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Abstract 

The conversion of four 5'-O-(4,4'-dimethoxytrityl)-2'-deoxyribonucleoside 3'-H-phosphonates 1 (B---4, 5, 6 
and 7) into their partially-protected nucleoside precursors 3 (B--4, 5, 6 and 7, respectively) in good isolated 
yields is described. The procedure used is also suitable for the dephosphonylation of protected oligonucleotide 
H-phosphonate blocks. © 1999 Elsevier Science Ltd. All rights reserved. 
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For a number of years, appropriately protected 2'-deoxyribonucleoside 3'-H-phosphonates 1 have 
been used successfully as building blocks in the solid phase synthesis of oligunucleotides.l More recently, 
we have developed 2 a solution phase synthesis of oligonucleotides and their phosphorothioate analogues 
that is also based on H-phosphonate building blocks. Although the excess of the H-phosphonate com- 
ponent required 2 in solution phase synthesis is generally only ca. 20%, recovery of the excess material 
would become a matter of considerable importance if the process were to be scaled-up appreciably. 
Clearly, recovery becomes an even more important matter when oligonucleotide H-phosphonates (see 
below) rather than monomeric building blocks are involved. In order to facilitate the recovery and 
purification of the excess H-phosphonates (e.g. 1), we have developed a procedure (Scheme 1) for their 
dephosphonylation to give the corresponding hydroxy compounds (e.g. 3), which are uncharged and 
therefore much easier to isolate in a pure state. 

We now report that when 5'-O-(4,4'-dimethoxytrityl)-2'-deoxyribonucleoside 3'-H-phosphonates 3 1 
are treated (Scheme 1) with an excess each of ethylene glycol and pivaloyl chloride in pyridine solution, 
they are quantitatively converted into the corresponding 5'-O-(4,4'-dimethoxytrityl)-2' -deoxynucleoside 
derivatives 3. For example, when triethylammonium 5'-O-(4,4'-dimethoxytrityl)thymidine-3'-H- 
phosphonate 1; B=7 was allowed to react with a fourfold excess of ethylene glycol and a threefold 
excess of pivaloyl chloride in a dry pyridine solution (Table 1, entry 4) at 0°C, it was quantitatively 
converted into 5'-O-(4,4'-dimethoxytrityl)thymidine 3; B=7 within 20 rain. Following work-up of the 
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Scheme 1. Reagents and conditions: (i) HOCH2CH2OH, Me3CCOCI, CsHsN, 0°C, 20 rain 

products, 4 the pure nucleoside derivative 3; B=7, which was identical to authentic material, was isolated 
in 91% yield. In the same way, the oth~ three H-phosphonate building blocks 1 (B--4, 5 and 6) used 
in our solution phase synthesis of oligodeoxyribonucleotides and their phosphorothioate analogues 2 
were quantitatively converted into their partially-protected deoxynucleoside precursors 3 (B--4, 5 and 
6, respectively), which were then isolated in good yields (Table 1, entries 1-3). Finally, the tfimer 
3'-H-phosphonates, DMTr-Gp(s)Cp(s)Tp(H) and DMTr-Gp(s)Cp(s)Gp(H) (Table 1, entries 5 and 6; see 
footnote b for an explanation of the abbreviations), two of the protected trimer 3'-H-phosphonates that 
have been used in a block solution phase synthesis of an 'antisense' 21-mer oligodeoxyribonucleotide 
phosphorothioate, 5 were converted into their protected trinucleoside di-phosphorothioate precursors 
(DMTr-Gp(s)Cp(s)T-OH and DMTr-Gp(s)Cp(s)G-OH) in 89 and 90% isolated yields, respectively. 
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Not surprisingly, the putative intermediate H-phosphonate diesters 2 were not detected in the products 
of any of the above reactions. Alkyl 2-hydroxyethyl phosphates 8a readily undergo alkaline hydrolysis 7 
via ethylene cyclic phosphate 9 and corresponding uncharged dialkyl 2-hydroxyethyl phosphates s 10 
presumably undergo base-catalyzed cyclization much more readily still. Furthermore, as diaikyl H- 
phosphonates 11a are known 9 to undergo alkaline hydrolysis at a rate some 5 orders of magnitude faster 
than related tfialkyl phosphates 11b, H-phosphonate diesters such as 2 would be expected to fragment to 
give the corresponding nucleoside derivatives 3 and ethylene cyclic H-phosphonate 12 virtually instan- 
taneously under the reaction conditions. Due to ring strain 7 and the inherent reactivity of H-phosphonate 
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Dephosphonylation reactions" 
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Famy Subsume Scale Product Isolated Yield 
No.  (retool) (%) 

1 1; B = 4 2 .0  3; B = 4 87 

2 1; B = 5 2.0 3; B = $ 91 

3 1; B = 6 2.0 3; B -- 6 91 

4 1; B = 7 2.0 3; B -- 7 91 

5 DMTr-Gp(s)Cp(s)Tp(H) b 0.165 DMTr-Gp(s)Cp(s)T-OH b 89 

6 DMTr-Gp(s)Cp(s)Gp(H) b 0.425 DMTr-Gp(s)Cp(s)G-OH b 90 

a See References and Notes (ref. 4) for experimental details. 
b C and G represent base-protected (as in 5 and 6, respectively) 2'-deoxycytidine and 2'-deoxyguanosine residues; 
T represenu a 4-O-pbenyl-protacted thymidine residue; 6 -p(s)- represents an $-(2-cyanonthyl)-protected 
phosphorothioate triester, -p(H) represents an H-phosphonate monoester function. See ref. 2 for a fuller explanation 
of these abbreviations. 

diesters, 9 ethylene cyclic H-phosphonate 12 would be expected to undergo hydrolytic cleavage to give 
2-hydroxyethyl H-phosphonate 8b under extremely mild conditions. In order to obtain some evidence 
as to the fate of the H-phosphonate moiety, we followed the reaction between triethylammonium 5'- 
O-tritylthymidine 3'-H-phosphonate 13; B=7 (0.25 mmol), ethylene glycol (1.0 mmol) and pivaloyl 
chloride (0.75 mmol) in pyridine-d5 (0.5 ml) at 0°C by 31p NMR spectroscopy. After 3 min, no substrate 
13; B=7 (~Sp [CsD5N] 2.7) remained and no change in the NMR spectrum of the products was observed 
after a further period of 12 rain. The strongest signal (~5 11.4, JP, H ~ 712; ca. 70%) in the spectrum could 
conceivably be assigned to the phosphorus resonance of the cyclic H-phosphonate 12. Weaker resonance 
signals were observed at ~5 5.5 (JP, rl - 630; ca. 10%) and ~5 9.7 (ca. 9%). 

After this study had been completed, other workers described l° the conversion of two protected ribo- 
nucleoside 3'-H-phosphonates into the corresponding protected ribonucleoside derivatives by treatment 
with approximately stoichiometric quantities of glycerol and 1-adamantanecarbonyl chloride in pyridine 
solution. These workers also indicated l° that the latter two reagents could be replaced by ethylene glycol 
and pivaloyl chloride, respectively. 
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