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Abstract
The preparation of monolithic polyionic supports which serve as efficient heterogeneous supports for palladium(0) nanoparticles is

described. These functionalized polymers were incorporated inside a flow reactor and employed in Suzuki–Miyaura and Heck cross

couplings under continuous flow conditions.
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Introduction
Functionalized solid supports like polymers loaded with homo-

geneous  catalysts  are  well  established  in  organic  synthesis

[1-4]. Simple purification of the products and easy recyclability

of the catalysts are major advantages of heterogenization of

transition metals. A major hurdle for industrial applications of

heterogenized homogeneous metal catalyst is associated with

keeping metal leaching down to a minimum. Immobilization

can be regarded as one enabling technique in organic chemistry

[5,6] that in conjunction with continuous flow processes creates

an  ideal  setup  for  an  automated  solution-phase  synthesis.

Furthermore, this combination of enabling techniques has great

potential in the production of fine chemicals [7,8].

In continuation of  our  efforts  in  developing immobilization

concepts for reagents and catalysts including transition metals

on  solid  phases  inside  monolithic  flow  reactors  [9-18]  we

describe the preparation of palladium nanoparticles loaded on

polyionic polymers and their use under continuous flow condi-

tions in various C-C-cross-coupling reactions [19-22].

Results and Discussion
Preparation of the catalyst
Recently, we reported on the preparation of a monolithic poly-

meric material incorporated inside megaporous glass shaped

Raschig-rings [11-18,23,24]. The polymeric phase was created
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Figure 1: Top: Reactor (1–2 mL dead volume) with functionalized Raschig-rings; bottom: TEM-micrographs of Pd(0) nanoparticles on optimized
polyionic gel (left and central) and Raschig-rings (right).

Scheme 1: Preparation of Pd(0) nanoparticles inside flow reactors.

by radical precipitation polymerization of styrene, vinylbenzyl

chloride and divinylbenzene as monomers and consists of very

small  bead-like  particles  (0.2–2  µm)  which  are  connected

through polymeric bridges. As a result an extended monolithic

polymeric phase inside a glass monolith is created. Incorpora-

tion of the resin inside a porous glass has the advantage that the

resin can only swell inside the glass while the glass monolith

provides a stable rod-like shape inside the microreactor. The

Merrifield-type resin was aminated to yield polyionic support 1.

This polymer serves as an anchor to leave the metal species

(sodium tetrachloropalladate; Na2PdCl4) in close proximity to

the ammonium group by means of ion exchange (Scheme 1). In

the following, the active Pd particle is generated upon reduc-

tion with a solution of sodium borohydride. A particular benefit

of the resulting solid support is the stabilization of the gener-

ated nanoparticles by the polymer-bound ammonium species

[23-29].  These  functionalized  composite  Raschig-rings  are

incorporated inside the flow microreactor which has a dead

volume of about 1–2 mL (Figure 1) [30]. We could show that

the palladium clusters are composed of palladium nanoparticles.

Particle sizes highly depend on the monomer composition of the

polyionic support [4-vinylbenzyl chloride (VBC), divinylben-

zene (DVB), styrene].  Depending on the particle diameter a

large impact  on their  catalytic  performance (batch vs.  flow;

conventional vs. microwave heating) was noted [24]. In this

context these materials have clear advantages over Pd(0) on
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Table 1: Suzuki–Miyaura reactions catalyzed by Pd nanoparticles 3 inside flow reactors.

aryl bromide boronic acid product time [h] yield [%]a

4 10 14 1 85
5 10 15 5.5 85
6 10 16 5.5 60
7 10 17 3.5 75
8 10 18 4.5 99
9 10 19 24 86
4 11 20 1 81
4 12 21 2.5 89
4 13 22 2 99

aIsolated yield of pure product.

charcoal because the latter cannot be further optimized with

respect to the mode of application [31-33]. In the present study,

our highly optimized composite  material  was chosen (5.3%

DVB crosslinker and a 1:1 mixture of VBC/styrene) doped with

nanoparticles (7–10 nm in size and a palladium content of 0.03

weight% Pd on polyionic polymer).

Suzuki–Miyaura cross coupling reactions
In our earlier work we showed that these materials are well

suited for transfer hydrogenations under flow conditions [23,

24]. Recently, the Suzuki–Miyaura reaction and other palla-

dium catalyzed reactions have emerged as  industrially  very

desirable processes and miniflow fixed bed reactors loaded with

Pd(0) nanoparticles should be well suited to perform these C-C

coupling reactions [34]. A particular challenge for utilizing the

Suzuki–Miyaura reaction in flow devices is the quest for truly

homogeneous reaction conditions in order to prevent clogging

of  the  irregular  microchannels.  We  chose  the  coupling  of

4′-bromoacetophenone and phenylboronic acid as model reac-

tion for optimizing the process and found that 85% conversion

could be achieved within 10 min at 95 °C in DMF/water 10/1

with 2.5 mol% of catalyst 3 using CsF as base. The reaction was

performed  in  a  cyclic  mode  with  a  flow rate  of  2  mL/min.

Single pass experiments with flow rates between 0.1 and 1 mL/

min did not result in improved results, so that we commonly

operated the system as a closed loop reactor in the following.

Under  these  optimized  conditions  several  examples  of

successful cross coupling reactions were achieved that are listed

in Table 1. We included combinations of electron rich and elec-

tron deficient aryl bromides with functionalized boronic acids

and yields of coupling products were commonly good to excel-

lent.  Aryl chlorides did not react with catalyst 3  under flow

conditions.

To fully explore the potential of polyionic gel 3 its reusability

was investigated next. The Suzuki reaction of 4-bromotoluene

(6)  with  phenylboronic  acid  (10)  served  as  model  reaction.

After each reaction the continuous flow reactor was regener-

ated  by  pumping  a  solution  of  DMF/water  (10:1,  40  mL)

through the reactor before the next run was initiated (Figure 2).

The palladium particles inside the flow reactor showed excel-

lent stability without loss of activity after the tenth run. Palla-

dium leaching was determined to be about 0.7 ppm for each

run.  This  very  low  value  for  leaching  corresponds  to  the

leaching determined for transfer hydrogenations with this cata-

lytic flow system using cyclohexene as hydrogen source and

solvent [23,24].
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Figure 2: Repeated Suzuki reaction of 4-bromotoluene (6) with
phenylboronic acid (10) under flow conditions. Deviations may result
from work up as only isolated yields are presented.

Heck–Mizoroki reactions
One other very important cross coupling reaction that  bears

industrial relevance is the Heck–Mizoroki reaction. We were

able to perform C-C coupling reaction under flow conditions

with aryl iodides 23–28 using catalyst 3 (Table 2). Optimiza-

tion  of  the  conditions  for  our  monolithic  flow reactor  was

conducted with 4′-iodoacetophenone (23) and styrene (29) as

coupling partners. With n-butylamine as base and 2.5 mol%

catalyst 3 in DMF at 120 °C and a flow rate of 2 mL/min it was

possible to achieve full conversion with complete E-selectivity

within 30 min. Formation of by-products resulting from homo-

coupling was not observed. When 4′-iodoacetophenone (23)

was  exchanged  with  4′-bromoacetophenone  coupling  with

styrene  yielded  Heck-product  30  in  only  35%.

In order to generalize the reaction protocol different aryl iodides

were  coupled  with  styrene.  In  all  cases,  the  C-C  coupling

products were formed within 0.5 to 24 h in very good yield with

excellent stereocontrol (see Table 2). Palladium leaching was

determined to be 0.04% for each run based on the catalyst used

initially, which is an exceptionally low value in view of the fact

that DMF a well coordinating solvent is employed [35].

Even commercially available and widely employed catalysts

that are based on encapsulated Pd particles such as PdEnCat

[35] show a similarly low degree of leaching in DMF to our Pd

nanoparticles [36]. With reference to the fundamental work by

Reetz and de Vries the ionic environment on the polymer phase

that  is  located in very close vicinity to the palladium nano-

particles has very likely to be made responsible for the stabiliza-

tion of the nanoparticles which results in low degree of leaching

[25-29].

It has to be noted that like many other heterogenized Pd sources

[15,16,36-41]  these polyionic  gels  very likely also serve as

Table 2: Heck–Mizoroki reactions catalyzed by Pd nanoparticles 3
inside flow reactors.

aryl iodide product time [h] yield [%]a

23 30 0.5 99
24 31 24 99
25 32 19 93
26 33 3 77
27 34 24 99
28 35 4 99

aIsolated yield of pure product.

Figure 3: Repeated Heck–Mizoroki reaction of 4′-iodoacetophenone
(23) with styrene (29) under flow conditions.

reservoirs for Pd nanoclusters that are released into solution at

very low concentrations. With respect to transfer hydrogena-

tions  using precatalyst  3  we recently  conducted a  thorough

study on the principal question whether 3 serves as a Pd reser-

voir [23]. As was first demonstrated by Reetz [25-28] and de

Vries [29] these clusters exert pronounced catalytic activity in

solution  at  very  low  concentrations.  This  view  is  further

supported by the fact that the catalytic species operating in the
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present case is able to promote Suzuki–Miyaura cross coupling

reactions with aryl bromides while aryl chlorides are not good

substrates under these standard conditions. This observation has

been noted in many examples of heterogenized palladium salts

or complexes [34]. Likewise, these species are commonly not

reactive enough to promote the Heck–Mizoroki reaction with

aryl bromides. It  should be noted that under supercritical or

high pressure/high temperature conditions aryl chlorides (for

Suzuki–Miyaura  reac t ions)  or  a ry l  bromides  ( for

Heck–Mizoroki reactions) may very well serve as substrates for

this kind of palladium species.

Conclusion
In summary, we demonstrated that polyionic gel 3  is  a well

suited ion exchange resin for  the generation of  metal  nano-

particles. The ionic nature of the resin has a positive impact on

the stabilization of the Pd species which results in extended use

for Suzuki–Miyaura cross coupling reactions as well as Heck

reactions without substantial reduction of activity even when

solvents such as DMF are employed and therefore leads to a

minimum degree of leaching. The ease of preparation and the

properties of polyionic catalyst 3 make it an attractive catalytic

monolith for industrially relevant continuous flow processes

particularly when employed in combination with a scavenger

column for removing traces of soluble Pd species.

Supporting Information
Supporting Information File 1
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Note added in proof
In a detailed study McQuade and coworker demonstrated that

PdEnCat 30 also behaves as heterogeneous sources for soluble,

catalytically  active  species  during  the  course  of  Heck  and

Suzuki couplings. They note a solution-phase contribution for

catalysis and determined leaching up to 46% in DMF as solvent

which is significantly higher compared to our polyionic gels:

Broadwater, S. J.;  McQuade, D. T. J. Org. Chem.  2006,  71,

2131–2134.
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