SYNTHESIS OF N-SUBSTITUTED 3-NITROPHTHALIMIDES

S. I. Zav'yalov,¹ O. V. Dorofeeva,¹ E. E. Rumyantseva,¹ L. B. Kulikova,¹ G. I. Ezhova,¹ N. E. Kravchenko,¹ and A. G. Zavozin¹

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 32, No. 3, pp. 41-43, March, 1998.

Original article submitted June 24, 1997.

The N-substituted 3-nitrophthalimides are known to possess antibacterial [1], analgesic [2], and vasodilative [3] activity.

These compounds can be synthesized by heating 3-nitrophthalic anhydride with amines either without solvent [4] or in acetic acid [5].

Below we will show that N-substituted 3-Mitrophthalimides are conveniently obtained by cyclocondensation of 3-nitrophthalic acid (I) with amines in the presence of a two-component reagent system $ClSiMe_3 - DMF$. For example, the reaction of compound I with glycine (II), δ -aminovaleric acid (III), 4-aminobenzoic acids (IV), methyl ester of 4-aminobenzoic acid (V), aniline (VI), and *p*-toluidine (VII) lead to a high yield of the corresponding products (VIII – XIII). By the same token, the cyclocondensation of phthalic acid (XIV) with compounds II and III yield the N-substituted phthalimides XV and XVI:

 $\begin{array}{l} R = NO_2 \ (I, \ VIII - XIII), \ H \ (XIV - XVI); \ R^{1} = CH_2COOH \ (II, \ VIII, \ XV), \\ (CH_2)_4COOH \ (III, \ IX, \ XVI), \ C_6H_4COOH-4 \ (IV, \ X), \ C_6H_4COOMe-4 \ (V, \ XI), \\ Ph \ (VI, \ XII), \ C_6H_4Me-4 \ (VII, \ XIII). \end{array}$

In order to extend the known boundaries of applicability of the proposed method, we have attempted to conduct the reaction of N-acylation of *p*-toluidine by various monocarboxylic acids, including hippuric (XVII) and 4-nitrobenzoic acids, 7-(carboxymethoxy)-4-methylcoumarin (XVIII), 2-(carboxymethylthio)pyrimidine (XIX), and 5-(carboxymethylthiomethyl)uracil (XX).

However, it was only compound XVII that entered into the desired N-acylation reaction, leading to a rather low yield of *p*-toluidide (XXI). The latter product was identified by comparing with the known compound synthesized by cyclization of compound XVII, followed by condensation of the intermediate 2-phenyl-2-oxazolin-5-one (XXII) with compound VII [6]:

Acid XVIII was obtained by alkylation of 7-hydroxy-4methylcoumarin (XXIII) with chloroacetic acid ethyl ester, followed by saponification of the intermediate ester XXIV.

Acid XIX was obtained by alkylating 4,6-dimethyl-32mercaptopyrimidine (XXV) with iodoacetic acid in an aqueous solution in the presence of KOH.

Acid XX was synthesized by heating 5-(hydroxymethyl)uracil (XXVI) with mercaptoacetic acid. The proposed structure of compound XX was confirmed by its

¹ Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia.

conversion into ester XXVII upon reaction with chloroacetic acid ethyl ester in DMSO in the presence of NaHCO₃.

The synthesized compounds were identified by comparison with known samples and by their ¹H NMR spectra (see experimental part below).

Because of high yields and simplicity of the experimental procedure, the proposed method of obtaining N-aryl derivatives of N-substituted 3-nitrophthalimides is quite competitive with those previously known [4, 5].

EXPERIMENTAL CHEMICAL PART

The ¹H NMR spectra were measured on a Bruker AM-300 spectrometer using samples dissolved in a $CDCl_{3}$ -CF₃COOD mixture (6:1). The course of reactions was monitored and the purity of products was checked by TLC on Silufol UV-254 plates eluted in a benzene – ethyl acetate (1:1) system and visualized under UV illumination. The data of elemental analyses agree with the results of calculations according to empirical formulas.

N-(3-Naphthaloyl)glycine (VIII). A mixture of 1 g (4.5 mmole) of 3-nitrophthalic acid, 0.37 g (4.6 mmole) of glycine, 2 ml ClSiMe₃ and 2 ml of dry DMF was stirred for 90 min on a bath at $165 - 170^{\circ}$ C, cooled to ~ 20°C, diluted with water, and allowed to stand for 12 h. The precipitate of compound VIII was separated by filtration, washed with water, and dried at 90 - 100°C in a vacuum of 20 Torr. Similar procedures were used to obtain the other N-substituted 3-nitrophthalimides and the N-phthaloyl derivatives of glycine and δ -aminovaleric acid XV and XVI (see Table 1).

Ester XI was purified by recrystallization from AcOH, while acid X was reprecipitated with diluted HCl from an aqueous K_2CO_3 solution.

The ¹H NMR spectrum of compound VIII (δ , ppm): 4.66 (s, 2H, CH₂), 8.15 (t, 1H, arom. protons, J 8.0 Hz), 8.28 (t, 2H, arom. protons, J 8.0 Hz).

The ¹H NMR spectrum of compound IX (δ , ppm): 1.77 (m, 4H, 2CH₂), 2.51 (t, 2H, CH₂, J 7.1 Hz), 3.80 (t, 2H, CH₂, J 7.1 Hz), 7.96 (t, 1H, arom. proton, J 8.0 Hz), 8.18 (t, 2H, arom. proton, J 8.0 Hz).

The ¹H NMR spectrum of compound XV (δ , ppm): 4.66 (s, 2H, CH₂), 7.87 (m, 2H, arom. protons), 7.99 (m, 2H, arom. protons).

7-(Carboxymethoxy)-4-methylcoumarin (XVIII). A mixture of 1.4 g (8 mmole) of 7-hydroxy-4-methylcoumarin (XXIII), 1.4 g (11 mmole) of chloroacetic acid ethyl ester, 0.02 g KI, and 2 g of finely ground anhydrous Na₂CO₃ in 4 ml of dry DMF was kept with periodicall stirring for 96 h at $20-25^{\circ}$ C and diluted with water. The precipitate was separated by filtration, washed with water, and dried in air to obtain 2 g (96%) of 4-methyl-7-(ethoxycarbonylmethoxy)coumarin (XXIV); m.p., 83-85°C; C14H14O5. This product was saponified without additional purification as follows. To a solution of 1 g KOH in 10 ml water was added 1 g of ester XXIV and the mixture was stirred for 24 h at ~ 20°C and then acidified with concentrated HCl. The precipitate was filtered and dried at 80 - 90°C in a vacuum of 20 Torr to obtain 0.7 g (78%) of acid XVIII; m.p., $208 - 210^{\circ}$ C; C₁₂H₁₀O₅; ¹H NMR spectrum (δ, ppm): 2.55 (s, 3H, CH₃), 4.39 (s, 2H, CH₂), 6.70 (d, 1H, 6-H, J 8.5 Hz), 7.27 (s, 1H, 8-H), 7.70 (d, 1H, 5-H, J 8.5 Hz).

4,6-Dimethyl-2-(carboxymethylthio)pyrimidine (XIX). To a solution of 0.6 g (10 mmole) KOH in 10 ml water were sequentially added with stirring 0.9 g (5 mmole) of 4,6-dimethyl-2-mercaptopyrimidine hydrochloride XXV [10] and 1 g (5.3 mmole) of iodoacetic acid and the mixture was allowed to stand for 1 h. The precipitate was separated by filtration and washed with water to obtain 0.8 g (80%) of compound XIX; m.p., 76 – 77°C; $C_8H_{10}N_2O_2S$; ¹H NMR spectrum in CDCl₃ (δ , ppm): 2.48 (s, 6H, 2CH₃), 3.80 (s, 2H, CH₂), 6.87 (s, 1H, 5-H).

5-(Carboxymethylthiomethyl)uracil (XX). A mixture of 2 g 5-(hydroxymethyl)uracil (XXVI) [11] and 10 ml of 80% mercaptoacetic acid was stirred for 1 h on a bath at 120 – 130°C, cooled to ~ 20°C, and diluted with water. The precipitate was separated by filtration, washed with water, and dried in air to obtain 1.8 g (62%) of acid XX; m.p., 233 – 235°C; $C_7H_8N_2O_4S$; ¹H NMR spectrum (δ , ppm): 3.42 (s, 2H, CH₂), 3.77 (s, 2H, CH₂), 7.15 (s, 1H, 6-H).

5-(Carboxymethylthiomethyl)uracil ethoxycarbonylmethyl ester (XXVII). A mixture of 2 g (10 mmole) acid XX, 1.3 g (10 mmole) of chloroacetic acid ethyl ester, and 0.4 g of finely ground anhydrous NaHCO₃ in 2 ml of dry DMFSO was stirred for 48 h at ~ 20°C and diluted with water. The precipitate was separated by filtration, washed

TABLE 1. Characteristics of Newly Synthesized Phthalimide Derivatives

Com- pounds	Yield, %	M.p., °C	Empirical formula	Ref.
VIII	90	210-212	C ₁₀ H ₆ N ₂ O ₆	[4]
IX	60	164 166	$C_{13}H_{12}N_2O_6$	-
х	81	> 300	$C_{15}H_8N_2O_6$	[8]
XI	96	215-218	C ₁₆ H ₁₀ N ₂ O ₆	-
XII	85	137 - 138	C ₁₄ H ₈ N ₂ O ₄	[5]
XIII	90	152 - 154	C ₁₅ H ₁₀ N ₂ O ₄	[5]
XV	91	194 - 196	C ₁₀ H ₇ NO ₄	[4]
XVI	80	134 - 135	C ₁₃ H ₁₃ NO ₄	[9]

[ROPHTHALIMIDES

itseva,¹ L. B. Kulikova,¹ vozin¹

al, Vol. 32, No. 3, pp. 41-43, March, 1998.

97.

comparing with the known compound synthesized by cyclization of compound XVII, followed by condensation of the intermediate 2-phenyl-2-oxazolin-5-one (XXII) with compound VII [6]:

Acid XVIII was obtained by alkylation of 7-hydroxy-4methylcoumarin (XXIII) with chloroacetic acid ethyl ester, followed by saponification of the intermediate ester XXIV.

Acid XIX was obtained by alkylating 4,6-dimethyl-32mercaptopyrimidine (XXV) with iodoacetic acid in an aqueous solution in the presence of KOH.

Acid XX was synthesized by heating 5-(hydroxymethyl)uracil (XXVI) with mercaptoacetic acid. The proposed structure of compound XX was confirmed by its

RENCES

D. Costa and J. D. Souza, Proc. Indian Acad. Sci., Sect. B, (2), 68-75 (1974); Chem. Abstr., 82(9), 52076s (1975).

Takatuni, T. Saijo, and K. Tominatsu, Can. Pat. Appl. 58255 (1992); Chem. Abstr., **121**(3), 35336h (1994).

Morissawa, M. Kataoka, and S. Kumakura, Eur. Pat. Appl. 1977 (1986); Chem. Abstr., 105(7), 60519k (1986).

D. Hoagland and S. W. Fox, J. Am. Chem. Soc., 89(6), 39-1392 (1967).

Villiams and P. E. Donahue, J. Org. Chem., 42(21), 3414-9 (1977).

Breenstein and M. Winitz, Chemistry of the Amino Acids, v York (1961).

. Zav'yalov, O. V. Dorofeeva, and E. E. Rumyantseva, m.-Farm. Zh., 30(3), 37 (1996).

Kokai Tokkyo Koho 79 63040 (1979); Chem. Abstr., 0), 86001k (1980).

. Chapman, G. H. Cocolas, and I. H. Hall, J. Med. Chem., 1), 1399-1402 (1979).

. Evans, J. Prakt. Chem., 48(2), 489-517 (1893).

Cline, R. M. Fink, and K. Fink, J. Am. Chem. Soc., 81(10), -2527 (1959).