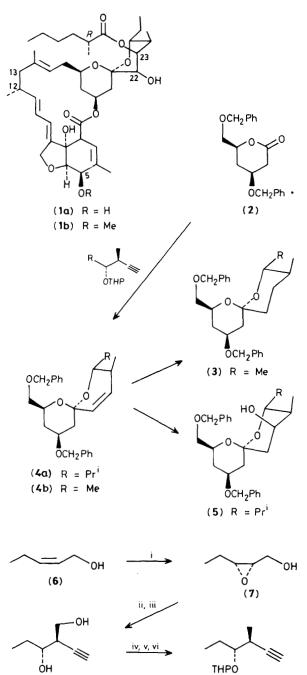
J. CHEM. SOC., CHEM. COMMUN., 1986

The Chemistry of Spiroacetals. An Enantiospecific Synthesis of the Spiroacetal Moiety of Milbemycins α_7 and α_8

Raymond Baker,*† Christopher J. Swain, and John C. Head

Department of Chemistry, The University, Southampton SO9 5NH, U.K.

An enantiospecific synthesis of the dioxygenated spiroacetal moiety of milbemycins α_7 and α_8 has been developed from the appropriate epoxide and regioselective acylation of the C-23 alcohol.

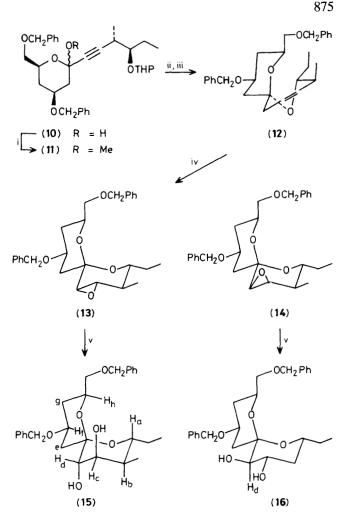

The milberrycins [(1a) is milberrycin α_7 , (1b) is milberrycin α_8][‡] comprise a group of natural products isolated from cultures of Streptomyces B-41-146.1 Interest in these compounds has increased since the isolation and identification of a structurally related series of macrolides, the avermectins.² The avermectins are effective against helminths and arthropods at very low concentrations, giving these compounds enormous potential as anti-parasitic agents.³ In addition, the milbemycins have shown important activity against a wide variety of insect pests.⁴ Several total syntheses of milbemycin β_3 have been reported to date^{5,6} and several reports on the spiroacetal portions of some of the more complex milbemycins and avermectins have appeared.^{7,8} Previously we have described the synthesis of the chiral lactone (2)9 and demonstrated its utility in an enantiospecific synthesis of the spiroacetal subunit of milberrycin β_3 (3) and, subsequently, incorporation into a total synthesis of milberrycin $\beta_{3.6}$ We have also reported the use of this lactone in the synthesis of the spiroacetal moiety of avermectin B_{1b} (4a)⁸ and its subsequent elaboration into the spiroacetal of avermectin B_{2b} (5).⁸ We now report the use of the chiral lactone (2) in the enantiospecific synthesis of the dioxygenated spiroacetal of milbemycins α_7 and α_8 .

The starting point for our synthesis was *cis*-pent-2-ene-1-ol (6) which was epoxidised using the protocol developed by Sharpless¹⁰ to yield the epoxy alcohol (7) in 60% yield and in 80% enantiomeric excess (e.e.), [calculated by the preparation of the methoxy(trifluoromethyl)phenylacetyl (MTPA) ester], $[\alpha]_D - 11.8^{\circ} (c \ 1.7, CH_2Cl_2)$. Lithium acetylide opening of the epoxide yielded a mixture of 1,3- and 1,2-diols but the undesired latter compound could easily be removed by periodate cleavage. The required diol (8) was obtained in 52% yield and, conveniently, recrystallisation from diethyl ether yielded material of $\geq 95\%$ e.e. (m.p. 72–74 °C).

Preparation of the primary toluene-*p*-sulphonate and protection of the secondary alcohol as its tetrahydropyran-2-yl (THP) ether proceeded smoothly in 72% overall yield. Reductive removal of the toluene-*p*-sulphonate with lithium triethylborohydride gave the required alkyne (**9**) in 80% yield, $[\alpha]_{\rm D}$ +6.8 (*c* 1.5, CH₂Cl₂) (1:1 mixture of THP diastereoisomers); b.p. 85 °C at 20 mmHg; $\lambda_{\rm max}$ 2950 (\equiv CH), 2115 (C \equiv), 1133, and 1079 cm⁻¹; $\delta_{\rm H}$ (360 MHz, CDCl₃), 4.7 (0.5H, dd, *J* 3.8 and 3.6 Hz, OCHO), 4.65 (0.5H, dd, *J* 3.1 and 4.5

[†] Address for correspondence: Merck Sharp and Dohme Research Laboratories, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR.

[‡] The absolute configuration of the acyl group of the natural isomer is not known but we have prepared the *R*-isomer.

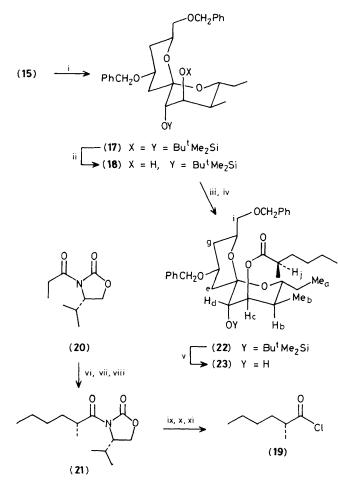

Reagents: i, Ti(OPrⁱ)₄, (+)-diethyl tartrate, BuⁱOOH; ii, LiC=CH·ethylenediamine complex, dimethyl sulphoxide; iii, NaIO₄– H₂O; iv, p-MeC₆H₄SO₂Cl-pyridine; v, dihydropyran–Et₂O–CSA; vi, LiEt₃BH–THF.

(9)

(8)

Hz, OCHO), 3.92 (1H, m, -CHHO), 3.6–3.45 (2H, m, -CHHO and >CH-O), 2.9 (0.5H, m, $-CHC\Xi$), 2.73 (0.5H, m, $-CHC\Xi$), 2.06 (0.5H, d, J 2.6 Hz, HC \equiv), 2.04 (0.5H, d, J 2.6 Hz, HC \equiv), 1.9–1.4 (8H, m, 4 × CH₂), 1.22 (1.5H, d, J 7 Hz, >CHMe), 1.14 (1.5H, d, J 7 Hz, -CHMe), 0.99 (1.5H, d, J 7.4 Hz, CH₂Me), 0.93 (1.5H, d, J 7.4 Hz, CH₂Me); $m/z M^+$ – H, 195.1398, C₁₂H₁₉O₂ requires M^+ – H 195.1385.

Treatment of the alkyne (9) with BuⁿLi [1 equiv. tetrahydrofuran (THF), -78 °C] followed by reaction with the



Reagents: i, MeOH-H⁺; ii, Lindlar catalyst-MeOH-H₂; iii, CSA-CH₂Cl₂; iv, MCPBA; v, HClO₄.

lactone (2) yielded the hemiacetal (10), which exists as a mixture of cyclised and open chain forms, in 80% yield. This was stirred in methanol in the presence of Amberlite IR-118 to yield the methoxyacetal (11) in a yield of 84%. Partial hydrogenation over Lindlar catalyst and subsequent acid-catalysed cyclisation yielded the unsaturated spiroacetal (12) in 87% yield $[\alpha]_D$ +73.4 (*c* 0.9, CH₂Cl₂) as a colourless oil.

Epoxidation with *m*-chloroperoxybenzoic acid (MCPBA) in CH₂Cl₂ at room temperature yielded a mixture of two epoxides (ratio 2:1). These could easily be separated by flash chromatography eluting with 30% diethyl ether in light petroleum (b.p. 40–60 °C) (ΔR_f 0.1) to yield the desired β -epoxide (**13**), $[\alpha]_D$ +64.5° (*c* 0.8, CH₂Cl₂) as the major product in 60% yield, and the α -epoxide (**14**), $[\alpha]_D$ +79.8° (*c* 0.37, CH₂Cl₂). These assignments were confirmed by the subsequent conversion into the corresponding diols *vide infra*.

Base hydrolysis of the epoxides proved very difficult; however acid hydrolysis was a very rapid process giving the required diols in excellent yields (>70%). Thus the β -epoxide (13) yielded the desired diaxial diol (15) exclusively and α -epoxide (14) gave only the diequatorial diol (16). At this point the relative stereochemistry of the diaxial diol of spiroacetal (15), a very viscous oil, was confirmed by ¹H n.m.r. spectroscopy, $[\alpha]_D + 73.5 (c \ 1.07, CH_2Cl_2); \lambda_{max}, 3500,$ 1600, 1580, 1500 cm⁻¹; $\delta_H 7.3-7.4 (10H, m, Ar), 4.5 (4H, m,$ $2 × CH_2), 3.9 (1H, m, H_f), 3.85 (1H, m, H_h), 3.55 (2H, m, H_c)$

Reagents: i, Bu¹Me₂SiTf-2,6-lutidine; ii, MeOH-CSA; iii, BuⁿLi; iv, (19); v, Bu₄NF; vi, lithium di-isopropylamide; vii, CH₃CH=CHCH₂I; viii, H₂-Pd-C-MeOH; ix, PhCH₂OLi; x, H₂-Pd-C-MeOH; xi, (COCl)₂-C₆H₆, 0 °C.

and OH), 3.45 (1H, d, J 3 Hz, H_d), 3.3–3.5 (3H, m, H_a and -CH₂O), 2.6 (1H, d, OH), 2.45 (1H, dd, H_{e.eq.}), 2.0 (1H, dd, H_{g.eq.}), 1.78 (1H, m, H_{e.ax.}), 1.65 (1H, m, H_b), 1.1–1.3 (3H, m, H_{g.ax.} and CH₂Me), 0.9–1.0 (6H, m, 2 × Me); m/z 456.2524, C₂₇H₃₆O₆ requires 456.2512. The small coupling (J 3 Hz) displayed by H_d confirms the diaxial disposition of the alcohols. The stereochemistry of the diequatorial diol (16) was also confirmed by ¹H n.m.r. spectroscopy in particular the large coupling (J 12 Hz) displayed by H_d. The unusual diequatorial opening is undoubtedly due to the influence of the anomeric oxygens on the adjacent carbon, hindering nucleophilic attack.

Treatment of the diol (15) with t-butyldimethylsilyl trifluoromethanesulphonate (Bu^tMe₂SiTf) in the presence of 2,6-lutidine gave the corresponding disilylated spiroacetal (17), $[\alpha]_D + 45^\circ$ (c 0.1, CH₂Cl₂). Removal of the benzyl protecting groups would now allow further elaboration towards a total synthesis of milbemycins α_7 and α_8 . A requirement of any synthetic strategy would be that it must allow for the selective acylation of the C-23 alcohol. Consequently we turned our attention to devising methodology to achieve this transformation. Earlier work on the spiroacetal diol (15) had shown that preferential acylation of the C-22 alcohol took place under various acylation conditions, and

J. CHEM. SOC., CHEM. COMMUN., 1986

that attempted selective silylation (Bu^tMe₂SiCl, imidazole, dimethylformamide) yielded a mixture of both di- and mono-silyl products. However, treatment of the disilylspiro-acetal (Bu^tMe₂SiTf-lutidine) (17) with camphorsulphonic acid (CSA) in methanol allowed selective deprotection to the C-23 alcohol (18). The origin of this effect might be a consequence of a directing effect on protonation by the axial oxygen of the adjacent ring. This assignment was confirmed by i.r. and ¹H n.m.r. spectroscopy, in particular the presence of a sharp peak at 3500 cm⁻¹ indicating strong intramolecular hydrogen bonding and a signal at δ 3.54 (1H, ddd, $J_{c.OH}$ 10, $J_{cb} = J_{cd} = 2.8$ Hz).

The chiral acid chloride (19) was prepared *via* the enantiospecific alkylation of the acyl oxazolidone (20).¹¹ hydrogenation and cleavage of the chiral auxiliary yielded the (*R*)carboxylic acid derivative (21), $[\alpha]_D - 19.7^\circ$ (lit. -15.9).¹² Overnight treatment with oxalyl chloride in benzene at 4 °C yielded the required acid chloride (19). Treatment of the alcohol (18) with BuⁿLi (1 equiv. THF, -60 °C) and addition of the acid chloride (19) gave the acylated spiroacetal (22), subsequent treatment with tetrabutylammonium fluoride gave the hydroxyacylspiroacetal (23), $[\alpha]_D + 30^\circ$ (*c* 0.1, CH₂Cl₂); λ_{max} . 3500, 1730 cm⁻¹; δ_H (360 MHz), 7.4 (10H, m, Ar), 4.8 (1H, dd, $J_{cb} = J_{cd} = 3$ Hz, H_c), 4.5 (4H, m, 2 × CH₂O), 3.9 (2H, m, H_f, H_h), 3.6 (3H, m, H_a, H_d, H_i), 3.4 (1H, H_i), 2.45 (1H, dd, H_{e.eq.}), 2.38 (1H, m, H_j), 2.15 (1H, m, H_{g.eq.}), 2.0 (1H, m, H_b), 1.1–1.7 (10H, m), 1.1 (3H, d, *J* 7 Hz, Me_j), 0.95 (3H, Me_a), 0.85 (6H, Me_b, *Me*CH₂).

We acknowledge financial support from the S.E.R.C. and a CASE award (J. C. H.) from I.C.I. plc, Plant Protection, Jeallott's Hill. We are grateful for valuable discussions with Dr. I. T. Kay.

Received, 24th February 1986; Com. 246

References

- 1 See J. Antibiot., 1976, **29**, Nos. 14-16 and 35-42 for complete references.
- 2 G. Albers-Schonberg, B. H. Arison, J. C. Chabala, A. W. Douglas, P. Eskola, M. H. Fisher, A. Lusi, H. Mrozik, J. L. Smith, and R. L. Tolman, J. Am. Chem. Soc., 1981, 103, 4216.
- 3 J. R. Egerton, D. A. Ostillind, L. S. Blair, C. H. Eary, D. Suhayda, S. Cifelli, R. S. Reik, and W. C. Campbell, *Antimicrob.* Agents Chemother., 1979, **15**, 372.
- 4 Y. Takiguchi, H. Mishima, M. Okuda, M. Terao, A. Aoki, and R. Fukuda, J. Antibiot., 1980, 33, 1120.
- S. R. Schow, J. D. Bloom, A. S. Thompson, K. N. Winzenberg, and A. B. Smith, III, *J. Am. Chem. Soc.*, 1982, **104**, 4015; D. R. Williams, B. A. Barner, K. Nishitani, and J. G. Phillips, *ibid.*, 1982, **104**, 4708; S. D. Street, C. Yeats, P. Kocienski, and S. F. Campbell, *J. Chem. Soc.*, *Chem. Commun.*, 1985, 1387.
- 6 R. Baker, M. J. O'Mahony, and C. J. Swain, J. Chem. Soc., Chem. Commun., 1985, 1326.
- 7 S. Hanessian, A. Ugolini, and M. Therien, J. Org. Chem., 1983, 48, 4427.
- 8 R. Baker, J. C. Head, and C. J. Swain, J. Chem. Soc., Chem. Commun., 1985, 309.
- 9 R. Baker, R. H. O. Boyes, D. M. P. Brown, J. A. Devlin, and C. J. Swain, J. Chem. Soc., Chem. Commun., 1983, 829.
- 10 T. Katsuki and K. B. Sharpless, J. Am. Chem. Soc., 1980, 102, 5974.
- 11 D. A. Evans, M. D. Ennis, and D. J. Mathre, J. Am. Chem. Soc., 1982, 104, 1737.
- 12 M. Larcheveque, E. Ignatover, and T. Cuvigny, *Tetrahedron Lett.*, 1978, 3961.