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Abstract 

Double silylation of  1,3-butadienes with chlorosilanes was found to proceed by using titanocene dichloride as the 
catalyst in the presence of"BuMgC1, giving rise to 1,4-disilylated 2-butenes in good yields. Aryl substituted 
alkenes also afforded 1,2-disilylated products under similar conditions. © 1998 Elsevier Science Ltd. All rights reserved. 
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Of particular importance among various silylation reactions is the double silylation of 
unsaturated hydrocarbons, which enables concomitant introduction of two silyl groups onto 
carbon centers. This reaction has been studied extensively using late transition metal 
catalysts, such as palladium and platinum complexes, and employing disilanes or hydrosilanes 
as the silylating reagents, lu We report herein the first example of a metal-catalyzed double 
silylation of dienes and alkenes with chlorosilanes, t21 which proceeds under mild conditions by 
the use of Cp2TiC12 in the presence of nBuMgCI.P] 

For example, into a mixture of isoprene (3.12 mmol), chlorotriethylsilane (2.2 equiv, 6.86 
mmol) and titanocene dichloride (0.05 equiv) was added a THF solution of °BuMgC1 (2.2 
equiv, 0.9 M, 7.6 mL) at 0 °C. The solution was stirred for 1 h and the product was 
extracted with ether. The NMR analysis of the crude product indicated the formation of 1,4- 
bis(triethylsilyl)-2-butene la  in 91% yield (E/Z = 91/9) r41 (eq 1). Under similar conditions, 
1,3-butadiene afforded lb  in 68% yield, TM whereas 2,3-dimethylbutadiene failed to give the 
corresponding disilylated product. When chlorodimethylphenylsilane (3 equiv) and "BuMgC1 
(3 equiv) were used, lc  was obtained in 78% yield (eq 2). 

R R eat. Cp2TiCI2 
+ Et3SiCI Et3Si (1) 

nBuMgCI, 0 °C, 1 h SiEt3 
la, 91% [E/Z= 91/9], R = Me 
lb ,  68'/o [E/Z= 60/40], R=  H 

+ PhMe2SiC I P h M e 2 S i ~ s i M e 2 P h  (2) 

1¢, 78% [E/Z = 69/31] 

0040-4039/98/$ - see front matter © 1998 Elsevier Science Ltd. All rights reserved. 
PH: S0040-4039(98)02227-8 



9698 

We then applied this procedure to the double silylation of alkenes. Under the same 
conditions as those of eq 2, p-chlorostyrene afforded 2a in only 29% yield along with a 
substantial amount of Me2PhSi"Bu. This result suggests that silylation of p-chlorostyrene is 

slow and competes with the direct reaction of Me2PhSiCI with "BuMgC1.161 This problem was 
practically overcome by using a large amount of the catalyst and by adopting a dropwise 
addition procedure as follows. Into a mixture of p-chlorostyrene (2.02 mmol) and "BuMgC1 
(3.0 equiv) in THF (6.7 mL) was added a THF solution (10 mL) containing Me2PhSiC1 (3.0 

equiv) and Cp2TiC12 (0.15 equiv) over a period of 30 min at 0 °C. After stirring the solution 
for another 1 h, 2a was formed in 72% yield (eq 3). f71 In a similar manner 2b was formed in 
64% yield from styrene, whereas double silylation did not proceed with alkenes having no 
aromatic substituent such as 1-octene. 

cat. CP2TiCI 2 Ar.....~..SiPh Me 2 
A r ~  + PhMe2SiCI (3) 

nBuMgCI, 0 °C, 1.5 h SiPhMe2 

2a, 72%, Ar = p-CICsH 4 
2b, 64%, Ar = Ph 

The present titanocene-catalyzed reaction provides a new and synthetically useful method 
for double silylation of dienes and aryl alkenes with chlorosilanes. Studies on the mechanism 
of this reaction are currently in progress. 
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