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Abstract: Bromocyclopentitols and amino (or amido) bromocyclopentitols having a C-Br bond trans to two 
different vicinal hydroxyl groups show selectivity in base-promoted epoxide formation. The role of adjacent polar 
substituents in directing bromohydrin cyclization is discussed. © 1998 Elsevier Science Ltd. All rights reserved. 

Epoxides are versatile functional groups in synthesis, and can generally be prepared from alkenes either 

directly, using peracids, or indirectly, by HOBr addition and cyclization of the corresponding bromohydrin.I The 

two methods are stereochemically complementary, with the bromohydrin route providing access in cyclic systems 

to the sterically more hindered epoxide. 2 Adjacent polar groups, especially allylic alcohol and amide NH groups 

can direct peracid-mediated alkene epoxidations. 3 Proximal hydroxy and acetoxy groups can also affect the 

course of epoxide ring opening. 4 However, the effect of nearby polar substituents on the cyclization of trans- 1,2- 

bromohydrins to epoxides has not been investigated. 

In connection with synthetic studies on trehazolin, 5,6 we had occasion to prepare a number of bromocyclitols 

having a C-Br bond trans to two different vicinal hydroxyl groups. With their overlapping 1,2-bromohydrins, 

such systems are capable of forming regioisomeric epoxides. However, in each instance we observed high levels 

of selectivity favoring nucleophilic attack by the hydroxyl group vicinal to the X-group shown. 
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The regiochemistry of bromohydrin cyclization was examined in a series of bromocyclopentitols embodying 

the requisite (1,3/2)-dihydroxybromocycloalkane unit. Bromocyclopentitols 2, 4, and 6 having an additional 

hydroxy, amido, or amino substituent cis to one of the bromohydrin OH groups were prepared as shown in 

Scheme 1. Reaction of the known 7 epoxide 1 with 48% HBr in Et20 afforded 2 in 95% yield. Amidoalcohol 3, 

prepared by the reaction of (benzyloxymethyl)cyclopentadiene 8 with R-mandelohydroxamic acid and Bu4NIO4 

following a published protocol, 9 afforded 46 upon treatment with N-bromosuccinimide in wet 1,4-dioxane. 

Hydrolysis of 4 (0.5 N HCI) generated 6 in 98% yield. 
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(a) 48% HBr, Et:O, (b) Na2CO3-CH3OH, (c) NBS, 20:1 dioxane-H20; (d) 0.5 N HCI, CH3OH, reflux; 
(e) 0.5 N NH3-H20, (f) (CC13CO)20, pyr-CH2C12; (g) Oxone TM, H20-acetone. 
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Cyclization of 2 and 4 to the corresponding epoxide was achieved by stirring a methanol solution of each 

bromohydrin with powdered Na2CO3 for 16-24 h. Cyclization of 6 was performed using 0.5 N NH3-H20 for 

2 h. Under these kinetically-controlled conditions, each bromohydrin efficiently formed a single epoxide (1, 5, 

7) whose identity was conclusively established by comparison with a reference sample. Authentic 5 j0 was 

obtained by syn-epoxidation of 3 with m-chloroperoxybenzoic acid (MCPBA, CH2C12, rt). The structure of 

epoxide 7 was confirmed by comparing its trichloroacetylated derivative 9 II with an authentic sample prepared by 

syn-epoxidation of 8 (Scheme 1). 

Earlier studies indicate the complex nature of polar substituent effects on epoxide opening and rearrangement 

reactions.12 The related bromohydrin cyclizations reported here might involve ring conformational change, 

alkoxide formation, or nucleophilic attack as the rate-determining step (see Scheme 2), with each of those 

processes potentially affected by a vicinal alcohol, amine, or amide group. While intramolecular hydrogen 

bondingJ 3 has been shown to increase the acidity of hydrogen-bond-accepting OH groups, 14 cyclization of 2 in 

either 9:1 or 1 : 1 methanol:water also gave 1 as the exclusive product, indicating that internal H-bonding is not a 

factor in selectivity. 
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Scheme 2 

Additional studies are needed to elucidate the role of structural, conformational, and inductive effects on 

bromohydrin closure. The methodology described here may find utility in the synthesis of bioactive cyclic polyols 

and aminocyclitols, which are components of a variety of potent antibiotics (e.g. kanamycins, streptomycins, 

neomycins) and glycosidase inhibitors (trehazolin, allosamidin, mannostatin). 
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