CHEMISTRY LETTERS, pp. 1533-1536, 1982.

PERISELECTIVE CYCLOADDITION REACTION OF 3-PHENYLTHIA^{IV} ZOLO[4,3-a]ISOINDOLE TO ELECTRON-DEFICIENT OLEFIN

Shuji KANEMASA*¹, Shigehiko IKEDA, Hiroshi SHIMOHARADA, and Shoji KAJIGAESHI Department of Industrial Chemistry, Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube 755

3-PhenyIthia^{IV}zolo[4,3-a]isoindole, generated in situ from 3-phenyI-5H-thiazolo-[4,3-a]isoindolium bromide and triethylamine, reacted with a variety of electrondeficient olefins yielding the regio- and stereoselective 1:1 adducts between the azomethine ylide 1,3-dipole of the isoindole and the olefins.

It has been recently reported that the peripheral cycloaddition reaction of azomethine ylide containing a bridgehead nitrogen atom as a central atom of the 1,3-dipole offers a convenient method for the preparation of cyclazine derivatives.² Some mesoionic azapentalenes,³ indolizines,⁴ and their analogs⁵ exhibit similar reactions with electron-deficient acetylenes and olefins to give a variety of cyclazine derivatives, while the reaction mechanisms have not been clearly established.⁶ On the other hand, a certain nitrogen-bridged tetravalent sulfur compounds such as a thia^{IV}zolo[3,4-b]indazole⁷ and a pyrrolo[1,2-c]thia^{IV}zole⁸ have demonstrated the bi-perifunctional properties reacting with dimethyl acetylenedicarboxylate as azomethine ylides and with N-phenylmaleimide as thiocarbonyl ylides.⁹ However, the periselective cycloaddition reaction to the azomethine ylide 1,3-dipole of nitrogen-bridged tetravalent sulfur compound is unknown so far.

We have already reported the synthesis of 3-phenyl-5H-thiazolo[4,3-a]isoindolium bromide that might be a precursor of 3-phenylthia^{IV}zolo[4,3-a]isoindole <u>1</u> by deprotonation.¹⁰ The present communication describes the cycloaddition reactions of <u>1</u> with a variety of electron-deficient olefins, in which the azomethine ylide 1,3-dipole of <u>1</u> was periselectively engaged to yield the regio- and stereo-selective cycloadducts

An equivalent suspension of 3-phenyl-5H-thiazolo[4,3-a]isoindolium bromide and dimethyl maleate in dry chloroform was warmed at 40 °C and a slight excess of triethylamine in chloroform was slowly added with stirring under nitrogen. Stirring was continued until all the insoluble materials dissolved into a homogeneous solution. The chloroform was evaporated at room temperature and the residue was

washed with ice-water to remove triethylammonium bromide, and then extracted with benzene. Evaporation of the benzene under vacuum afforded a colorless product 2^{11} as a sole product in an excellent yield (Table 1).

The similar reaction with dimethyl fumarate yielded $\underline{3}$, an isomer of $\underline{2}$, also as a sole product. Both of the products $\underline{2}$ and $\underline{3}$ are found to be the 1:1 cycloadducts to an azomethine ylide \underline{B}^{12} of 3-phenylthia^{IV}zolo[4,3-a]isoindole $\underline{1}$, that was generated from the bromide by deprotonation, on the basis of the ¹H-NMR spectral data shown in Table 2. The configurations of olefins used should be retained in the structures of cycloadducts, $\underline{2}$ and $\underline{3}$, formed stereoselectively. The stereochemistry of $\underline{2}$ and $\underline{3}$ was mainly based on the chemical shifts of ester methyls: the ester methyl (δ 3.28 ppm) at the 4 position of $\underline{2}$ appears in a considerably high field due to the shielding effect of the fused benzene ring. ¹³

Dimethyl Maleate

Dimethyl Fumarate

N-(p-Tolyl)maleimide

N-(p-Tolyl)maleimide is the only exception among the olefins employed in the cycloaddition reactions, which afforded a mixture of two isomeric 1:1 adducts 4a and 4b in the ratio of 6 to 4. Although it was very difficult to separate either of the adducts in a pure form through a column chromatography, their structures were determined by reading the ¹H-NMR spectrum of the mixture. Thus the product with a rather small coupling constant between 4-H and 4a-H is an endo [3 + 2] cycloadduct 4a and the one with a larger coupling constant is an exo cycloadduct 4b (Table 2).

In contrast with the maleimide, an another cyclic dipolarophile, citraconic anhydride, gave the only isomeric cycloadduct 5 in the reaction with 1. The product 5 was assigned to be an endo cyclo-adduct with a 4-exo-methyl group on the basis of the splitting pattern of methine hydrogens (Table 2).

The formation of 5 as a sole product might be explained from a viewpoint of steric hindrance: the approach between 1 and the anhydride leading to 5 seems to be sterically least hindered among the all possible approaches.

With an unsymmetrical dipolarophile with one electron-withdrawing substituent, the question of regioselectivity in the cycloaddition reaction arises. Such electron-deficient olefins as acrylonitrile, methy and ethyl acrylates, methacrylonitrile, methyl methacrylate, crotononitrile, methyl crotonate, methyl cinnamate, and trans-p-methoxy- β -nitrostyrene were found to cycloadd to <u>1</u> in a highly peri-,

Products	Yields (१)	mp (℃)	IR (cm ⁻¹)	MS (m/e) ^{a)}
2	84	122-124	1730 (CO)	393*, 249
<u>3</u>	67	160-161(d)	1725 (CO)	393*, 249
<u>4</u>	87 (<u>4a:4b</u> =	6:4)	1775, 1710 (CO)	
5	87	133.5-135(d)	1830, 1775 (CO)	361*, 288, 249
<u>6</u>	59	71-73	2230 (CN)	302*, 249
<u>7</u>	60	140-142	1740 (CO)	335*, 249
<u>8</u>	59	133-135	1730 (CO)	349*, 249
9	73	161-164	2215 (CN)	316*, 249
<u>10</u>	47	129-132	1727 (CO)	349*, 249
<u>11</u>	50	101-103	2230 (CN)	316*, 249
<u>12</u>	43	143-146	1730 (CO)	349*, 249
13	46	142.5-144.5	1740 (CO)	411*, 249
<u>14</u>	60	144.5-147	155, 1350 (NO ₂)	382 (M ⁺ -NO ₂), 263, 249

Table 1. The [3 + 2] Cycloadducts of 1 to Electron-deficient Olefins.

a)	The ion	peaks	with	asterisk	are	parent	peaks	and	the	fragment	ion	at	249 is	assigned	to	1.

Products	1-H ^s	3-exo	3-endo	4-exo	4-endo	4a-H	J ₃₋₄	J 4-4a	Jgem
2	5.60	H 4.39 ^d	OMe 3.61 ^S	H 3.15 ^{dd}	OMe 3.28 ^s	5.29 ^d	10.0	8.1	
<u>3</u>	5.33	H 4.12 ^d	OMe 3.59 ^S	OMe 3.81 ^s	H 3.39 ^{dd}	4.66 ^d	8.8	8.4	
<u>4a</u>	5.46	H 3.84 ^d		H 3.28 ^{dd}		5.06 ^d	8.2	9.3	
<u>4b</u>	5.62		H 4.22 ^d		H 3.08 ^{dd}	5.38 ^d	9.9	3.2	
<u>5</u>	5.56	H 3.67 ^S		Me 1.35 ^S		4.68 ⁵			
<u>6</u>	5.59	H 3.66 ^{dd}		H 2.26 ^{dt}	H 1.94 ^{dt}	4.77 ^{dd}	9.4 5.2	8.8	11.9
<u>7</u>	5.42	H 3.80 ^t	OMe 3.84 ^S	Н 2.16 ^{dd}	H 2.16 ^{dd}	4.72 ^t	7.8	7.3	
<u>8</u>	5.43	н 3.75 ^t	$OEt \frac{1.32^{t}}{4.30^{q}}$	H 2.17 ^t	H 2.17 ^t	4.73 ^t	8.1	8.0	
<u>9</u>	5.72	Me 1.23 ^S		H 2.05 ^{dd}	H 2.42 ^{dd}	5.21 ^{dd}		8.6 4.0	14.6
<u>10</u>	5.39	Me 0.99 ^s	OMe 3.78 ^s	H 2.61 ^{dd}	H 1.93 ^{dd}	4.76 ^{dd}		9.8 5.8	12.6
<u>11</u>	5.40	H 3.31 ^d		Me 1.07 ^d	H 2.18 ^m	4.01 ^d	9.2	8.2	
<u>12</u>	5.51	H 3.59 ^d	OMe 3.99 ^S	Me 1.12 ^d	H 2.58 ^m	4.20 ^d	10.0	9.2	
<u>13</u>	5.41	H 3.97 ^d	OMe 3.78 ^s		H 3.58 ^{dd}	4.56 ^d	9.2	8.8	
<u>14</u>	5.56	H 5.80 ^d			H 3.88 ^t	4.72 ^d	8.5	8.5	

Table 2. The ¹H-NMR spectra of $2-\underline{14}$,^{a)}

a) All the spectra were taken in CDCl $_{3}$ (5 ppm) and the coupling constants are expressed in Hz.

regio- and yet stereoselective manner to give the corresponding cycloadducts <u>6-14</u>. Regardless of the structures of olefins, all the products are endo [3 + 2] cycloadducts to an azomethine ylide <u>B</u> with electron-withdrawing substituents at their 3-endo positions. The structural elucidation of them were accomplished on the basis of the spectral data shown in Table 1 and 2, especially of the ¹H-NMR spectra.

Regio- and stereochemistry of the cycloadducts $\underline{6-14}$ coincides with the orientations derived from the combination of polarized structures of olefins with <u>B</u>, and also from an attractive interaction between the electron-withdrawing groups and the thiazole ring of <u>1</u> as has been demonstrated in the reaction with dimethyl fumarate. These aproaches leading to the regioselective endo cycloadducts are not sterically hindered either.

References.

- Present address: Research Institute of Industrial Science, Kyushu University, Kasuga, Kasuga-shi, Fukuoka 816.
- 2. S. Kanemasa, S. Nakamura, and S. Kajigaeshi, Chem. Lett., 947 (1980); S. Kanemasa, S. Kobira, and S. Kajigaeshi, Heterocycles, 14, 1107 (1980) and Chem. Lett., 951 (1980).
- V. Boekelheide and N. A. Fedoruk, Proc. Natl. Acad. Sci. USA., <u>55</u>, 1385 (1966); O. Tsuge and H. Samura, Tetrahedron Lett., 597 (1973) and Heterocycles, 2, 27 (1974).
- 4. A. Galbraith, T. Small, R. A. Barnes, and V. Boekelheide, J. Amer. Chem. Soc., <u>83</u>, 453 (1961) and references cited therein.
- 5. V. Boekelheide and A. Miller, J. Org. Chem., <u>26</u>, 431 (1961); V. Boekelheide and S. S. Kerterj, ibid., <u>28</u>, 3212 (1963); As a review on the cycloadditions of indolizines and the analogs, W. Flitsch and U. Kramer, "Advances in Heterocyclic Chemistry", Academic Press, vol. 22, pp. 321-365 (1978).
- The reaction mechanism for the cycloaddition reaction between indolizine and electron-deficient olefins has been discussed: S. Ikeda, S. Kajigaeshi, and S. Kanemasa, Chem. Lett., 367 (1976).
- 7. K. T. Potts and J. L. Marshall, J. Org. Chem., 41, 129 (1976).
- 8. J. M. Kane, ibid., 45, 5396 (1980).
- Bi-perifunctional property of imidazo[1,2-c]thia^{IV}zole derivative in the reaction with N-(p-tolyl)maleimide will be reported: O. Tsuge, S. Kanemasa, and T. Hamamoto, Chem. Lett., (1982) submitted.
- 10. H. Shimoharada, S. Ikeda, S. Kajigaeshi, and S. Kanemasa, ibid., 1237 (1977).
- 11. This experiment offers the typical procedure for the reactions of 1 with electron-deficient olefins.
- 12. According to the inspection using a Dreiding model, in the [3 + 2] cycloadduct to a thiocarbonyl ylide C of 1, if an endo or an exo isomer, the bridgehead hydrogen should have exhibited a very small vicinal coupling.
- 13. The inspection of a Dreiding model shows that it seems rather difficult to estimate the dihedral angles, hence vicinal coupling constants, between the 3-H and 4-H and between the 4-H and 4a-H since the skeleton of the cycloadduct is not tightly fixed. The structures of 2 and 3 are also supported by the consideration of reaction modes in which the other olefins except for the maleimide were participated.

(Received August 4, 1982)