August 1985 Communications 773

phenyl-5(4H)-oxazolone (**1g**) gave an equimolecular mixture of (*E*)- and (*Z*)-spiro derivatives (**2g**) and a third compound **6**; these products were separated by column chromatography.

The attempted direct basic hydrolysis  $2 \rightarrow 4$  led only to the corresponding 1-benzoylamino-2-aryl(methyl)-cyclopropanecarboxylic acids which resisted further basic treatments<sup>4</sup>, while acidic hydrolysis caused cleavage of the cyclopropane ring, giving lactones  $5^4$ .

Spiro derivatives 2 were readily converted into the corresponding methyl esters 3 in high yields by treatment with absolute methanol containing catalytic amounts of sodium methoxide (Table 2). Hydrolysis of esters 3 with hydrochloric acid/acetic acid furnished the corresponding aminoacid hydrochlorides 4. (Z)-Esters required refluxing times of 9–24 hours, and in most cases the resultant products (Z)-4 contained varying amounts of the undesired lactones 5, which lowered the yields. Several recrystallizations were necessary in order to obtain the pure aminoacid hydrochlorides. However, (E)-esters [and also aliphatic (Z)-3g] were hydrolyzed in 2–3 hours, producing very good yields of the corresponding hydrochlorides 4.

The configuration of all compounds 2, 3, and 4 was established by <sup>1</sup>H-N.M.R. spectrometry. For spiro compounds 2, we have deduced <sup>7</sup> that protons which are *syn* with respect to the C=N group give a signal at lower field than that of the *anti* protons. Cleavage of the oxazolone ring leads to an upfield shift of the signals of the *syn* protons (by 0.5–0.7 ppm) so that the situation is reversed (Tables 1 and 2). In the cyclopropanecarboxylic esters 3 having an aromatic substituent R, the signal of the methoxy group shows an upfield shift when the ester group is *syn* to the substituent R, probably due to the anisotropy of the aromatic ring.

Mclting points were determined on a Kofler Thermopan Reichert apparatus and are uncorrected: <sup>1</sup>H-N.M.R. spectra were recorded on a Brucker WP-80 spectrometer. Analyses of the spectral data were performed with a PANIC program.

Compounds 1 are prepared as described previously<sup>2</sup>.

# Synthesis of (E)- and (Z)-1-Amino-2-aryl(methyl)-cyclopropanecarboxylic Acids via Spirooxazolones

Inmaculada Arenal, Manuel Bernabé\*, Eldiberto Fernández-Alvarez, Soldedad Penadés

Instituto de Química Orgánica General del C.S.I.C., Juan de la Cierva 3, 28006-Madrid, Spain

We have earlier described the synthesis of (Z)-1-amino-2-aryleyclopropanecarboxylic acids via spirothiazolones<sup>1</sup>. Unfortunately, this method has up to date not proven suitable for the preparation of the stereoisomeric (E)-derivatives. Here we report a synthesis of both (E)- and (Z)-isomers of 2-substituted 1-aminocyclopropanecarboxylic acids.

The starting (*E*)- and (*Z*)-4-methylene-2-phenyl-5-(4 H)-oxazolones (1) were prepared by known procedures<sup>2,3</sup>. Addition of diazomethane to these compounds was stereoselective<sup>4,5,6</sup> and produced acceptable yields of the corresponding spiro derivatives 2 (Table 1). However, (*Z*)-4-ethylidene-2-

# (Z)-7-Oxo-5-phenyl-6-oxa-4-azaspiro[2.4]hept-4-enes [(Z)-2]; General Procedure:

A benzene solution of diazomethane ( $\sim 50$  mmol; 100 ml) is added dropwise to a solution of the appropiate (Z)-oxazolone 1 (20 mmol) in benzene (50 ml) at 45 °C. Rapid evolution of nitrogen takes place. The solution is then allowed to stand at room temperature for 10-12 h; excess diazomethane is destroyed with a few drops of acetic and the solvent is evaporated in vacuo to give a yellow syrup. Ether (10 ml) is added, from which compounds (Z)-2 usually crystallize on cooling. Recrystallization yields the pure spiro derivative (see Table 1)

Table 1. Spiro Derivatives 2 prepared

| Product         | R                                                 | Yield"<br>[%] | m.p. [°C] <sup>b</sup> | Molecular Formula <sup>e</sup><br>or Lit. m.p. [°C]       | <sup>1</sup> H-N.M.R. (CDCl <sub>3</sub> /TMS <sub>int</sub> ), significant parameters |                |                |           |           |           |  |
|-----------------|---------------------------------------------------|---------------|------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------|----------------|----------------|-----------|-----------|-----------|--|
|                 |                                                   |               |                        |                                                           | δ[ppm]                                                                                 |                |                | J[Hz]     |           |           |  |
|                 |                                                   |               |                        |                                                           | $H^1$                                                                                  | H <sup>2</sup> | H <sup>3</sup> | $J_{1,2}$ | $J_{1,3}$ | $J_{2,3}$ |  |
| (E)-2a          | C <sub>6</sub> H <sub>5</sub>                     | 50            | 112°                   | 112-113-5                                                 | 2.38                                                                                   | 2.36           | 3.52           | -5.5      | 9.6       | 9.2       |  |
| (Z)-2a          | $C_6H_5$                                          | 45            | 141-142°               | 143-145°5                                                 | 2.33                                                                                   | 2.24           | 3.20           | -5.3      | 8.7       | 9.7       |  |
| (E)-2b          | 4-H <sub>3</sub> CC <sub>6</sub> H <sub>4</sub>   | 40            | 138-139°               | C <sub>18</sub> H <sub>15</sub> NO <sub>2</sub> (277.3)   | 2.32                                                                                   | 2.31           | 3.44           | -5.4      | 9.8       | 8.6       |  |
| (Z)-2b          | $4-H_{3}C-C_{6}H_{4}$                             | 60            | 147-148°               | C <sub>18</sub> H <sub>15</sub> NO <sub>2</sub> (277.3)   | 2.32                                                                                   | 2.23           | 3.17           | -5.3      | 8.7       | 9.7       |  |
| (E)-2e          | 4-H <sub>3</sub> CO—C <sub>6</sub> H <sub>4</sub> | 50            | 139~140°               | $C_{18}H_{15}NO_3$ (293.3)                                | 2.36                                                                                   | 2.32           | 3.48           | -5.5      | 9.6       | 9.1       |  |
| (Z)-2c          | $4-H_3CO-C_6H_4$                                  | 55            | 123-124°               | C <sub>18</sub> H <sub>15</sub> NO <sub>3</sub> (293.3)   | 2.30                                                                                   | 2.23           | 3.17           | -5.3      | 8.7       | 9.8       |  |
| (E)-2d          | 3-H <sub>3</sub> CO-C <sub>0</sub> H <sub>4</sub> | 30            | 78−80°                 | $C_{18}^{19}H_{15}NO_3$ (293.3)                           | 2.36                                                                                   | 2.34           | 3.49           | -5.5      | 9.4       | 9.3       |  |
| (E)- <b>2</b> e | 4-Cl—C <sub>6</sub> H <sub>4</sub>                | 50            | 110-111°               | C <sub>12</sub> H <sub>12</sub> CINO <sub>2</sub> (297.7) | 2.37                                                                                   | 2.28           | 3.42           | -5.5      | 9.8       | 8.6       |  |
| (Z)-2e          | 4-Cl—C <sub>6</sub> H <sub>4</sub>                | 50            | 139-140°               | C <sub>12</sub> H <sub>12</sub> CINO <sub>2</sub> (297.7) | 2.28                                                                                   | 2.25           | 3.15           | 5.5       | 8.5       | 9.8       |  |
| (E)-2f          | 2-Cl—C <sub>6</sub> H <sub>4</sub>                | 50            | 165-166°               | $C_{17}H_{12}CINO_2(297.7)$                               | 2.42                                                                                   | 2.28           | 3.47           | -5.6      | 9.3       | 9.1       |  |
| (E)-2g          | CH <sub>3</sub>                                   | 25            | 49-50°                 | $C_{12}H_{11}NO_2$ (201.2)                                | 2.08                                                                                   | 1.62           | 2.30           | -4.9      | 9.2       | 8.6       |  |
| (Z)-2g          | CH <sub>3</sub>                                   | 25            | 59-60°                 | $C_{12}H_{11}NO_2$ (201.2)                                | 1.68                                                                                   | 1.93           | 2.11           | -4.7      | 8.3       | 9.3       |  |

<sup>a</sup> Yield of isolated product; not optimized.

All products were recrystallized from ethyl acetate, except for (E)-2g and (Z)-2g which were recrystallized from aqueous methanol.

The microanalyses were in satisfactory agreement with the calculated values:  $C \pm 0.25$ ,  $H \pm 0.19$ ,  $N \pm 0.21$ .

Table 2. Methyl Cyclopropanecarboxylates (3) prepared

| Product                            | R                                                 | Yield <sup>a</sup><br>[%] | m.p. [°C] <sup>b</sup> | Molecular Formula <sup>c</sup>                          | <sup>1</sup> H-N. M. R. (CDCl <sub>3</sub> /TMS <sub>int</sub> ), significant parameters |       |                |                  |           |           |           |
|------------------------------------|---------------------------------------------------|---------------------------|------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------|-------|----------------|------------------|-----------|-----------|-----------|
|                                    |                                                   |                           |                        |                                                         | δ[ppm]                                                                                   |       |                | J[Hz]            |           |           |           |
|                                    |                                                   |                           |                        |                                                         | $H^1$                                                                                    | $H^2$ | H <sup>3</sup> | OCH <sub>3</sub> | $J_{1,2}$ | $J_{1,3}$ | $J_{2,3}$ |
| (E)-3a                             | C <sub>6</sub> H <sub>5</sub>                     | 90                        | 195196°                | C <sub>18</sub> H <sub>17</sub> NO <sub>3</sub> (295.3) | 1.71                                                                                     | 2.31  | 2.96           | 3.34             | - 5.6     | 9.6       | 8.6       |
| ( <i>E</i> )-3a<br>( <i>Z</i> )-3a | $C_6H_5$                                          | 90                        | 164-165°               | $C_{18}H_{17}NO_3$ (295.3)                              | 1.86                                                                                     | 2.29  | 3.05           | 3.70             | -6.0      | 8.0       | 9.5       |
|                                    | 4-H <sub>3</sub> C-C <sub>6</sub> H <sub>4</sub>  | 90                        | 219220°                | $C_{19}H_{19}NO_3$ (309.4)                              | 1.70                                                                                     | 2.30  | 2.91           | 3.34             | -5.6      | 9.7       | 8.5       |
| (E)-3b                             | $4 \cdot H_3 C - C_6 H_4$                         | 90                        | 151-152°               | $C_{19}H_{19}NO_3$ (309.4)                              | 1.80                                                                                     | 2.30  | 3.00           | 3.72             | -5.9      | 8.0       | 9.6       |
| (Z)-3b                             | $4 \cdot H_3 CO - C_6 H_4$                        | 96                        | 188189°                | $C_{19}H_{19}NO_4$ (325.4)                              | 1.66                                                                                     | 2.26  | 2.90           | 3.34             | -5.6      | 9.7       | 8.5       |
| (E)-3c                             |                                                   | 95                        | 174-175°               | $C_{19}H_{19}NO_4$ (325.4)                              | 1.78                                                                                     | 2.29  | 2.98           | 3.71             | -5.9      | 7.9       | 9.6       |
| (Z)-3c                             | 4-H <sub>3</sub> CO—C <sub>6</sub> H <sub>4</sub> | 95<br>95                  | 189190°                | $C_{19}H_{19}NO_4$ (325.4)                              | 1.71                                                                                     | 2.30  | 2.94           | 3.36             | 5.5       | 9.8       | 8.5       |
| (E)-3d                             | 3-H <sub>3</sub> CO—C <sub>6</sub> H <sub>4</sub> | 80                        | 199~200°               | $C_{10}H_{16}CINO_3$ (329.8)                            | 1.70                                                                                     | 2.23  | 2.93           | 3.37             | -5.6      | 9.7       | 8.6       |
| (E)-3e                             | 4-ClC <sub>6</sub> H <sub>4</sub>                 |                           | 165-166°               | $C_{18}H_{16}CINO_3$ (329.8)                            | 1.82                                                                                     | 2.24  | 3.03           | 3.70             | -6.0      | 8.0       | 9.5       |
| (Z)-3e                             | 4-ClC <sub>6</sub> H <sub>4</sub>                 | 85                        | 221–222°               | $C_{18}H_{16}CINO_3$ (329.8)                            | 1.97                                                                                     | 2.47  | 2.83           | 3.39             | -6.0      | 9.7       | 8.5       |
| (E)-3f                             | 2-ClC <sub>6</sub> H <sub>4</sub>                 | 90                        | 154–155°               | $C_{18}H_{16}CINO_3$ (223.3)                            | ~1.4                                                                                     |       | ~1.6           | 3.75             |           | d         |           |
| (E)-3g $(Z)$ -3g                   | CH <sub>3</sub><br>CH <sub>3</sub>                | 85<br>85                  | 154-155°               | $C_{13}H_{15}NO_3$ (233.3)                              | 0.96                                                                                     | 1.81  | 1.93           | 3.71             | -5.0      | 7.6       | 9.4       |

<sup>a</sup> Yield of isolated product; not optimized.

All products were recrystallized from methanol.

The microanalyses were in satisfactory agreement with the calculated values:  $C\pm0.31,~H\pm0.24,~N\pm0.17.$ 

Compound (E)-3g could not be throughly analyzed.

The reaction of compound (Z)-1g gives a mixture of three spiro derivatives, namely (Z)-2g, (E)-2g, and a third compound which was characterized as 1,1-dimethyl-7-oxo-5-phenyl-6-oxa-4-azaspiro-[2.4]hept-4-ene (6). Isolation of the individual compounds may be accomplished by column chromatography on silica gel using 1/7 benzene/hexane as eluent.

#### (E)-7-Oxo-5-phenyl-6-oxa-4-azaspiro[2.4]hept-4-enes [(E)-2]; General Procedure:

The (E)-oxazolone 1 (20 mmol) is added portionwise to an icecooled ethereal diazomethane solution (~50 mmol; 100 ml). The resultant mixture is stirred in the cold for 10 h, excess diazomethane is then destroyed with a few drops of acetic acid, and the solution is

Table 3. 1-Aminocyclopropanecarboxylic Acid Hydrochlorides (4) prepared

| Product | R                                                 | Yield <sup>a</sup><br>[%] | m.p. [°C] <sup>b</sup> | Molecular Formula <sup>c</sup><br>or Lit. m.p. [°C]                     | <sup>1</sup> H-N.M.R. (D <sub>2</sub> O/DSS <sub>int</sub> ) <sup>d</sup> , significant parameters |                |                |           |           |           |  |
|---------|---------------------------------------------------|---------------------------|------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------|----------------|-----------|-----------|-----------|--|
|         |                                                   |                           |                        |                                                                         | δ[ppm]                                                                                             |                |                | J[Hz]     |           |           |  |
|         |                                                   |                           |                        |                                                                         | H <sup>1</sup>                                                                                     | H <sup>2</sup> | H <sup>3</sup> | $J_{1,2}$ | $J_{1.3}$ | $J_{2,3}$ |  |
| (E)-4a  | C <sub>6</sub> H <sub>5</sub>                     | 85                        | 208-209                | 208°8                                                                   | 1.95                                                                                               | 2.20           | 3.18           | -6.9      | 10.3      | 8.5       |  |
| (Z)-4a  | $C_6H_5$                                          | 60                        | 218220°                | 218220°1,8                                                              | 1.95                                                                                               | 2.09           | 3.34           | 7.1       | 8.2       | 10.1      |  |
| (E)-4b  | $4 \cdot H_3 C - C_6 H_4$                         | 80                        | 198~199°               | C <sub>11</sub> H <sub>14</sub> ClNO <sub>2</sub> (227.7)               | 1.93                                                                                               | 2.19           | 3.14           | -7.0      | 10.5      | 8.9       |  |
| (Z)-4b  | $4-H_3C-C_6H_4$                                   | 55                        | 191-192°               | 191-192°1                                                               | 1.91                                                                                               | 2.05           | 3.23           | -7.0      | 8.3       | 10.0      |  |
| (Z)-4c  | 4-H <sub>3</sub> CO-C <sub>6</sub> H <sub>4</sub> | 28                        | 198-199                | 198~199°1                                                               | 1.90                                                                                               | 2.06           | 3.22           | -7.0      | 8.4       | 10.0      |  |
| (E)-4d  | $3-H_3CO-C_6H_4$                                  | 76                        | 188~190°               | $C_{11}H_{14}CINO_3$ (243.7)                                            | 1.81                                                                                               | 2.05           | 3.02           | -7.0      | 10.4      | 8.8       |  |
| (E)-4e  | 4-Cl—C <sub>6</sub> H <sub>4</sub>                | 82                        | 230-232                | C <sub>10</sub> H <sub>11</sub> Cl <sub>2</sub> NO <sub>2</sub> (248.1) | 1.96                                                                                               | 2.19           | 3.15           | -7.1      | 10.5      | 8.8       |  |
| (Z)-4e  | $4-C1-C_6H_4$                                     | 50                        | 190-191                | 190 191°1                                                               | 1.89                                                                                               | 2.07           | 3.25           | -6.8      | 8.3       | 9.6       |  |
| (E)-4f  | 2-ClC <sub>6</sub> H <sub>4</sub>                 | 88                        | 229-231°               | C <sub>10</sub> H <sub>11</sub> Cl <sub>2</sub> NO <sub>2</sub> (248.1) | 2.02                                                                                               | 2.19           | 3.10           | -7.0      | 10.3      | 8.7       |  |
| (E)-4g  | CH <sub>3</sub>                                   | 90                        | 207~208°               | C <sub>5</sub> H <sub>10</sub> CINO <sub>2</sub> (151.6)                | 1.54                                                                                               | 1.46           | 1.76           | -6.1      | 10.3      | 8.9       |  |
| (Z)-4g  | $CH_3$                                            | 84                        | 225 227                | $C_5H_{10}CINO_2$ (151.6)                                               | 1.14                                                                                               | 1.71           | 1.90           | -6.5      | 7.4       | 9.4       |  |

<sup>&</sup>lt;sup>a</sup> Yield of isolated product; not optimized.

<sup>b</sup> All products were recrystallized from absolute ethanol/ether and decomposed on melting.

<sup>d</sup> DSS = sodium 4,4-dimethyl-4-silapentanesulfonate.

filtered. The solvent is removed in vacuo; compounds (E)-2 usually crystallize at this stage. Recrystallization affords the pure products (Table 1).

## Methyl 1-Benzoylamino-2-aryl(methyl)-cyclopropanecarboxylates (3); General Procedure:

A solution of the (E)- or (Z)-spiro compound 2 (10 mmol) in absolute methanol (50 ml) containing a catalytic amount ( $\sim$  5%) of sodium methoxide is stirred until the starting material has disappeared (as evidenced by T. L. C.). Compounds 3 usually crystallize on cooling of the mixture. In some cases, removal of the solvent is vacuo is necessary to obtain the esters 3.

### 1-Amino-2-aryl(methyl)-cyclopropanecarboxylic Acids (4); General Procedure:

A mixture of the appropriate ester 3 (5 mmol), glacial acetic acid (20 ml), and 12 normal hydrochloric acid (20 ml) is refluxed for 2-24 h. Esters (E)-3 and (Z)-3g are hydrolyzed within 3 h, esters (Z)-3a-d require 9-12 h, and ester (Z)-3f requires 20-24 h for complete hydrolysis. The solvent is then removed in vacuo and the resultant solid recrystallized from absolute ethanol/ether. From the (Z)-esters, a mixture of hydrochlorides 4 and lactones 5 is obtained; several recrystallizations are necessary to obtain the pure products 4.

Received: July 16, 1984 (Revised form: October 11, 1984)

<sup>&</sup>lt;sup>c</sup> The microanalyses were in satisfactory agreement with the calculated values:  $C \pm 0.26$ ,  $H \pm 0.17$ ,  $N \pm 0.27$ .

Bernabé, M., Cuevas, O., Fernández-Alvarez, E. Synthesis 1977, 191.

<sup>&</sup>lt;sup>2</sup> Arenal, I., Bernabé, M. Fernández-Alvarez, E. An Quím. 1981, 77 C, 56.

<sup>&</sup>lt;sup>3</sup> Rao, Y.S., Filler, R. Synthesis 1975, 749.

Bernabé, M., Fernández-Alvarez, E., Penadés, S. An. Quím. 1972, 68, 501.

<sup>&</sup>lt;sup>5</sup> Bernabé, M., Cuevas, O., Fernández-Alvarez, E., Penadés, S., Rubio, E. *An. Real. Acad. Ciencias de Madrid* **1975**, 435.

<sup>&</sup>lt;sup>6</sup> Martinez, M. L., Cano, F. H., García-Blanco, S. Acta Cryst. 1978, B 34, 593.

Arenal, I. Doctoral Thesis, Universidad Complutense de Madrid, 1980.

<sup>8</sup> Arenal, I., Bernabé, M. Fernández-Alvarez, E., Hernández-Perretta, R. An. Quím. 1981, 77 C, 93.