were abandoned when a related study directed towards the synthesis of vitamin D₃ (Scheme 7) failed to yield any triene product.

In conclusion, the modified Julia olefination presented here is more convenient and higher yielding than the classical reaction for the linkage of A-ring and CD-ring vitamin D fragments first applied to vitamin D_4 . Furthermore, a repetition of the synthesis of vitamin D_4 with the benefit of modern separation and analytical techniques¹¹ has revealed that the modified Julia olefination also offers slightly better stereoselectivity. In any case, stereoselectivity is less important than linkage efficiency since (7*Z*)vitamin D trienes can be photoisomerised into the natural (7*E*) isomers.¹² Finally, our synthesis of vitamin D_2 has uncovered for the first time some stereochemical limitations to the modified Julia olefination which were not ap-

Scheme 6

parent from earlier successful syntheses of dienes¹³ and trienes.¹⁴

All reactions requiring anhydrous conditions were conducted in flame-dried apparatus under a static atmosphere of N₂. THF and Et₂O were freshly distilled from sodium benzophenone ketyl prior to use. CH₂Cl₂ was freshly distilled from CaH₂. Preparative chromatographic separations were performed on Macherey-Nagel silica gel 60 (230–400 mesh) and reactions were followed by TLC analysis using Macherey-Nagel silica gel 60 plates with fluorescent indicator (254 nm) and visualised with UV or phosphomolybdic acid. All commercially available reagents were purchased from Aldrich and were used as supplied.

Mps were recorded using open capillary tubes on a Griffin melting point apparatus and are uncorrected. Specific optical rotations ($[\alpha]_D$) were measured at ambient temperature (24±3 °C) from CHCl₃ solutions using a 5 mL cell with 1 dm path length. IR spectra were recorded on a Nicolet Impact 410 FT-IR spectrometer using a thin film supported between NaCl plates or KBr discs where stated. Details are reported as v_{max} in cm⁻¹, followed by an intensity descriptor: s = strong, m = medium, w = weak or br = broad. ¹H and ¹³C NMR spectra were recorded in Fourier transform mode at the field strength specified or on a Bruker AM360. All spectra were obtained in CDCl₃ solution in 5 mm diameter tubes, and the chemical shift in ppm is quoted relative to the residual signals of CHCl₃ ($\delta_{\rm H}$ = 7.27 or $\delta_{\rm C}$ = 77.2). Multiplicities in the ¹H NMR spectra are described as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and br = broad. Coupling constants (*J*) are reported in Hz. Numbers in parentheses following the chemical shift in the ¹³C NMR spectra refer to the number of attached hydrogens as revealed by DEPT experiments employing secondary pulses at 90° and 135°. Low (LRMS) and high (HRMS) resolution mass spectra were run on a Jeol JMS700 spectrometer. Ion mass/charge (*m*/*z*) ratios are reported as values in atomic mass units followed, in parentheses, by the peak intensity relative to the base peak (100%).

(3β,5Z,7*R*,8α,22*E*)-3-(*tert*-Butyldimethylsilyloxy)-9,10-secoergosta-5,10(19),22-triene-7,8-diol (5)

To a stirred suspension of triol **4** (5.0 g, 11.6 mmol),^{7,8} imidazole (2.4 g, 35.3 mmol) and 4-(dimethylamino)pyridine (20 mg, 0.16 mmol) in anhyd CH₂Cl₂ (50 mL) at r.t. under N₂ was added dropwise over 30 min *tert*-butylchlorodimethylsilane (1.83 g, 12.2 mmol) in anhyd CH₂Cl₂ (50 mL) and the resultant mixture stirred overnight. After this time the organic phase was washed successively with H₂O (2 × 50 mL), brine (50 mL) and then dried (MgSO₄) and concentrated in vacuo. The crude residue was then further purified via column chromatography (eluting with 20% Et₂O in hexanes) to yield the monosilylated product **5** (5.60 g, 10.3 mmol, 89%) as a white powder: mp 128–129 °C (hexanes); $[a]_D = +76.6$ (c = 0.50, CHCl₃).

IR (KBr): v = 3421 (br), 2956 (s), 2860 (s), 1461 (m), 1371 (m), 1254 (m), 1096 (s), 1005 (m), 870 (m), 837 (m), 775 (m) cm⁻¹.

¹H NMR (360 MHz, CDCl₃): δ = 5.52 (1H, dm, *J* = 9.8 Hz), 5.21 (1H, dd, *J* = 15.2, 7.1 Hz), 5.14 (1H, dd, *J* = 15.2, 7.4 Hz), 4.98 (1H, br s), 4.92 (1H, d, *J* = 9.8 Hz), 4.88 (1H, br s), 3.72 (1H, tt, *J* = 9.7, 4.2 Hz), 2.48–2.37 (2H, m), 2.19 (1H, ddd, *J* = 11.9, 10.0, 1.7 Hz), 2.05–1.90 (3H, m), 1.89–1.40 (10H, m), 1.30–1.08 (5H, m), 0.98 (3H, d, *J* = 6.6 Hz), 0.91 (3H, d, *J* = 6.8 Hz), 0.88 (9H, s), 0.86–0.80 (9H, m), 0.07 (3H, s), 0.06 (3H, s).

¹³C NMR (90 MHz, CDCl₃): δ = 145.9 (0), 141.8 (0), 135.6 (1), 132.2 (1), 124.8 (1), 111.1 (2), 75.0 (0), 71.4 (1), 70.9 (1), 59.8 (1), 57.5 (1), 47.2 (2), 44.2 (0), 43.0 (1), 40.2 (1), 40.2 (2), 37.6 (2), 36.8 (2), 33.5 (2), 33.3 (1), 27.9 (2), 26.0 (3C, 3), 22.0 (2), 20.8 (3), 20.6 (2), 20.2 (3), 19.8 (3), 18.3 (0), 17.9 (3), 13.2 (3), -4.4 (3), -4.5 (3) ppm.

LRMS (CI mode, NH₃): *m*/*z* = 562 (15%), 527 (30), 509 (72), 377 (13), 294 (100), 267 (57), 249 (51).

Anal. Calcd. for $C_{34}H_{60}O_3Si$ (M = 544): C, 74.94; H, 11.10. Found C, 74.99; H, 10.9.

Oxidative Cleavage of Diol 5

To a stirred solution of the diol 5 (3.0 g, 5.5 mmol) and pyridine (1.34 mL, 1.31 g, 16.6 mmol) in anhyd CH₂Cl₂ (25 mL) at 0 °C under N₂ was added portionwise Pb(OAc)₄ (2.93 g, 6.6 mmol) and the resultant suspension stirred vigorously for 10 min. The mixture was then filtered through a Celite pad and the residue washed well (3×5) mL CH₂Cl₂). The filtrate and combined washings were then concentrated in vacuo and subsequently dissolved in a solution of cerium(III) chloride heptahydrate (4.11 g, 11.0 mmol) in MeOH (30 mL). The mixture was then cooled to 0 °C, treated with NaBH₄ (0.26 g, 6.8 mmol) and stirred for 15 min. H₂O (30 mL) and Et₂O (30 mL) were then added and the layers shaken well and then separated. The aqueous phase was then further extracted $(3 \times 10 \text{ mL})$ Et₂O) and the combined organic extracts washed with brine (15 mL), dried (MgSO₄) and then concentrated in vacuo. The crude residue was then further purified via column chromatography (eluting with 10-15% Et₂O in hexanes) to yield in order of elution: the Windaus-Grundmann C19 ketone (6, 1.26 g, 4.6 mmol, 83%),¹⁵ the corresponding over-reduced β -alcohol product 8 β (0.20 g, 0.72

mmol, 13%)¹⁶ and the A-ring dienol **7** (1.20 g, 4.5 mmol, 81%)⁷ all as clear oils.

$[1R-[1\alpha,(1R^*,2E,4R^*),3a\beta,7a\alpha]]$ -Octahydro-7a-methyl-1-(1,4,5-trimethylhex-2-enyl)-1*H*-inden-4-one (6)

 $[\alpha]_{\rm D} = -19.1 \ (c = 1.00, \text{ CHCl}_3).$

IR (film): v = 2958 (s), 1716 (s), 1460 (m), 1372 (m), 972 (m) cm⁻¹.

¹H NMR (360 MHz, CDCl₃): δ = 5.25 (1H, dd, *J* = 15.3, 7.2 Hz), 5.17 (1H, dd, *J* = 15.3, 7.9 Hz), 2.46 (1H, ddm, *J* = 11.0, 7.7 Hz), 2.33–2.17 (2H, m), 2.11–1.42 (12H, m), 1.35–1.30 (1H, m), 1.05 (3H, d, *J* = 6.7 Hz), 0.92 (3H, d, *J* = 6.8 Hz), 0.85 (3H, d, *J* = 6.6 Hz), 0.83 (3H, d, *J* = 6.7 Hz), 0.66 (3H, s).

¹³C NMR (90 MHz, CDCl₃): δ = 212.3 (0), 135.1 (1), 132.7 (1), 62.3 (1), 56.8 (1), 50.0 (0), 43.0 (1), 41.2 (2), 40.1 (1), 39.1 (2), 33.2 (1), 27.9 (2), 24.3 (2), 21.2 (3), 20.1 (3), 19.8 (3), 19.3 (2), 17.8 (3), 12.9 (3) ppm.

LRMS (EI+mode): *m*/*z* = 276 (100%), 261 (6), 233 (32), 215 (41), 192 (13), 178 (34), 151 (55), 133 (49), 109 (44).

(*S*,*Z*)-[5-(*tert*-Butyldimethylsilyloxy)-2-methylenecyclohexylidene]ethanol (7)

 $[\alpha]_{\rm D} = +44.0 \ (c = 0.43, \text{CHCl}_3).$

IR (film): v = 3340 (m, br), 2986 (s), 1254 (m), 1094 (s), 1006 (m), 836 (m), 774 (m) cm⁻¹.

¹H NMR (360 MHz, CDCl₃): δ = 5.45 (1H, tm, *J* = 7.0 Hz), 4.97 (1H, br s), 4.63 (1H, br s), 4.27 (1H, dd, *J* = 12.5, 7.3 Hz), 4.19 (1H, ddd, *J* = 12.4, 6.2, 1.8 Hz), 3.85 (1H, tt, *J* = 8.6, 4.0 Hz), 2.45–2.35 (2H, m), 2.25–2.17 (1H, m), 2.13–2.03 (1H, m), 1.92–1.84 (1H, m), 1.65–1.54 (1H, m), 0.89 (9H, s), 0.07 (3H, s), 0.06 (3H, s).

¹³C NMR (90 MHz, CDCl₃): δ = 145.1 (0), 140.7 (0), 125.1 (1), 112.1 (2), 70.3 (1), 60.0 (2), 46.2 (2), 36.2 (2), 32.5 (2), 26.0 (3), 18.3 (0), -4.5 (3), -4.5 (3).

LRMS (CI mode, NH₃): *m*/*z* = 286 (100%), 268 (37), 251 (16), 119 (16).

[1*R*-[1α,(1*R**,2*E*,4*R**),3aβ,4β,7aα]]-Octahydro-7a-methyl-1-(1,4,5-trimethylhex-2-enyl)-1*H*-inden-4-ol (8α)

To a stirred suspension of the Windaus-Grundmann C19 ketone **6** (1.0 g, 3.62 mmol), dried Amberlite[®] IR118 acidic ion-exchange resin (5.8 g, commercially supplied grade (Aldrich) dried at 0.1 mmHg, 50 °C, 5 h) and anhyd EtOH (9 mL) in Et₂O (36 mL) at 0 °C under N₂ was added portionwise sodium metal (1.38 g, 60 mmol, ca 20 portions) over 2.5 h. After this time H₂O (15 mL) was added and the biphasic mixture filtered to remove the resin beads. The resin beads were then washed well (3 × 10 mL Et₂O) into the filtrate and the layers separated. The aqueous phase was then extracted (2 × 10 mL Et₂O) and the combined organic extracts washed with brine (30 mL), dried (MgSO₄) and concentrated in vacuo. The residue was further purified via column chromatography (eluting with 25% Et₂O in hexanes) to yield the vitamin D₂ CD-ring α-alcohol **8a** (812 mg, 2.92 mmol, 81%) as a crystalline solid: mp 81–83 °C (hexanes); $[\alpha]_D = -24.4$ (c = 0.95, CHCl₃).

IR (KBr): v = 3325 (br s), 2958 (s), 1459 (s), 1368 (m), 1093 (m), 1068 (m), 1031 (m), 1007 (m), 970 (s) cm⁻¹.

¹H NMR (360 MHz, CDCl₃): $\delta = 5.22$ (1H, dd, J = 15.2, 7.1 Hz), 5.16 (1H, dd, J = 15.3, 7.6 Hz), 3.58 (1H, ddd, J = 10.4, 10.4, 4.3 Hz), 2.07–1.94 (2H, m), 1.90–1.05 (14H, m), 1.01 (3H, d, J = 6.6 Hz), 0.92 (3H, d, J = 6.8 Hz), 0.84 (3H, d, J = 6.7 Hz), 0.82 (3H, d, J = 6.7 Hz), 0.69 (3H, s).

¹³C NMR (90 MHz, CDCl₃): δ = 135.8 (1), 132.1 (1), 71.3 (1), 57.5 (1), 56.6 (1), 44.8 (0), 43.0 (1), 40.0 (1), 39.3 (2), 36.1 (2), 33.3 (1), 28.4 (2), 23.6 (2), 22.0 (2), 21.1 (3), 20.1 (3), 19.8 (3), 17.8 (3), 12.4 (3).

Anal. Calcd. for $C_{19}H_{34}O$ (M = 278): C, 81.95; H, 12.31. Found C, 81.82; H, 12.22.

$\label{eq:constraint} \begin{array}{l} [1R-[1\alpha,(1R^*,2E,4R^*),3a\beta,4\alpha,7a\alpha]]-4-[(Benzothiazol-2-yl)sulfanyl]octahydro-7a-methyl-1-(1,4,5-trimethylhex-2-enyl)-1H-indene (10\beta) \end{array}$

To a stirred solution of the α -alcohol **8** α (512 mg, 1.84 mmol), 2sulfanylbenzothiazole (Aldrich, 460 mg, 2.75 mmol) and PPh₃ (814 mg, 3.0 mmol) in anhyd THF (10 mL) under N₂ at 0 °C was added dropwise diisopropyl azodicarboxylate (555 mg, 2.75 mmol) in anhyd THF (3 mL). After 1 h the reaction was allowed to warm to r.t. and stirred for a further 24 h. The solvent was then removed in vacuo and the crude residue further purified via column chromatography (eluting with 10% Et₂O in hexanes) to yield **10** β (562 mg, 1.32 mmol, 72%) as a colourless solid: mp 68–70 °C (hexanes); $[\alpha]_{\rm D}$ = +36.1 (c = 0.40, CHCl₃).

IR (film): v = 2954 (s), 1456 (s), 1428 (m), 992 (s), 754 (s) cm⁻¹.

¹H NMR (360 MHz, CDCl₃): δ = 7.85 (1H, dm, *J* = 8.1 Hz), 7.74 (1H, dm, *J* = 7.9 Hz), 7.34 (1H, ddd, *J* = 8.5, 7.3, 1.3 Hz), 7.30–7.25 (1H, m), 5.24 (1H, dd, *J* = 15.3, 7.2 Hz), 5.16 (1H, dd, *J* = 15.3, 8.0 Hz), 4.56 (1H, br s), 2.20 (1H, dm, *J* = 10.5 Hz), 2.05–1.95 (2H, m), 1.93–1.12 (12H, m), 1.02 (3H, d, *J* = 6.6 Hz), 0.93 (3H, d, *J* = 6.9 Hz), 0.91 (3H, s), 0.85 (3H, d, *J* = 6.7 Hz), 0.84 (3H, d, *J* = 6.8 Hz).

¹³C NMR (90 MHz, CDCl₃): δ = 168.7 (0), 153.4 (0), 135.6 (1), 135.2 (0), 132.3 (1), 126.1 (1), 124.2 (1), 121.5 (1), 121.0 (1), 56.5 (1), 52.5 (1), 48.5 (1), 43.0 (1), 42.8 (0), 40.2 (2), 40.2 (1), 33.5 (2), 33.3 (1), 27.8 (2), 24.5 (2), 21.0 (3), 20.1 (3), 19.8 (3), 18.7 (2), 17.8 (3), 13.8 (3).

LRMS (EI+mode): *m*/*z* = 427 (45%), 394 (66), 384 (25), 260 (11), 168 (58), 125 (40).

Anal. Calcd. for $C_{26}H_{37}NS_2$ (M = 427): C, 73.01; H, 8.72; N, 3.27. Found C, 72.97; H, 8.73; N, 3.26.

$\label{eq:constraint} \begin{array}{l} [1R-[1\alpha,(1R^*,2E,4R^*),3a\beta,4\alpha,7a\alpha]]-4-[(Benzothiazol-2-yl)sulfonyl]octahydro-7a-methyl-1-(1,4,5-trimethylhex-2-enyl)-1H-indene (2\beta) \end{array}$

A stirred solution of the thioether 10β (523 mg, 1.22 mmol) in EtOH (15 mL) at 0 °C was treated with ammonium heptamolybdate tetrahydrate (150 mg, 0.12 mmol) in 30% H₂O₂ (680 mg, 6.0 mmol) and the resultant suspension allowed to warm to r.t. over 1 h. After subsequent stirring at rt for 2 d, TLC analysis indicated the complete consumption of the sulfide and showed the formation of two diastereomeric sulfoxides. Further Mo catalyst (150 mg, 0.12 mmol) in 30% H₂O₂ (680 mg, 6.0 mmol) was added and the mixture stirred at r.t. for a further 6 d. Due to sluggishness of the oxidation of the sulfoxides to the sulfone, a further two portions of Mo/H₂O₂ (as before) were added over the next 2 d during which time the reaction was continously sonicated. After this protracted reaction time the mixture was diluted with Et₂O (50 mL) and H₂O (30 mL) and the layers shaken and then separated. The aqueous layer was then extracted (4×15 mL Et₂O) and the combined organic extracts washed with brine (20 mL), dried (MgSO₄) and then concentrated in vacuo. The residue was then further purified via column chromatography (eluting with 5% Et₂O in hexanes) to yield the sulfone 2β (410 mg, 0.89 mmol, 73%) as fine white needles: mp 135–137 °C (EtOH); $[\alpha]_{\rm D} = -10.4$ (c = 0.52, CHCl₃).

IR (KBr): v = 2953 (s), 1470 (m), 1321 (s), 1302 (s), 1151 (m), 1128 (s), 762 (s), 730 (m), 671 (m), 601 (m), 527 (m) cm⁻¹.

¹H NMR (360 MHz, CDCl₃): δ = 8.20 (1H, dm, *J* = 8.1 Hz), 8.01 (1H, dm, *J* = 7.8 Hz), 7.63 (1H, tm, *J* = 7.2 Hz), 7.58 (1H, tm, *J* = 7.2 Hz), 5.26 (1H, dd, *J* = 15.3, 7.4 Hz), 5.16 (1H, dd, *J* = 15.3, 8.3 Hz), 4.26 (1H, br t, *J* = 5.4 Hz), 2.34 (1H, qd, *J* = 12.7, 6.0 Hz),

2.24–2.00 (4H, m), 1.96–1.62 (4H, m), 1.60–1.43 (4H, m), 1.38–1.26 (1H, m), 1.20–1.14 (1H, m), 1.14 (3H, s), 1.04 (3H, d, J = 6.6 Hz), 0.93 (3H, d, J = 6.8 Hz), 0.85 (3H, d, J = 6.5 Hz), 0.83 (3H, d, J = 6.6 Hz).

¹³C NMR (90 MHz, CDCl₃): δ = 168.5 (0), 152.9 (0), 137.0 (0), 135.3 (1), 132.5 (1), 127.9 (1), 127.7 (1), 125.5 (1), 122.5 (1), 61.2 (1), 56.1 (1), 52.1 (1), 43.0 (1), 41.3 (0), 40.5 (1), 40.2 (2), 33.2 (1), 27.5 (2), 27.1 (2), 23.9 (2), 21.1 (3), 20.2 (3), 19.8 (3), 18.5 (2), 17.8 (3), 13.1 (3).

LRMS (EI+mode): *m*/*z* = 459 (3%), 416 (11), 395 (35), 352 (30), 334 (30), 261 (57), 200 (58), 136 (100).

HRMS (EI+mode): Found M⁺⁺, 459.2269. $C_{26}H_{37}NO_2S_2$ requires 459.2266.

Anal. Calcd. for $C_{26}H_{37}NO_2S_2$ (M = 459): C, 67.93; H, 8.11; N, 3.05. Found C, 67.98; H, 8.12; N, 3.05.

(*S*,*Z*)-[5-(*tert*-Butyldimethylsilyloxy)-2-methylenecyclohexylidene]acetaldehyde (3)

To a stirred solution of the A-ring dienol **7** (175 mg, 0.65 mmol) in anhyd CH₂Cl₂ (2 mL) at r.t. under N₂ was added Dess-Martin periodinane¹⁷ (305 mg, 0.72 mmol). The resultant mixture was then stirred for 30 min and subsequently diluted with Et₂O (10 mL), poured into sat. Na₂S₂O₃–NaHCO₃ (15 mL) and stirred vigorously for a further 10 min. The layers were then separated and the aqueous phase extracted (2 × 5 mL Et₂O). The combined organic extracts were then washed with sat. NaHCO₃ (10 mL), dried (MgSO₄) and concentrated in vacuo. The residue was then filtered through a short (4 cm) silica pad (eluting with 7% Et₂O in hexanes) to yield a pure mixture of the aldehyde **3**¹⁸ and its tautomeric pyran **15** (154 mg, **3**:**15** = 4:1, 0.58 mmol, 89%) as a clear oil. A dynamic equilibrium exists between the two isomers: CHCl₃ solutions of the separated components both exhibit **3**:**15** = 7:3 after 36 h at r.t.

(S,Z)-[5-(*tert*-Butyldimethylsilyloxy)-2-methylenecyclohexy-lidene]acetaldehyde (3)

¹H NMR (360 MHz, CDCl₃): δ = 9.81 (1H, d, *J* = 8.0 Hz), 5.89 (1H, dm, *J* = 8.0 Hz), 5.21 (1H, m), 5.00 (1H, m), 4.06 (1H, tt, *J* = 6.8, 3.4 Hz), 2.60–2.54 (2H, m), 2.42 (1H, dd, *J* = 13.3, 6.9 Hz), 2.25 (1H, ddd, *J* = 12.4, 7.7, 4.6 Hz), 1.95–1.86 (1H, m), 1.80–1.70 (1H, m), 0.87 (9H, s), 0.07 (6H, s).

¹³C NMR (90 MHz, CDCl₃): δ = 192.8 (0), 163.2 (0), 144.0 (0), 128.5 (1), 116.8 (2), 69.5 (1), 46.3 (2), 35.4 (2), 31.5 (2), 25.9 (3C, 3), 18.2 (0), -4.5 (3), -4.6 (3).

(S)-3,4-Dehydro-6-(*tert*-butyldimethylsilyloxy)-5,6,7,8-tetrahydroisochroman (15)

¹H NMR (360 MHz, CDCl₃): (selected) $\delta = 6.36$ (1H, d, J = 5.5 Hz), 5.02 (1H, d, J = 5.7 Hz), 4.43 (2H, m), 3.91 (1H, dddd, J = 11.2, 8.1, 5.1, 3.4 Hz) +other signals.

¹³C NMR (MHz, CDCl₃): δ = 143.2 (1), 123.0 (0), 119.4 (0), 105.9 (1), 68.3 (2), 68.1 (1), 36.8 (2), 31.6 (2), 26.1 (3C, 3), 25.3 (2), 18.4 (0), -4.5 (3), -4.6 (3).

Vitamin $D_2(1)$

To a stirred solution of the β -sulfone **2** β (50 mg, 0.11 mmol) in anhyd Et₂O (4 ml) at -78 °C under N₂ was added dropwise a solution of sodium hexamethyldisilazide (65 µl, 2.0 M in THF, 0.13 mmol) and the resultant yellow solution stirred for 1 h. After this time the mixture was cooled to -100 °C and a solution of the freshly prepared aldehyde–pyran mixture (**3:15** ~ 4:1, 80 mg, 0.31 mmol) in anhyd Et₂O (2 mL) added dropwise. The reaction was then allowed to warm steadily to r.t. over the next 1.5 h and then stirred overnight. After this time the mixture was diluted with Et₂O (10 mL) and H₂O (10 mL) and the layers shaken and then separated. The aqueous phase was then extracted (2 × 5 mL Et₂O) and the combined organic extracts washed with brine (10 mL), dried (MgSO₄) and then con-

centrated in vacuo to yield 111 mg of a crude oil. The residue was then further purified via column chromatography (eluting with 1-10% Et₂O in hexanes) to yield 57 mg of non-polar material (containing vitamin D₂ TBS ethers and pyran 15), recovered aldehyde 3 (13 mg, 0.05 mmol, 16%) and epimeric α -sulfone 2α (9 mg, 0.02 mmol, 18%). A solution of the non-polar material in anhyd THF (2 mL) at r.t. under N2 was then treated with tetrabutylammonium fluoride trihydrate (135 mg, 0.43 mmol) and stirred overnight. After this time the mixture was diluted with Et₂O (10 mL) and H₂O (10 mL) and the layers shaken and then separated. The aqueous phase was then extracted ($2 \times 5 \text{ mL Et}_2\text{O}$) and the combined organic extracts washed with brine (5 mL), dried (MgSO₄) and then concentrated in vacuo. The residue was then further purified via column chromatography (eluting with 20% Et₂O in hexanes) to yield a pure mixture of natural vitamin $D_2(1)$ and (7Z)-vitamin $D_2(16)$ as a clear oil (30 mg, 0.076 mmol, 70% (2 steps), 1:16 = 72:28). The vitamin D_2 isomers can be separated by careful chromatography (eluting with 10-15% Et₂O in hexanes); the previously unreported unnatural isomer 27 shows only limited stability in CDCl₃.

$\label{eq:alpha} \begin{array}{l} [1R-[1\alpha,(1R^*,2E,4R^*),3a\beta,4\beta,7a\alpha]]-4-(Benzothiazol-2-yl)thiooctahydro-7a-methyl-1-(1,4,5-trimethylhex-2-enyl)-1H-indene \\ (2\alpha) \end{array}$

¹H NMR (360 MHz, CDCl₃): $\delta = 8.24$ (1H, dm, J = 7.7 Hz), 8.02 (1H, dm, J = 7.1 Hz), 7.65 (1H, td, J = 7.2, 1.4 Hz), 7.60 (1H, td, J = 1.3 Hz), 5.21 (1H, dd, J = 15.2, 7.1 Hz), 5.14 (1H, dd, J = 15.2, 7.7 Hz), 3.67 (1H, td, J = 11.7, 3.4 Hz), 2.07–1.89 (3H, m), 1.84 (1H, sextet, J = 6.7 Hz), 1.76–1.65 (3H, m), 1.62–1.52 (3H, m), 1.50–1.13 (5H, m), 1.01 (3H, d, J = 6.6 Hz), 0.90 (3H, d, J = 6.8 Hz), 0.83 (3H, d, J = 6.5 Hz), 0.81 (3H, d, J = 6.5 Hz), 0.75 (3H, s).

Vitamin $D_2(1)$

Mp 109–110 °C (MeOH–H₂O). (lit. ¹⁹ 118 °C). NMR data is in complete agreement with that previously reported.^{20,21}

(7Z)-Vitamin D₂ (16)

The stereochemistry of **16** was assigned by analogy with other reported (7*Z*)-vitamin D congeners.^{12,22}

¹H NMR (360 MHz, CDCl₃): $\delta = 6.36$ (1H, d, J = 11.6 Hz), 6.23 (1H, d, J = 11.6 Hz), 5.28–5.15 (2H, m), 5.09 (1H, m), 4.85 (1H, m), 3.82 (1H, tt, J = 9.1, 4.1 Hz), 2.52 (1H, dd, J = 12.3, 3.2 Hz), 2.38 (1H, dt, J = 13.9, 5.0 Hz), 2.30–1.20 (20H, m), 1.03 (3H, d, J = 6.6 Hz), 0.93 (3H, d, J = 6.5 Hz), 0.85 (3H, d, J = 6.4 Hz), 0.83 (3H, d, J = 6.1 Hz), 0.66 (3H, s).

¹³C NMR (90 MHz, CDCl₃): δ = 144.4 (0), 141.7 (0), 136.0 (0), 135.8 (1), 132.2 (1), 123.5 (1), 121.8 (1), 113.3 (2), 70.2 (1), 56.3 (1), 55.1 (1), 46.7 (0), 46.6 (2), 43.0 (1), 40.8 (2), 40.5 (1), 39.1 (2), 35.9 (2), 33.3 (1), 32.7 (2), 28.5 (2), 26.5 (2), 24.3 (2), 21.6 (3), 20.2 (3), 19.8 (3), 17.8 (3), 13.1 (3).

Scheme 8 depicts the synthesis of sulfone 17.

Scheme 8

(Z,S)-2-[2-[5-(*tert*-Butyldimethylsilyloxy)-2-methylenecyclohexylidene]ethylsulfanyl]benzothiazole (19)

To a stirred solution of the A-ring dienol **7** (540 mg, 2.0 mmol), PPh₃ (630 mg, 2.4 mmol) and 2-sulfanylbenzothiazole (550 mg, 3.3 mmol) in anhyd THF (10 mL) at r.t. under N₂ was added dropwise neat diisopropyl azodicarboxylate (0.48 g, 2.4 mmol). The resultant solution was stirred for 12 h and then concentrated in vacuo. The crude residue was further purified via column chromatography (eluting with 5% Et₂O in hexanes) to yield the sulfide **19** (747 mg, 1.79 mmol, 89%) as a clear oil: $[\alpha]_D = +36.9 (c = 1.04, CHCl_3)$.

IR (film): v = 2934 (s), 2855 (s), 1460 (s), 1428 (s), 1252 (m), 1092 (s), 997 (s), 902 (m), 869 (m), 836 (s), 774 (s), 755 (s), 726 (m) cm⁻¹.

¹H NMR (360 MHz, CDCl₃): δ = 7.88 (1H, dm, *J* = 8.2 Hz), 7.76 (1H, dm, *J* = 8.0 Hz), 7.42 (1H, ddd, *J* = 8.4, 7.3, 1.2 Hz), 7.30 (1H, ddd, *J* = 8.1, 7.0, 1.2 Hz), 5.51 (1H, tm, *J* = 7.8 Hz), 5.06 (1H, br s), 4.87 (1H, br s), 4.19 (1H, dd, *J* = 12.8, 7.9 Hz), 4.11 (1H, ddd, *J* = 12.8, 7.6, 1.1 Hz), 3.83 (1H, tt, *J* = 8.2, 3.7 Hz), 2.50–2.38 (2H, m), 2.22 (1H, dd, *J* = 12.9, 8.1 Hz), 2.11 (1H, dddm, *J* = 14.4, 8.4, 4.4 Hz), 1.90–1.82 (1H, m), 1.62 (1H, dddd, *J* = 12.9, 9.8, 8.2, 4.6 Hz), 0.87 (9H, s), 0.04 (6H, s).

¹³C NMR (90 MHz, CDCl₃): δ = 167.1 (0), 153.5 (0), 145.1 (0), 142.9 (0), 135.5 (0), 126.2 (1), 124.3 (1), 121.7 (1), 121.1 (1), 119.0 (1), 112.1 (2), 70.1 (1), 46.3 (2), 36.2 (2), 32.6 (2), 32.5 (2), 26.0 (3C, 3), 18.3 (0), -4.5 (3), -4.5 (3).

LRMS (EI+mode): *m*/*z* = 417 (37%), 370 (25), 285 (17), 252 (17), 224 (26), 193 (17), 149 (18), 119 (100), 91 (52), 73 (64).

HRMS (EI+mode): Found M⁺⁺, 417.1619. $C_{22}H_{31}NOS_2Si$ requires 417.1616.

Oxidation of Thioether 19

A stirred solution of the thioether **19** (200 mg, 0.48 mmol) in EtOH (5 mL) at 0 °C was treated with ammonium heptamolybdate tetrahydrate (150 mg, 0.12 mmol) in 30% H_2O_2 (230 mg, 2.0 mmol). The resulting yellow suspension was allowed to stir for 2 h at 0 °C and then for a further 4 h at r.t. The mixture was then diluted with H_2O (10 mL) and extracted (4 × 10 mL Et₂O). The combined organic extracts were then dried (MgSO₄) and concentrated in vacuo. The residue was then further purified via column chromatography (eluting with 10–25% Et₂O in hexanes) to yield in order of elution: the sulfone **17** (44 mg, 0.10 mmol, 21%), the isomeric sulfone **20** (28 mg, 0.06 mmol, 13%) and its parent sulfoxides **21** (113 mg, 0.26 mmol, 54%, dr = 1:1) all as clear oils.

$(Z,S)\mbox{-}2\mbox{-}[2\mbox{-}[5\mbox{-}(tert\mbox{-}Butyldimethylsilyloxy)\mbox{-}2\mbox{-}methylenecyclohexylidene]ethylsulfanyl]benzothiazole~(17)$

 $[\alpha]_{\rm D} = +9.2 \ (c = 0.48, \text{CHCl}_3).$

IR (film): v = 2930 (s), 2856 (s), 1472 (m), 1332 (s), 1252 (m), 1149 (s), 1091 (s), 868 (m), 837 (m), 763 (m) cm⁻¹.

¹H NMR (360 MHz, CDCl₃): $\delta = 8.23$ (1H, dm, J = 7.6 Hz), 8.02 (1H, dm, J = 7.6 Hz), 7.65 (1H, ddd, J = 7.2, 7.2, 1.4 Hz), 7.60 (1H, ddd, J = 7.3, 7.3, 1.3 Hz), 5.35 (1H, t, J = 7.6 Hz), 4.99 (1H, br s), 4.83 (1H, m), 4.57 (1H, dd, J = 14.2, 8.9 Hz), 4.28 (1H, ddd, J = 13.0, 6.2, 1.2 Hz), 3.55 (1H, tt, J = 8.8, 3.8 Hz), 2.42 (1H, dd, J = 12.9, 3.9 Hz), 2.25 (1H, dt, J = 12.1, 4.4 Hz), 2.23–2.16 (1H, m), 1.77–1.67 (2H, m), 1.55–1.46 (1H, m), 0.84 (9H, s), 0.00 (3H, s), -0.01 (3H, s).

¹³C NMR (90 MHz, CDCl₃): δ = 166.0 (0), 152.9 (0), 149.0 (0), 144.5 (0), 137.0 (0), 128.2 (1), 127.8 (1), 125.6 (1), 122.5 (1), 112.8 (2), 108.9 (1), 70.3 (1), 55.4 (2), 46.8 (2), 36.1 (2), 32.3 (2), 26.0 (3C, 3), 18.3 (0), -4.6 (3), -4.6 (3).

LRMS (CI mode, *iso* butane): m/z = 450 (100%), 136 (26).

HRMS (CI mode): Found (M+H)⁺, 450.1595. $C_{22}H_{32}NO_3S_2Si$ requires 450.1593.

(*S*,*Z*)-4-[(Benzothiazol-2-yl)sulfonyl]methyl-1-[(1,1-dimethylethyl)dimethylsilyl]oxy-3-vinylcyclohex-3-ene (20)

IR (film): v = 2929 (s), 2856 (s), 1472 (s), 1334 (s), 1252 (s), 1152 (s), 1097 (s), 1006 (m), 882 (m), 837 (s), 763 (s), 729 (m) cm⁻¹.

¹H NMR (360 MHz, CDCl₃): $\delta = 8.23$ (1H, dm, J = 7.9 Hz), 7.99 (1H, dm, J = 8.4 Hz), 7.64 (1H, ddd, J = 8.2, 7.2, 1.4 Hz), 7.59 (1H, ddd, J = 8.1, 7.2, 1.3 Hz), 6.50 (1H, dd, J = 17.1, 10.9 Hz), 5.01 (1H, d, J = 16.4 Hz), 4.79 (1H, d, J = 11.1 Hz), 4.42 (1H, d, J = 14.2 Hz), 4.33 (1H, d, J = 14.0 Hz), 3.97–3.90 (1H, m), 2.59–2.34 (3H, m), 2.07 (1H, ddm, J = 17.2, 7.0 Hz), 1.84–1.75 (1H, m), 1.68–1.58 (1H, m), 0.89 (9H, s), 0.07 (3H, s), 0.06 (3H, s).

¹³C NMR (90 MHz, CDCl₃): $\delta = 165.4$ (0), 153.0 (0), 137.7 (0), 136.7 (0), 133.1 (1), 128.1 (1), 127.8 (1), 125.6 (1), 122.3 (1), 121.9 (0), 114.8 (2), 67.1 (1), 58.8 (2), 35.3 (2), 31.5 (2), 30.1 (2), 26.0 (3C, 3), 18.3 (0), -4.4 (3), -4.5 (3).

LRMS (CI mode, isobutane): m/z = 450 (100%), 136 (16).

(*S*,*Z*)-4-[(Benzothiazol-2-yl)sulfinyl]methyl-1-[(1,1-dimethylethyl)dimethylsilyl]oxy-3-vinylcyclohex-3-ene (21)

IR (film): v = 2928 (s), 2856 (s), 1472 (m), 1252 (s), 1007 (s), 1004 (m), 881 (m), 836 (s), 774 (m), 760 (m) cm⁻¹.

¹H NMR (360 MHz, CDCl₃, isomeric mixture - ^{*} denotes a resolved signal arising from a single isomer): $\delta = 8.06$ (1H, dm, J = 8.2 Hz), 7.99 (1H, dm, J = 8.1 Hz), 7.56 (1H, ddd, J = 8.4, 7.3, 1.3 Hz), 7.51–7.45 (1H, m), 6.65 (1H, dd, J = 17.1, 11.0 Hz), 5.15 (1H, d, J = 17.1 Hz), 4.96 (1H, d, J = 11.0 Hz), 4.17 (1H^{*}, d, J = 13.1 Hz), 4.09 (1H^{*}, d, J = 13.0 Hz), 4.03 (1H^{*}, d, J = 13.1 Hz), 3.96 (1H^{*}, d, J = 12.8 Hz), 3.99–3.90 (1H, m), 2.52–2.20 (3H, m), 2.19–2.08 (1H, m), 1.85–1.74 (1H, m), 1.68–1.56 (1H, m), 0.89 (9H^{*}, s), 0.88 (9H^{*}, s), 0.07 (3H, s), 0.07 (3H, s).

¹³C NMR (90 MHz, CDCl₃, isomeric mixture - † denotes signals common to both isomers): $\delta = 177.6$ † (0), 153.9† (0), 136.1 (0), 136.0 (0), 135.4 (0), 135.4 (0), 133.4 (1), 133.3 (1), 127.0† (1), 126.3† (1), 124.5 (0), 124.3 (0), 124.1 (1), 124.0 (1), 122.4 (1), 122.4 (1), 114.4 (2), 114.3 (2), 67.4 (1), 67.2 (1), 61.9 (2), 61.8 (2), 35.1† (2), 31.6 (2), 31.4 (2), 31.0 (2), 30.6 (2), 26.0† (3C, 3), 18.3† (0), -4.5† (3).

LRMS (CI mode, *iso*butane): *m*/*z* = 434 (100%), 251 (20), 184 (20), 119 (39).

Acknowledgement

We thank the EPSRC; the Committee of Scientific Research, Republic of Poland (grant No. 3T09A 007 10, travel grant No. WAR/992/067); the British Council and Rhône-Poulenc Rorer for a CASE studentship (PRB).

References

- (1) Okamura, W. H.; Zhu, G. Chem. Rev. 1995, 95, 1877.
- (2) Kocienski, P. J.; Lythgoe, B.; Ruston, S. J. Chem. Soc., Perkin Trans. I 1979, 1290.
- (3) Kocienski, P. J. Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 6, p 975– 1010.
- (4) Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O. *Tetrahedron Lett.* 1991, 32, 1175.
- (5) Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O. Bull. Soc. Chim. Fr. 1993, 130, 336.
- (6) Baudin, J. B.; Hareau, G.; Julia, S. A.; Lorne, R.; Ruel, O. Bull. Soc. Chim. Fr. 1993, 130, 856.
- (7) Toh, H. T.; Okamura, W. H. J. Org. Chem. 1983, 48, 1414.
- (8) Wang, Y.; Ting, H.-S.; Huang, J.-J.; Chow, Y.-C.; Huang, Y.-T. Acta Chim. Sin. 1958, 24, 126.

- (9) Luche, J.-L.; Rodriguez-Hahn, L.; Crabbe, P. J. Chem. Soc., Chem. Comm. **1978**, 601.
- (10) Kocienski, P.; Lythgoe, B.; Roberts, D. A. J. Chem. Soc., Perkin Trans. 1 1978, 834.
- (11) Blakemore, P. R.; Grzywacz, P.; Kocienski, P. J.; Marczak, S.; Wicha, J. manuscript in preparation.
- (12) Van Alstyne, E. M.; Norman, A. W.; Okamura, W. H. J. Am. Chem. Soc. **1994**, *116*, 6207.
- (13) Smith, N. D.; Kocienski, P. J.; Street, S. D. A. Synthesis 1996, 652.
- (14) Bellingham, R.; Jarowicki, K.; Kocienski, P.; Martin, V. *Synthesis* **1996**, 285.
- (15) Windaus, A.; Grundmann, W. Annalen 1936, 524, 295.
- (16) Barrett, A. G. M.; Barton, D. H. R.; Russell, R. A.;
 Widdowson, D. A. J. Chem. Soc., Chem. Comm. 1975, 102.

- (17) Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899.
- (18) Nemoto, H.; Kurobe, H.; Fukumoto, K.; Kametani, T. J. Org. Chem. 1986, 51, 5311.
- (19) Windaus, A.; Dithmar, K.; Fernholz, E. Justus Liebigs Ann. Chem. 1932, 493, 259.
- (20) Mizhiritskii, M. D.; Konstantinovskii, L. E.; Vishkautsan, R. *Tetrahedron* 1996, *52*, 1239.
- (21) Mahé, C.; Patin, H.; Van Hulle, M.-T.; Barton, D. H. R. J. *Chem. Soc., Perkin Trans. I* **1981**, 2504.
- (22) Maestro, M. A.; Sardina, F. J.; Castedo, L.; Mouriño, A. J. Org. Chem. 1991, 56, 3582.

Article Identifier:

1437-210X,E;1999,0,07,1209,1215,ftx,en;Z03399SS.pdf