

CHEMISTRY AN ASIAN JOURNAL

www.chemasianj.org

Accepted Article

Title: A Design Strategy for Single-Stranded Helicates using Pyridine-Hydrazone Ligands and PbII ions. Maureen J. Lobo, Stephen C. Moratti, and Lyall R. Hanton*[a]

Authors: Maureen Jean Lobo, Stephen Carl Moratti, and Lyall Robert Hanton

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Chem. Asian J. 10.1002/asia.201801784

Link to VoR: http://dx.doi.org/10.1002/asia.201801784

A Journal of

ACES Asian Chemical Editorial Society A sister journal of Angewandte Chemie and Chemistry – A European Journal

A Design Strategy for Single-Stranded Helicates using Pyridine-Hydrazone Ligands and Pb^{II}

Maureen J. Lobo, Stephen C. Moratti, and Lyall R. Hanton*^[a]

Abstract: The reactions of py-hz ligands (L1-L5) with Pb(CF₃SO₃)₂·H₂O resulted in some rare examples of discrete singlestranded helical Pb^{II} complexes. L1 and L2 formed non-helical complexes [PbL1(CF₃SO₃)₂]·CHCl₃ mononuclear and PbL2(CF₃SO₃)₂][PbL2CF₃SO₃]CF₃SO₃·CH₃CN, which reflected the high coordination number and effective saturation of Pb^{II} by the ligands. The reaction of L3 with Pb^{II} resulted in a dinuclear mesohelicate [Pb2L3(CF3SO3)2Br]CF3SO3·CH3CN with a stereochemicallyactive lone pair on Pb^{II}. L4 directed single-stranded helicates with Pb^{II}, including [Pb₂L4(CF₃SO₃)₃]CF₃SO₃·CH₃CN and $\label{eq:constraint} [Pb_2 \text{L4}CF_3 SO_3 (CH_3 OH)_2] (CF_3 SO_3)_3 \cdot 2CH_3 OH \cdot 2H_2 O. \quad The \quad acryloyl$ modified py-hz ligand L5 formed helical and non-helical complexes with Pb^{II}. including а trinuclear Pb complex [Pb₃L5(CF₃SO₃)₅]CF₃SO₃·3CH₃CN·Et₂O. The high denticity of the long-stranded py-hz ligands L4 and L5 was essential to the formation of single-stranded helicates with Pb^{II}.

Introduction

As a step towards realising useful motion of molecular machines, the organisation of dynamic molecules into larger assemblies continues to attract interest. N-Heterocyclic-hydrazone ligands are a class of molecules that have significant differences in shape between their metal-coordinated and uncoordinated states.^[1] α , α -Pyridine-hydrazones (py-hz) are known to adopt a linear shape in solution through minimising unfavourable interactions between the neighbouring nitrogen lone pairs. Upon metal ion binding, however, the py-hz ligands rearrange into helical shapes.^[2] The difference in conformation between the uncoordinated and coordinated states of N-heterocyclic hydrazone ligands has been associated with a dynamic motional behaviour in solution.^[3] However, the metal-induced conformational changes of Nheterocyclic hydrazone ligands ligands has so far been limited to the solution state. The incorporation of such molecules into polymer gels could produce movement that is visible on a large scale.

Early metal coordination studies of py-hz ligands focused on derivatives of pyridine-2,6-dicarbaldehyde that formed non-helical

 [a] M. L. Lobo, Associate Professor S. C. Moratti, Professor L. R. Hanton
 Department of Chemistry
 University of Otago
 PO Box 56, Dunedin, New Zealand
 E-mail: Ihanton @chemistry.otago.ac.nz

Supporting information for this article is given via a link at the end of the document.

mononuclear complexes with Co(II) and Zn(II).^[4] More recently, emphasis has been placed on generating dinuclear and trinuclear helical complexes by increasing the number of donor atoms in pyhz ligands using bipyridine or terpyridine units. There are many examples of bipyridine-based py-hz ligands that form double helicates with Cu(I), Ni(II), or Zn(II) ions.^[5] However, reports of single-stranded helicates with py-hz ligands are less common as they are with other ligand systems, ^[2, 6] where they often represent a single example.^[7] Single-stranded helicates are attractive for generating reversible metal-induced molecular machines because the metal ions reside on the exterior of the ligand and can be more easily accessed by sequestering ligands. While the conditions for double and triple helicate formation are now wellknown,^[6] the factors governing single helicate formation are not as certain. This is partly due to the difficulty in predicting how the empty coordination sites in single helicates will interact with secondary or ancillary ligands. Some promising strategies to single helicates include cis-protecting Pd(II) and Ru(II) ions so that ligands coordinate to only one hemisphere of the metal ion,^[8] condensing pre-formed square planar templates so that the coordination sphere of the metal ions is fixed, [7f] and using Ag...Ag interactions to favour coordination of metal ions within a single ligand.^[7c] Although the protecting groups are essential for the assembly of single-stranded helicates in many of these examples, they ultimately detract from the single helical appearance of the complexes.^[9]

One strategy to synthesise highly-saturated single-stranded helicates exploits the high coordination number and diverse geometries of Pb^{II}. The reaction of a terpyridine-based py-hz ligand with Pb^{II} produces a saturated dinuclear single-stranded helicate with the metals ions accommodated in discrete coordination sites on the ligand.^[10] The high denticity of the py-hz ligands ensures that the Pb^{II} ions are saturated by the helical ligand rather than by mono- or bidentate ancillary ligands from solution. All that is required of the ligand is to contain a sufficiently high number of donor atoms to twist down and around the Pb^{II} ions in the identical absolute configurations of a helicate. The stereochemically-active lone pair in Pb^{II} can further favour saturated single-stranded helicates by occupying a site on the metal ion where a second ligand may coordinate in a double helicate.^[11]

In the study reported herein, a series of modifed py-hz ligands (**L1-L5**) with different numbers of donor atoms were made. The ligands were modified with hydroxymethyl and acryloyl substituents to allow their incorporation into polymer gels but the functional groups could also participate in coordination with Pb^{II}. Previous studies of hydroxymethyl-terminated pyrimidine-hydrazones have shown that binding of the oxygen donors alongside the pyrimidine-hydrazone chelates distort the geometries of Pb^{II} grid complexes.^[12] The hydroxymethyl groups

FULL PAPER

in these py-hz ligands are unlikely to impede the assembly of single-stranded Pb^{II} helicates since such structures inherently have no geometry restrictions.

Results and Discussion

The pyridine amine precursors **3** and **4** were synthesised by reaction of 6-bromo-3-(hydroxymethyl)pyridine or 6-bromo-2-(hydroxymethyl)pyridine with a large excess of methylhydrazine and purified by washing the reaction mixture with a dilute solution of Na₂CO₃ and extraction with high polarity 3:1 CHCl₃/*i*PrOH mixtures. The terpyridine amine **6** was synthesised by aldol condensation of 2-acetyl-6-bromopyridine with benzaldehyde then reaction with methylhydrazine. The pyridine aldehyde precursors **1** and **2** were prepared by oxidation of 2,6-pyridinedimethanol using stoichiometric equivalents of SeO₂.

Figure 1. Pyridine-hydrazone ligands L1-L5.

The reaction of 1 with two equivalents of 3 or 4 in refluxing ethanol resulted in the precipitation of L1 and L2, respectively. L1 could be sparingly dissolved in DMSO for NMR spectroscopy. The lack of correlations in the NOESY spectrum of L1 indicated the molecule most likely had a linear shape. L3 was synthesised by the reaction of 6 with two equivalents of 2 and isolated as a yellow solid by filtration of the reaction mixture. L3 could not be

WILEY-VCH

solubilised in sufficient quantities for NMR spectroscopy. However, the NOESY spectrum of a soluble acryloyl-modified derivative of L3 was consistent with a linear shape in solution. A convergent method was used to prepare L4 because it reduced the number of reactive ends that could lead to polymeric molecules.^[13] In this method, 1 and 3 were first reacted together in a 1:1 molar ratio to synthesise the difunctional aldehyde 7 then 7 reacted with 6 to form L4. The py-hz ligand L5 was prepared in a similar way to L4 by the reaction of 6 with two equivalents of 9. Both L4 and L5 were insoluble in organic solvents so proof of their syntheses relied mainly on IR spectroscopy, elemental analysis, and the Pb^{II} complexes they formed. A diagram of the ligands L1-L5 is shown in Error! Reference source not found..

Mononuclear Pb^{II} Complex of L1. The high coordination tendencies of Pb^{II} directed mononuclear complexes with L1. When L1 was stirred with two equivalents of Pb(CF₃SO₃)₂.H₂O in CH₃CN, the orange solid that precipitated from the solution upon vapour diffusion of Et₂O had elemental analysis that was consistent with an empirical formula of PbL1(CF₃SO₃)₂. There were correlations between protons H3 and H5 as well as H8 and H14 in the NOESY spectrum of PbL1(CF₃SO₃)₂ that indicated all the nitrogen donors were likely coordinated to Pb^{II} in a mononuclear complex (Figure 2).

Figure 2. Solution structure of $PbL1(CF_3SO_3)_2$ (NMR numbering) with NOE correlations indicated by double-sided arrows.

Crystal Structure of [PbL1(CF₃SO₃)₂]-CHCI₃ The mononuclear complex had C₂ symmetry in solution but existed as a centrosymmetric dimer in the solid-state through bridging of one of the hydroxymethyl O2 donors (Figure 3). The mononuclear complex crystallised in the *P*-1 space group with one [PbL1(CF₃SO₃)₂]-CHCI₃ moiety in the asymmetric unit. The seven-coordinated Pb1 had a pentagonal bipyramidal geometry with five nitrogen donors from the ligand, one axial CF₃SO₃ anion, and one bridging O2 donor (Figure 4). Pb^{II} could accommodate all the nitrogen donors in the ligand to give a highly-planar mononuclear complex.

10.1002/asia.201801784

WILEY-VCH

FULL PAPER

Figure 3. Crystal structure of $[PbL1CF_3SO_3]^+$ showing centrosymmetric dimer.

Figure 4. Crystal structure of $[PbL1CF_3SO_3]^+$ moiety with thermal ellipsoids shown at 50% probability level.

Mononuclear Pb^{II} Complex of L2. The next ligand L2 had an identical arrangement of nitrogen donors as L1 but the hydroxymethyl donors could coordinate to Pb^{II}. The solid that precipitated from the reaction of L2 with two equivalents of Pb(CF₃SO₃)₂.H₂O had elemental analysis consistent with an empirical formula of PbL2(CF₃SO₃)₂. There were correlations

between protons H3 and H5 as well as H8 and H14 in the NOESY spectrum of PbL2(CF₃SO₃)₂ that indicated all the nitrogen donors were likely coordinated in a mononuclear Pb^{II} complex (Figure 5).

Figure 5. Solution structure of $PbL2(CF_3SO_3)_2$ (NMR numbering) with NOE correlations indicated by double-sided arrows.

Crystal Structure PbL2(CF₃SO₃)2][PbL2CF₃SO₃·CH₃CN.

mononuclear complex crystallised in the P_{2_1}/c space group with a PbL2(CF₃SO₃)₂][PbL2CF₃SO₃]CF₃SO₃·CH₃CN moiety in the asymmetric unit. The two molecules in the asymmetric unit spanned the high coordination possibilities of Pb^{II} with Pb1 in a nine-coordinate environment consisting of the heptadentate ligand and two CF₃SO₃ anions and Pb2 in an eight-coordinate environment comprised of the ligand and one CF₃SO₃ anion (Figure 6). The increased denticity of L2 produced considerable twists in the ligand to accommodate the Pb-O bonds above and below the complex. These non-planar mononuclear Pb^{II} complexes of L2 could be considered mono-helical precursors and indicate the possibility of single-stranded helicate formation with the longer-stranded py-hz ligands.

of

The

FULL PAPER

Figure 6. Crystal structures of $[PbL2(CF_3SO_3)]^+$ and $[PbL2(CF_3SO_3)_2]$ moieties with thermal ellipsoids shown at 50% probability level.

Meso-Helical Pb^{II} Complex of L3. An increase in the number of donor atoms in the py-hz ligand L3 directed dinuclear singlestranded meso-helicates with Pb^{II}. The reaction of L3 with four equivalents of Pb(CF₃SO₃)₂.H₂O produced a yellow solution, from which an orange solid was precipitated by vapour diffusion of Et₂O. Electrospray mass spectrometry of Pb₂L3(CF₃SO₃)₄ showed ions due to dinuclear Pb^{II} complexes with ionic composition of [L3+Pb₂+CF₃SO₃-H]²⁺. The electrospray mass spectrum also showed that the ligand had abstracted bromide anions in Pb^{II} complexes of [L3+Pb₂+Br-H]²⁺. The correlations between protons H3 and H10, H8 and H16 as well as H18 and H24 in the NOESY spectrum of Pb₂L3(CF₃SO₃)₄ indicated that the dinuclear Pb^{II} complex was symmetrical in solution (Figure 7). In addition, the equivalency of the methylene protons in the ¹H NMR spectrum indicated that the symmetrical complex was achiral. The lack of chirality in this dinuclear complex was subsequently confirmed by a crystal structure, which showed a meso-helicate (Figure 8).

Figure 7. Solution structure of $Pb_2L3(CF_3SO_3)_4$ (NMR numbering) with NOE correlations indicated by double-sided arrows.

Crystal Structure of [Pb2L3(CF3SO3)2Br]CF3SO3·CH3CN. The dinuclear meso-helicate crystallised in the P21/c space group with [Pb₂L3(CF₃SO₃)₂Br]CF₃SO₃·CH₃CN moiety one in the asymmetric unit. The twisting of L3 into a half-a-helical turn around the two Pb^{II} ions resulted in a meso-helicate with the metal ions in opposite absolute configurations (Figure 9). The conformation of the ligand in the meso-helicate provided a cleft that was ideal for the abstraction of bromide anions from solution during crystallisation. This bromide anion was bridged between Pb1 and Pb2 [Pb1-Br1 3.016(3) Å and Br1-Pb2 2.916(3) Å]. The bridging of ancillary hydroxide and nitrate donors across metal ions has also been observed in the meso-helicates of other py-hz ligands.^[14] Pb1 was in a seven-coordinate environment consisting of a pentadentate chelate from the ligand, a bridging bromide, and an axial CF₃SO₃ anion. Pb2 was in a lower six-coordinate environment consisting of four nitrogen donors from the ligand, a bridging bromide, and an axial CF₃SO₃ anion. The higher sevencoordinate environment around Pb1 led to a distinctly holohedral distribution around the Pb^{II} ion. In contrast, the hemidirecting influence of the stereochemically-active lone pair in the lower sixcoordinate Pb2 was apparent in the large O2-Pb2-N6 [170.3(4)°] angle and long distance between Pb2 and N5 [2.997(15) Å]. This stereochemically-active lone pair occupied the coordination sites in Pb2 where a second ligand may have coordinated in a double helicate.

Figure 8. Crystal structure of $[Pb_2\text{L3}(CF_3SO_3)_2\text{Br}]^+$ moiety with thermal ellipsoids shown at 50% probability level.

FULL PAPER

Figure 9. Ball-and-stick model of crystal structure of $[Pb_2L3]^{4+}$ moiety showing the *meso*-helical shape of complex.

Single Helical Pb^{II} Complexes of L4. The ligand L4 contained a sufficiently high number of donor atoms to direct single helicates with Pb^{II}. The solid that precipitated from the reaction of L4 with five equivalents of Pb(CF₃SO₃)₂·H₂O in CH₃CN had elemental analysis consistent with an empirical formula of Pb₂L4(CF₃SO₃)₄. The single helical structure of the complex was confirmed by ¹H NMR spectroscopy, which showed an upfield shifting of the H8 and H31 signals due to shielding between the helically-twisted ligand. The single helicate was also characterised by the splitting of the hydroxymethyl protons into an AB multiplet in the ¹H NMR spectrum. The NOESY spectrum of Pb₂L4(CF₃SO₃)₄ showed correlations between protons H3 and H10; H8 and H16; H18 and H24; and H28 and H34 (Figure 10) that indicated the Pb^{II} ions were identically coordinated in the single helicate.

Figure 10. Solution structure of $Pb_2L4(CF_3SO_3)_4$ (NMR numbering) with NOE correlations indicated by double-sided arrows.

Crystal Structure of [Pb2L4(CF3SO3)3]CF3SO3·CH3CN. Crystals of the dinuclear single helicate were obtained by vapour diffusion of Et₂O into a solution of L4 and five equivalents of Pb(CF₃SO₃)₂·H₂O in CH₃CN (Figure 11). The complex space group with crystallised in the *P*-1 one [Pb₂L4(CF₃SO₃)₃]CF₃SO₃·CH₃CN moiety in the asymmetric unit. The coordination of Pb1 to six donors of L4 and one CF₃SO₃ anion placed it in a higher seven-coordinate environment than the six-coordinate Pb2, which was coordinated to only four donors of L4 and two axial CF₃SO₃ anions. The large number of donor atoms in L4 allowed it to coordinate to the two Pb^{II} ions in the identical absolute configuration of a single-stranded helicate. The high denticity of L4 in the single helicate also ensured that more than 2/3 of the coordination spheres of the Pb^{II} ions were saturated by the helical ligand rather than CF₃SO₃ anions.

Figure 11. Crystal structure of $[Pb_2L4(CF_3SO_3)_3]^+$ moiety with thermal ellipsoids shown at 50% probability level.

Structure

Crystal

[Pb2L4CF3SO3(CH3OH)2](CF3SO3)3-2CH3OH-2H2O. A second set of crystals of the dinuclear single helicate were obtained by vapour diffusion of Et₂O into a solution of L4 and five equivalents of Pb(CF₃SO₃)₂.H₂O in CH₃OH. The complex crystallised in the $P2_1/n$ with space group а [Pb₂L4CF₃SO₃(CH₃OH)₂](CF₃SO₃)₃·2CH₃OH·2H₂O moiety in the asymmetric unit (Figure 12). Pb1 was in a nine-coordinate environment consisting of a heptadentate nitrogen chelate from L4 and two oxygen donors from a CF₃SO₃ anion. Pb2 shared a nitrogen donor (N8) with Pb1 [Pb1-N8 2.791(7) Å and Pb2-N8 2.905(8) Å] so that it was in a seven-coordinate environment consisting of a pentadentate nitrogen chelate from L4 and two monodentate CH₃OH donors. It is interesting that both these Pb^{II} single helicates, as well as the one example in the literature,^[10] are limited to three ancillary ligands in the crystal structure despite

of

FULL PAPER

differing in the types and denticities of the donor atoms. The close resemblance of all these complexes indicates the reliability of generating single helicates from py-hz ligands and Pb^{II}.

Figure 12. Crystal structure of $[Pb_2L4CF_3SO_3(CH_3OH)_2]^{3+}$ moiety with thermal ellipsoids shown at 50% probability level.

Pb^{II} Complexes of L5. The ligand L5 had a similar donor set to the previous ligand L4 except that the terminal pyridine rings were substituted with acryloyl groups. Reaction of L5 with five equivalents of Pb(CF₃SO₃)₂.H₂O led to a yellow solution, from which an orange solid was isolated by vapour diffusion of Et₂O. The elemental analysis of the solid indicated a mixture of different Pb^{II} complexes was likely present. When the complexation of L5 with Pb(CF₃SO₃)₂·H₂O was studied using ¹H NMR spectroscopy, the evolution of helical and non-helical Pb^{II} complexes was observable in the ¹H NMR spectra (Figure 13). At one equivalent of Pb^{II}, a single helicate was present in solution that was characterised by a splitting of the methylene protons (H35) into an AB quartet (J = 13.7 Hz) as well as upfield shifts of many of the aromatic protons. Between one and two equivalents of Pb^{II}, the helicates had rearranged into a mixture of non-helical complexes. This mixture of complexes was characterized by the broadening of the methylene protons (H35) in the ¹H NMR spectrum. An increase in the equivalents of Pb^{II} from two to eight resulted in the progressive broadening of some aromatic signals in the ¹H NMR spectra and steady sharpening of others. The broadening of the H16 signal at lower equivalents of Pb^{II} indicated that the terpyridine unit in L5 had significantly different coordination modes between the helical and non-helical complexes.

Figure 13. ¹H NMR spectra of L5 with a) one, b) two, c) three, d) four, e) eight equivalents of Pb(CF₃SO₃)₂·H₂O in CD₃CN.

Crystal Structure of [Pb3L5(CF3SO3)5]CF3SO3·3CH3CN·Et2O. One of the many Pb^{II} complexes in solution may have included a non-helical trinuclear Pb^{II} complex of L5. Crystals of a trinuclear Pb^{II} complex were isolated from the bulk mixture in CD₃CN by vapour diffusion of Et₂O (Figure 14). The complex crystallised in one the $P2_1/n$ space group with [Pb₃L5(CF₃SO₃)₅]CF₃SO₃·3CH₃CN·Et₂O moiety in the asymmetric unit. Pb1 and Pb3 had identical donor sets consisting of a tetradentate chelate from the ligand, one monodentate CF₃SO₃, and a bridging bidentate CF₃SO₃ anion. Pb2 was in a five-coordinate environment consisting of a tridentate terpyridine unit from the ligand and two CF₃SO₃ anions. Both Pb1 and Pb3 had large angles [N1-Pb1-N5 155.50(11)° and N11-Pb3-N15 156.99(11)°] in their coordination spheres that may be considered evidence for stereochemically-active lone pairs but could also be unusable coordination sites due to the steric bulk of L5. These vacant coordination sites were especially too small for the bulky acryloyl donors, which instead remained oriented outwards from the complex (Figure 15). If the acryloyl groups had coordinated to Pb^{II}, this trinuclear complex might have been destabilised in favour of the single-stranded helical complex found in solution.

This article is protected by copyright. All rights reserved.

FULL PAPER

Figure 14. Crystal structure of $[Pb_3L5(CF_3SO_3)_5]^+$ moiety with thermal ellipsoids shown at 50% probability level.

Figure 15. Ball-and-stick model of crystal structure of $[Pb_3L5]^{6+}$ moiety showing the non-helical shape of complex.

Conclusions

This paper describes some rare examples of discrete single helical Pb^{II} complexes using related ligand systems. The high coordination number of Pb^{II} with **L1** and **L2** directed non-helical mononuclear complexes. However, an increase in the number of donor atoms in **L3** allowed dinuclear single-stranded helical complexes to form. The dinuclear *meso*-helicates of **L3** had stereochemically-active lone pairs on Pb^{II} that prevented the

coordination of a second ligand in a double helicate. However, L3 did not contain enough donor atoms to direct a single helicate with Pb^{II}. Only L4 contained a sufficiently high number of donor atoms to coordinate around two Pb^{II} ions in the identical absolute configurations of a single helicate. The high denticity of L4 in the single helicates ensured that the Pb^{II} ions were mostly saturated by the helical ligands rather than ancillary CF₃SO₃ or CH₃OH donors. The contraction of py-hz ligands between the uncoordinated and *meso*-helical and single-helical states is promising but the complicated coordination of the acryloyl-modified L5 to Pb^{II} will need to be considered in the future design of dynamic polymer gels.

Experimental Section

General. All chemicals were used as received without further purification. Pb(CF₃SO₃)₂·H₂O was synthesized by treatment of PbCO₃·Pb(OH)₂ with HCF₃SO₃. All reaction solvents except EtOH were AR grade or higher. PE was of the 40/60 variety. Dry CH₂Cl₂ was obtained from a Pure Solv MD-6 solvent purification system. ¹H NMR, ¹³C NMR, COSY, NOESY, ROESY, HSQC, and HMBC spectra were collected on 400 or 500 MHz Varian UNITY INOVA spectrometers at 298 K. The ¹H NMR and ¹³C NMR chemical shifts were referenced to the residual non-perdeuterated solvent as reported by Gottlieb.^[15] The order of signal assignment in NMR spectra is as follows: chemical shift, multiplicity, coupling constant(s), number of protons, and assignment. Multiplicities are reported with the following notations s (singlet), d (doublet), t (triplet), dd (doublet of doublets), dt (doublet of triplets), dq (doublet of quartets), td (triplet of doublets), m (multiplet). IR spectra were recorded on a Bruker Optics Alpha FT-IR spectrometer with a diamond ATR top-plate. Microanalyses were determined at the Campbell Microanalytic Laboratory University of Otago using a Carlo Erba 1108 CHNS combustion analyser. HR-ESI-MS were run on a Bruker microTOFQ instrument with ESI source in a positive or negative mode.

X-ray Crystallography. Single crystals were mounted in paratone-N oil on a nylon loop. Data were collected on an Agilent Technologies Supernova system at 100 K at the University of Otago using mirror monochromated Mo $K\alpha$ ($\lambda = 0.71073$ Å) or Cu $K\alpha$ ($\lambda = 1.54184$ Å) radiation. The data were treated using CrysAlisPro.^[16] Intensities were corrected for Lorentz polarisation effects,^[17] and a multiscan absorption correction applied.^[18] The structures were solved by direct methods (SHELXT^[19] or SIR-97^[20]) and refined on P^2 using all data by full-matrix least-squares procedures in SHELXL-2014^[21] within the WINGX^[22] interface. Detailed analyses of the extended structures were carried out using PLATON^[23] and MERCURY^[24] (Version 3.9).

2,6-Pyridinedicarboxaldehyde (1). A mixture of 2,6-pyridinedimethanol (2.02 g, 14.5 mmol) and SeO₂ (3.22 g, 29.0 mmol) in CHCl₃ (120 mL) was heated at reflux for 24 h. The mixture was cooled to RT, filtered, and the filtrate evaporated *in vacuo* to an orange solid. The orange solid was purified through celite with CH₂Cl₂ (100 mL) to give **1** (1.72 g, 12.7 mmol, 88%) as an off-white solid.^[25] ¹H NMR (400 MHz, [D]chloroform) δ 10.17 (d, *J* = 0.8 Hz, 1H, H-5), 8.18 (dd, *J* = 7.7, 0.8 Hz, 1H, H-3), 8.08 (m, 1H, H-4) ppm. ¹³C NMR (100 MHz, [D]chloroform): δ 192.4 (C-5), 152.9 (C-2), 138.4 (C-4), 125.3 (C-3) ppm. Selected IR *v/cm*⁻¹: 3085 (sh, wk, C-H), 3018 (sh, wk), 2922 (sh, wk), 2858 (sh, md), 1715 (sh, str, C=O), 1692 (sh, str), 1579 (sh, wk), 1348 (sh, str), 1300 (sh, wk), 1259 (sh, str), 1226 (sh, str), 1164 (sh, wk), 1086 (sh, wk).

6-Hydroxymethyl-2-pyridinecarboxaldehyde (2). A mixture of 2,6-pyridinedimethanol (2.06 g, 14.8 mmol) and SeO₂ (0.832 g, 7.49 mmol) in CHCl₃ (200 mL) was heated at reflux for 16 h. The mixture was cooled to RT, filtered, and the filtrate evaporated *in vacuo* to a yellow oil. The yellow oil was purified by column chromatography on silica gel eluted with a

FULL PAPER

gradient of EtOAc/CH₂Cl₂ (0 to 100%) to give 2 (1.22 g, 8.89 mmol, 60%) as a yellow oil that solidified on standing.[26] 1H NMR (400 MHz, [D]chloroform): δ 10.09 (s, 1H, H-8), 7.89 (m, 2H, H-3/5), 7.52 (m, 1H, H-4), 4.88 (s, 2H, H-7) ppm. ¹³C NMR (100 MHz, [D]chloroform): δ 193.2 (C-8), 160.2, 151.8, 137.9, 124.9, 120.6, 64.2 (C-7) ppm. Selected IR v/cm⁻¹: 3134 (br, md, O-H), 2841 (br, wk), 2719 (br, wk), 1708 (sh, md, C=O), 1599 (sh, md), 1449 (sh, md), 1336 (sh, md), 1267 (sh, wk), 1210 (sh, md), 1144 (sh, wk), 1103 (sh, str), 1043 (sh, str).

3-(Hydroxymethyl)6-(1-methylhydrazino)pyridine (3). Methylhydrazine (3.00 mL, 57.0 mmol) was added to 6-bromo-3-(hydroxymethyl)pyridine (1.02 g, 5.42 mmol) and the solution heated at reflux for 24 h under an Ar atmosphere. The solution was cooled to RT then extracted with 3:1 CHCl₃/iPrOH, washed with 5% Na₂CO₃, extracted with 3:1 CHCl₃/iPrOH and evaporated in vacuo to give 3 (0.810 g, 5.29 mmol, 97%) as an opaque oil. ¹H NMR (400 MHz, [D]chloroform): δ 8.12 (d, J = 2.4 Hz, 1H, H-6), 7.53 (dd, J = 8.7, 2.4 Hz, 1H, H-4), 6.96 (dd, J = 8.8, 0.8 Hz, 1H, H-3), 4.57 (s, 2H, H-7), 3.28 (s, 3H, H-8) ppm. ^{13}C NMR (100 MHz, [D]chloroform): δ 161.1 (C-2), 144.5(C-6), 139.9 (C-4), 126.8 (C-5), 109.5 (C-3), 62.3 (C-7), 41.2 (C-8) ppm. HR-ESI-MS: Calcd for [3+H]+ (C7H12N3O) m/z 154.0975; Found. 154.0963

2-(Hydroxymethyl)6-(1-methylhydrazino)pyridine (4). Methylhydrazine (3.00 mL, 57.0 mmol) was added to 6-bromo-2-(hydroxymethyl)pyridine (0.923 g, 4.91 mmol) and the solution heated at reflux for 23 h under an Ar atmosphere. The solution was cooled to RT then extracted with 3:1 CHCl₃//PrOH, washed with 5% Na₂CO₃, extracted with 3:1 CHCl₃//PrOH and evaporated in vacuo to give 4 as an opaque oil (0.689 g, 4.49 mmol, 92%). ¹H NMR (400 MHz, [D]chloroform): δ 7.47 (dd, J = 8.4, 7.3 Hz, 1H, H-4), 6.85 (dq, J = 8.4, 0.7 Hz, 1H, H-5), 6.50 (dq, J = 7.3, 0.8 Hz, 1H, H-3), 4.62 (t, J = 0.7 Hz, 2H, H-7), 3.30 (s, 3H, H-8) ppm. ¹³C NMR (100 MHz, [D]chloroform): δ 160.6 (C-2/6), 156.6 (C-2/6), 138.1 (C-3/4/5), 108.9 (C-3/4/5), 105.7 (C-3/4/5), 63.8 (C-7), 41.2 (C-8) ppm. HR-ESI-MS: Calcd for [4+Na]⁺ (C₇H₁₁N₃NaO) m/z 176.0794; Found. 176.0790.

6,6"-Dibromo-4'-phenyl-2,2':6',2"-terpyridine 2-Acetvl-6-(5). bromopyridine (2.55 g, 12.7 mmol) was added to a solution of KOH (2.94 g, 52.5 mmol) in dry EtOH (40 mL) and the solution stirred for 30 min under an Ar atmosphere. Benzaldehyde (0.650 mL, 6.40 mmol) and NH₃ (2M in EtOH) (10.0 mL, 20.0 mmol) were added and the orange solution stirred at RT for 25 h under an Ar atmosphere. The white precipitate was filtered, washed with EtOH then dried under vacuum to give 5 (1.86 g, 3.99 mmol, 31%) as a white solid.^{[27] 1}H NMR (500 MHz, [D]chloroform): δ 8.70 (s, 2H, H-3), 8.59 (dd, J = 7.7, 0.9 Hz, 2H, H-8), 7.87 (m, 2H, H-12), 7.72 (t, J = 7.8 Hz, 2H, H-9), 7.54 (m, 4H, H10/13), 7.49 (m, 1H, H-14) ppm. ¹³C NMR (126 MHz, [D]chloroform): δ 157.4 (C-5), 154.5 (C-2), 151.0 (C-11), 141.8 (C-7), 139.3 (C-9), 138.3 (C-4), 129.4 (C-14), 129.2 (C-13), 128.4 (C-10), 127.6 (C-12), 120.2 (C-8), 120.1 (C-3) ppm. Selected IR v/cm⁻¹: 1603 (sh, wk), 1576 (sh, str), 1541 (sh, str), 1497 (sh, md), 1455 (sh, md), 1437 (sh, str), 1388 (sh, str), 1162 (sh, wk), 1150 (sh, md), 1121 (sh, str), 1072 (sh, md), 1058 (sh, md). HR-ESI-MS: Calcd for [5+Na]+ (C₂₁H₁₃Br₂N₃Na) m/z 489.9353; Found. 489.9321. Elemental analysis calcd for C21H13Br2N3: C, 53.99; H, 2.81; N, 8.99. Found: C, 53.86; H, 2.86; N, 8.72.

6,6"-Bis(1-methylhydrazino)-4'-phenyl-2,2':6',2"-terpyridine (6). Methylhydrazine (5.00 mL, 95.0 mmol) was added to 5 (0.524 g, 1.12 mmol) and the mixture heated at reflux for 23 h under an Ar atmosphere. The yellow mixture was cooled to RT, extracted with CH₂Cl₂, washed with 10% Na₂CO₃, extracted with CH₂Cl₂, washed with water, dried with Na₂SO₄ and evaporated in vacuo to give 6 (0.430 g, 1.08 mmol, 96%) as a yellow solid. ¹H NMR (500 MHz, [D]chloroform): δ 8.60 (s, 2H, H-3), 8.03 (dd, J = 7.4, 0.8 Hz, 2H, H-10), 7.82 (m, 2H, H-12), 7.68 (dd, J = 8.4, 7.4 Hz, 2H, H-9), 7.54 (m, 2H, H-13), 7.48 (m, 1H, H-14), 7.02 (dd, J = 8.4, 0.8 Hz, 2H, H-8), 3.39 (s, 6H, H-16) ppm. ¹³C NMR (126 MHz, [D]chloroform): δ 160.9 (C-7), 156.4 (C-3), 153.9 (C-5), 149.9 (C-11), 139.7 (C-4), 138.3 (C-9), 129.2 (C-13), 128.9 (C-14), 127.4 (C-12), 118.6 (C-3), 110.9 (C-10), 107.9 (C-8), 41.4 (C-15) ppm. Selected IR v/cm⁻¹: 3304 (sh, wk, N-H), 1641 (sh, md), 1578 (sh, str), 1560 (sh, str), 1542 (sh, str), 1469 (sh, md), 1394 (sh, str), 1289 (sh, md), 1233 (sh, md), 1121 (sh, md). HR-ESI-MS: Calcd for [6+H]+ (C23H24N7) m/z 398.2093; Found. 398.2096.

Pyridine-2-carboxaldehyde-(5-hydroxymethyl-pyridine-2-

yl)methylhydrazone (7). A solution of 3 (0.810 g, 5.29 mmol) in EtOH (100 mL) was added dropwise to a solution of 1 (0.797 g, 5.89 mmol) in EtOH (50 mL) over 1 h and the mixture stirred at RT for 3 h. The yellow mixture was filtered and the filtrate evaporated in vacuo to an orange solid. The orange solid was purified by column chromatography on silica gel eluted with a gradient of EtOAc/CH2Cl2 (0 to 100%) and CH3OH/EtOAc (5%) to give 7 (0.581 g, 2.15 mmol, 41%) as a yellow solid. ¹H NMR (500 MHz, [D]chloroform) δ 10.08 (d, J = 0.8 Hz, 1H, H-7), 8.24 (dd, J = 7.7, 1.3 Hz, 1H, H-5), 8.22 (dt, J = 2.3, 0.8 Hz, 1H, H-14), 7.88 (td, J = 7.6, 0.8 Hz, 1H, H-4), 7.85 (m, 1H, H-3), 7.82 (s, 1H, H-8), 7.73 (dt, J = 8.7, 0.9 Hz, 1H, H-17), 7.68 (dd, J = 8.7, 2.3 Hz, 1H, H-16), 4.66 (s, 2H, H-18), 3.73 (d, J = 0.8 Hz, 3H, H-11) ppm. ¹³C NMR (126 MHz, [D]chloroform): δ 193.3 (C-7), 157.1 (C-12), 156.3 (C-6), 152.5 (C-2), 146.2 (C-14), 137.6 (C-16), 137.3 (C-4), 133.7 (C-8), 128.9 (C-15), 123.6 (C-5), 120.9 (C-3), 110.2 (C-17), 62.8 (C-18), 30.2 (C-11) ppm. Selected IR v/cm⁻¹: 3263 (br, md, O-H), 2838 (sh, wk, N-H), 1709 (sh, str, C=O), 1605 (sh, str), 1561 (sh, str, C=N), 1483 (sh, str), 1449 (sh, str), 1396 (sh, str), 1319 (sh, str), 1289 (sh, md), 1195 (sh, str), 1146 (sh, md), 1111 (sh, str), 1008 (sh, str). HR-ESI-MS: Calcd for [7+Na]⁺ (C₁₄H₁₄N₄O₂Na) m/z 293.1015; Found 293.0988. Elemental analysis calcd for C14H14N4O2: C, 62.21; H, 5.22; N, 20.73. Found: C, 62.45; H, 5.17; N, 20.48.

Pyridine-2-carboxaldehyde-(6-hydroxymethyl-pyridine-2-

yl)methylhydrazone (8). A solution of 4 (0.466 g, 3.04 mmol) in CHCl₃ (50 mL) was added dropwise to a solution of 1 (0.505 g, 3.74 mmol) in CHCl₃ (10 mL) over 2 h and the mixture stirred at RT for 15 h. The yellow mixture was filtered and the filtrate evaporated in vacuo to a yellow solid. The solid was purified by column chromatography on silica gel eluted with a gradient of EtOAc/CH_2Cl_2 (0 to 100%) and CH_3OH/EtOAc (0 to 5%) to give $\boldsymbol{8}$ (0.361 g, 1.34 mmol, 44%) as a yellow solid. ¹H NMR (500 MHz, [D]chloroform) δ 10.09 (s, 1H, H-7), 8.25 (dd, J = 7.4, 1.6 Hz, 1H, H-5), 7.87 (m, 3H, H-3/4/8), 7.64 (m, 2H, H-15/17), 6.80 (m, 1H, H-16), 4.71 (s, 2H, H-18), 3.75 (s, 3H, H-11) ppm. ^{13}C NMR (126 MHz, [D]chloroform) δ 193.3 (C-7), 156.8 (C-14), 156.7 (C-12), 156.2 (C-6), 152.5 (C-2), 138.6 (C-15/17), 137.3 (C-3/4), 134.0 (C-8), 123.6 (C-5), 120.9 (C-3/4), 112.8 (C-16), 108.7 (C-15/17), 64.2 (C-18), 30.1 (C-11) ppm. Selected IR v/cm⁻¹: 3256 (br, md O-H), 3076 (sh, wk), 2832 (sh, wk, N-H), 1711 (sh, str, C=O), 1591 (sh, str), 1564 (sh, str, C=N), 1471 (sh, str), 1450 (sh, str), 1418 (sh, str), 1376 (sh, md), 1348 (sh, md), 1314 (sh, md), 1288 (sh, md), 1212 (sh, str), 1153 (sh, md), 1133 (sh, str), 1064 (sh, md), 1027 (sh, md), 1005 (sh, str). HR-ESI-MS: Calcd for [8+H]+ (C14H15N4O2) m/z 271.1190; Found 271.1176. Calcd for [8+Na]+ (C14H14NaNaO2) m/z 293.1009: Found 293.0994. Elemental analysis calcd for C14H14N4O2: C, 62.21; H, 5.22; N, 20.73. Found: C, 62.22; H, 5.37; N, 20.43

Pyridine-2-carboxaldehyde-(6-propenoic

acid-pyridine-2yl)methylhydrazone (9). NEt₃ (0.1 mL, 0.7 mmol) was added to a solution of ${f 8}$ (0.149 g, 0.551 mmol) in dry CH₂Cl₂ (50 mL) and the solution cooled to 0 °C. Acryloyl chloride (0.05 mL, 0.6 mmol) added and the brown solution stirred at RT for 24 h under an Ar atmosphere. The brown solution was washed with water, washed with NaHCO3, extracted with CH2Cl2 and evaporated in vacuo to a brown solid. The brown solid was purified by column chromatography on silica gel eluted with a gradient of CH2Cl2/PE (50 to 100%) then EtOAc/CH2Cl2 (0 to 100%) to give 9 (0.056 g, 0.17 mmol, 31%) as a yellow solid. ¹H NMR (400 MHz, [D]chloroform) δ 10.08 (s, 1H, H-7), 8.23 (dd, J = 7.7, 1.5 Hz, 1H, H-5), 7.87 (m, 1H, H-4), 7.84 (m, 1H, H-3), 7.82 (s, 1H, H-8), 7.65 (m, 2H, H-16/17), 6.90 (dd, J = 6.6, 1.6 Hz, 1H, H-15), 6.51 (dd, J = 17.3, 1.4 Hz, 1H, H-22a/b), 6.25 (m, 1H, H-21), 5.91 (dd, J = 10.5, 1.4 Hz, 1H, H-22a/b), 5.25 (s, 2H, H-18), 3.72 (s, 3H, H-11) ppm. ^{13}C NMR (126 MHz, [D]chloroform) δ 166.0 (C-20), 156.9 (C-14), 156.3 (C-12), 153.5 (C-6), 152.5 (C-2), 138.5 (C-16/17), 137.3 (C-4), 133.7 (C-8), 131.5 (C-22), 128.4 (C-21), 123.6 (C-5), 120.9 (C-3), 113.9 (C-15), 109.3 (C-16/17), 66.9 (C-18), 29.9 (C-11) ppm. HR-ESI-MS: Calcd for [9+H]+ (C17H17N4O3) m/z 325.1295; Found 325.1308. Calcd for [9+Na]+

FULL PAPER

 $\begin{array}{l} (C_{17}H_{16}N_4O_3Na) \ \textit{m/z}\ 347.1115; \ Found\ 347.1109. \ Elemental analysis calcd for \ C_{17}H_{16}N_4O_3\cdot 0.3CH_3COOCH_2CH_3: \ C,\ 62.52; \ H,\ 5.19; \ N,\ 16.38. \ Found: \ C,\ 62.70; \ H,\ 5.20; \ N,\ 16.46. \end{array}$

L1. A solution of 3 (1.26 g, 8.22 mmol) and 1 (0.505 g, 3.74 mmol) in EtOH (50 mL) was heated at reflux for 4 h. The yellow mixture was cooled to RT. The yellow precipitate was filtered, washed with EtOH and Et₂O then dried under vacuum to give L1 (0.833 g, 2.05 mmol, 55%) as a yellow solid. ¹H NMR (400 MHz, [D₆]DMSO) δ 8.18 (dd, J = 2.2, 0.9 Hz, 2H, H-11), 7.94 (m, 2H, H-3), 7.86 (dd, J = 8.8, 6.8 Hz, 1H, H-4), 7.77 (s, 2H, H-5), 7.74 (dd, J = 8.7, 0.9 Hz, 2H, H-13/14), 7.70 (dd, J = 8.8, 2.2 Hz, 2H, H-13/14), 4.46 (d, J = Hz, 4H, H-15), 3.67 (d, J = 0.8 Hz, 6H, H-8) ppm. Selected IR v/cm⁻¹: 3288 (br str, O-H), 3002 (sh, wk, N-H), 2867 (sh, wk, N-H), 1604 (sh, str), 1582 (sh, str), 1562 (sh, str, C=N), 1487 (sh, str), 1455 (sh, str), 1397 (sh, str), 1370 (sh, str), 1311 (sh, str), 1283 (sh, md), 1232 (sh, md), 1202 (sh, str), 1153 (sh, md), 1144 (sh, md), 1116 (sh, str), 1032 (sh, str), 1014 (sh, str). HR-ESI-MS: Calcd for [L1+Na]⁺ (C₂₁H₂₃N₇O₂Na) m/z428.1811; Found 428.1772. Elemental analysis calcd for $C_{21}H_{23}N_7O_2 \cdot 0.3H_2O; \ C, \ 61.39; \ H, \ 5.79; \ N, \ 23.86. \ Found: \ C, \ 61.24; \ H, \ 5.74;$ N. 23.54.

L2. A solution of **4** (0.227 g, 1.48 mmol) and **1** (0.101 g, 0.747 mmol) in EtOH (50 mL) was heated at reflux for 2 h. The white mixture was cooled to RT. The white precipitate was filtered, washed with EtOH and Et₂O then dried under vacuum to give **L2** (0.207 g, 0.503 mmol, 68%) as a white solid. ¹H NMR (400 MHz, [D]chloroform) δ 7.94 (d, *J* = 7.8 Hz, 2H H-3), 7.80 (s, 2H, H-5), 7.64 (m), 7.52 (s), 7.00 (s), 6.77 (d, *J* = 6.6 Hz, 2H, H-12), 4.70 (d, *J* = 4.70 Hz, 4H, H-15), 3.74 (s, 6H, H-8) ppm. Selected IR *v/cm*⁻¹: 3316 (br, wk, O-H), 1592 (sh, str), 1572 (sh, str, C=N), 1483 (sh, str), 1458 (sh, str), 1378 (sh, str), 1082 (sh, wk), 1291 (sh, wk), 1250 (sh, md), 1218 (sh, md), 1142 (sh, str), 1082 (sh, wk), 1066 (sh, md), 1028 (sh, md), 1010 (sh, str). HR-ESI-MS: Calcd for [**L2**+Na]⁺ (C₂₁H₂₃NrO₂Na) *m/z* 428.1805; Found 428.1787. Elemental analysis calcd for C₂₁H₂₃NrO₂·0.4H₂O: C, 61.12; H, 5.81; N, 23.76. Found: C, 61.06; H, 5.39; N, 23.48.

L3. A mixture of **2** (0.571 g, 4.16 mmol) and **6** (0.424 g, 1.07 mmol) in EtOH (50 mL) was heated at reflux for 1 h. The yellow mixture was cooled to RT. The yellow precipitate was filtered, washed with EtOH and Et₂O then dried under vacuum to give **L3** (0.359 g, 0.565 mmol, 53%) as a yellow solid. Selected IR v/cm⁻¹: 3164 (br, md, O-H), 1563 (sh, str), 1547 (sh, str, C=N), 1499 (sh, wk), 1476 (sh, md), 1455 (sh, str), 1443 (sh, str), 1398 (sh, str), 1264 (sh, md), 1229 (sh, str), 1133 (sh, str), 1123 (sh, str), 1035 (sh, md), 1007 (sh, md). HR-ESI-MS: Calcd for [**L3**+Na]⁺ (C₃₇H₃₃N₉O₂Na) *m*/z 658.2649; Found 658.2618. Elemental analysis calcd for C₃₇H₃₃N₉O₂·1.5H₂O: C, 67.05; H, 5.48; N, 19.02. Found: C, 67.64; H, 5.12; N, 18.80.

L4. A solution of 7 (0.253 g, 0.937 mmol) and 6 (0.171 g, 0.430 mmol) in EtOH (50 mL) was heated at 50 °C for 21 h. The brown mixture was cooled to RT. The brown precipitate was filtered, washed with EtOH and Et₂O then dried under vacuum to give L4 (0.279 g, 0.309 mmol, 72%) as a brown solid. Selected IR v/cm⁻¹: 3253 (br, wk, O-H), 2866 (sh, wk), 1605 (sh, str), 1561 (sh, str), 1547 (sh, str, C=N), 1485 (sh, str), 1440 (sh, str), 1392 (sh, str), 1367 (sh, str), 1308 (sh, md), 1273 (sh, md), 1236 (sh, md), 1216 (sh, md), 1149 (sh, md), 1110 (sh, str), 1004 (sh, str). Elemental analysis calcd for C₅₁H₄₇N₁₅O₂·CH₃CH₂OH·1.5H₂O: C, 65.28; H, 5.79; N, 21.55. Found: C, 65.33; H, 5.71; N, 21.40.

L5. A solution of **9** (0.475 g, 1.47 mmol) and **6** (0.258 g, 0.649 mmol) in THF (50 mL) was heated at reflux for 22 h. The yellow mixture was cooled to RT. The yellow precipitate was filtered, washed with THF then dried under vacuum to give **L5** (0.399 g, 0.395 mmol, 61%) as a yellow solid. ¹H NMR (400 MHz, [D]chloroform) δ 8.68 (s), 8.27 (m), 7.96 (dd, *J* = 17.6, 7.8 Hz), 7.88 (d, *J* = 7.3 Hz), 7.85 (m), 7.80 (s), 7.76 (t, *J* = 7.8 Hz), 7.70 (d, *J* = 8.5 Hz), 7.61 (m), 7.52 (s), 7.00 (s), 6.89 (d, *J* = 7.1 Hz), 6.52 (dd, *J* = 17.4, 1.5 Hz, H-38a/b), 6.25 (dd, *J* = 17.3, 10.4 Hz, H-37), 5.91 (dd, *J* = 10.4, 1.4 Hz, H-38a/b), 5.25 (s, H-35), 3.90 (s, H-16/28), 3.72 (s, H-16/28) ppm. Selected IR v/cm⁻¹: 1728 (sh, str, C=O), 1562 (sh, str), 1546 (sh, str, C=N), 1476 (sh, str), 1435 (sh, str), 1397 (sh, str), 1317 (sh, str), 1252 (sh,

md), 1215 (sh, md), 1177 (sh, md), 1127 (sh, str), 1065 (sh, md), 1007 (sh, md).

PbL1(CF3SO3)2. A mixture of L1 (0.096 g, 0.26 mmol) and Pb(CF₃SO₃)₂·H₂O (0.322 g, 0.616 mmol) in CH₃CN (25 mL) was stirred at RT for 5 h and the orange solution evaporated in vacuo to an orange solid. The solid was dissolved in CH₃CN (25 mL) and vapour diffused with Et₂O (50 mL) to give PbL1(CF₃SO₃)₂ (0.026 g, 0.029 mmol, 12%) as an orange solid. ¹H NMR (500 MHz, [D₄]methanol): δ 8.55 (m, 2H, H-5/11), 8.32 (m, 1H, H-4), 8.00 (m, 2H, H-3/13), 7.51 (d, J = 8.7 Hz, H-14), 4.77 (s, 4H, H-15), 3.80 (d, J = 0.8 Hz, 3H, H-8) ppm. ¹³C NMR (126 MHz, [D₄]methanol): δ 155.4 (C-9), 153.4 (C-2), 145.9 (C-11), 142.7 (C-12), 141.1 (C-13), 137.4 (C-5), 133.3 (C-3), 128.1 (C-4), 111.5 (C-14), 61.9 (C-15), 34.8 (C-8) ppm. Selected IR v/cm⁻¹: 3259 (br, wk, OH), 1598 (sh, md), 1547 (sh, md, C=N), 1496 (sh, md), 1401 (sh, md), 1315 (sh, md), 1238 (br, str, SO₃CF₃-), 1156 (sh, str), 1127 (sh, str), 1023 (sh, str). HR-ESI-MS: Calcd for [L1+Pb+CF₃SO₃]⁺ (C₂₂H₂₃F₃N₇O₅PbS) *m*/z 762.1196; Found 762.1233. Elemental analysis calcd for C23H23F6N7O8PbS2: C, 30.33; H, 2.55; N, 10.77. Found: C, 30.37; H, 2.47; N, 10.82. Single crystals of [PbL1(CF3SO3)2]·CHCl3 were obtained by vapour diffusion of CHCl3 into a solution of L1 and two equivalents of Pb(CF₃SO₃)₂·H₂O in CH₃OH.

PbL2(CF₃SO₃)₂. A mixture of L2 (0.058 g, 0.14 mmol) and Pb(CF₃SO₃)₂·H₂O (0.112 g, 0.214 mmol) in CH₃CN (25 mL) was stirred at RT for 30 min, filtered, and a 1:1 mixture of PE/Et₂O (150 mL) added to the filtrate to give PbL2(CF₃SO₃)₂ (0.082 g, 0.090 mmol, 63%) as a yellow solid. ¹H NMR (500 MHz, [D₄]methanol): δ 8.44 (d, J = 1.1 Hz, 2H, H-5), 8.19 (t, J = 7.8 Hz, 1H, H-4), 7.90 (dd, J = 8.5, 7.5 Hz, 2H, H-13), 7.82 (d, J = 7.8 Hz, 2H, H-3), 7.27 (d, J = 8.5 Hz, 2H, H-14), 7.07 (dd, J = 7.4, 0.9 Hz, 2H, H-12), 4.96 (s, 4H, H-15), 3.74 (d, J = 0.9 Hz, 6H, H-8) ppm. ¹³C NMR (126 MHz, [D4]methanol): δ 160.3 (C-11), 156.8 (C-9), 154.2 (C-2), 141.8 (C-13), 141.6 (C-4), 138.8 (C-5), 127.4 (C-3), 116.0 (C-12), 109.4 (C-14), 65.3 (C-15), 34.8 (C-8) ppm. Selected IR v/cm-1: 3335 (sh, br, O-H), 1589 (sh, md), 1548 (sh, md, C=N), 1481 (sh, md), 1433 (sh, md), 1328 (sh, str), 1287 (sh, str), 1221 (br, str, SO₃CF₃-), 1166 (sh, md), 1019 (sh, str). HR-ESI-MS: Calcd for [L2+Pb+CF₃SO₃]⁺ (C₂₂H₂₃F₃N₇O₅PbS) m/z 762.1196; Found 762.1268. Calcd for [L2+Pb-H]+ (C21H22N7O2Pb) m/z 612.1598: Found 612.1651. Elemental analysis calcd for C23H23F6N7O8PbS2: C, 30.33; H, 2.55; N, 10.77. Found: C, 30.38; H, 2.42; 10.70. Single N. crystals of PbL2(CF₃SO₃)₂][PbL2CF₃SO₃]CF₃SO₃·CH₃CN were obtained by vapour diffusion of Et₂O into a solution of L2 and one equivalent of Pb(CF₃SO₃)₂·H₂O in CH₃CN.

Pb2L3(CF3SO3)4. A mixture of L3 (0.025 g, 0.039 mmol) and Pb(CF₃SO₃)₂·H₂O (0.085 g, 0.16 mmol) in CH₃CN (25 mL) was stirred at RT for 1 h and the vellow solution evaporated in vacuo to a vellow solid. The solid was dissolved in CH₃CN (5 mL) and vapour diffused with Et₂O to give Pb₂L3(CF₃SO₃)₄ (0.026 g, 0.016 mmol, 41%) as a yellow solid. ¹H NMR (500 MHz, [D₃]acetonitrile): δ 8.52 (s, 1H, H-18), 8.45 (s, 1H, H-3), 8.24 (dd, J = 8.6, 7.5 Hz, 1H, H-9), 8.06 (t, J = 7.8 Hz, 1H, H-23), 8.02 (m, 1H, H-12/13/14), 7.96 (d, J = 7.5 Hz, 1H, H-10), 7.74 (dd, J = 7.7, 1.1 Hz, 1H, H-24), 7.63 (m, 2H, H-12/13/14), 7.55 (d, J = 8.7 Hz, 1H, H-8), 7.47 (d, J = 7.9 Hz, 1H, H-22), 4.91 (d, J = 4.5 Hz, 2H, H-25), 4.87 (m, 1H, H-26), 3.71 (d, J = 0.8 Hz, 4H, H-16) ppm. ¹³C NMR (126 MHz, [D₃]acetonitrile): δ 161.9 (C-21), 157.5 (C-2), 156.6 (C-7), 155.0 (C-5), 154.3 (C-11), 151.3 (C-19), 143.3 (C-9), 141.5 (C-23), 141.0 (C-18), 137.5 (C-4), 131.5 (C-14), 130.5 (C-12/13), 128.7 (C-12/13), 126.6 (C-24), 124.7 (C-3), 124.0 (C-22), 120.2 (C-10), 118.3 (C-8), 65.1 (C-25), 36.5 (C-16) ppm. Selected IR v/cm⁻ ¹: 3420 (br, wk, O-H), 1595 (sh, md), 1574 (sh, md, C=N), 1562 (sh, md), 1483 (sh, md), 1460 (sh, md), 1209 (br, str, SO₃CF₃-), 1165 (sh, str), 1015 str). HR-ESI-MS: Calcd for [L3+Pb2+CF3SO3-H]24 (sh. (C38H32F3N9O5Pb2S) m/z 599.5864; Found 599.5812. Calcd for [L3+Pb]2+ (C37H33N9O2Pb) m/z 421.6259; Found 421.6228. Calcd for [L3+Pb2-2H]2+ (C37H31N9O2Pb2) 524.6066; Found 524.6024. Calc for [L3+Pb2+Br-H]2+ (C₃₇H₃₂BrN₉O₂Pb₂) 564.5686; Found 564.5643, Elemental analysis calcd for C41H33F12N9O14Pb2S4: C, 29.91; H, 2.02; N, 7.66. Found: C, 30.11; H, 2.14; N, 7.40. Single crystals of [Pb2L3(CF3SO3)2Br]CF3SO3·CH3CN were

FULL PAPER

obtained by vapour diffusion of Et_2O into a solution of L3 and four [7] equivalents of Pb(CF₃SO₃)₂·H₂O in CH₃CN.

Pb2L4(CF3SO3)4. A mixture of L4 (0.059 g, 0.065 mmol) and Pb(CF₃SO₃)₂·H₂O (0.152 g, 0.290 mmol) in CH₃CN (25 mL) was stirred at RT for 30 min and the orange solution evaporated in vacuo to a yellow oil. The oil was dissolved in CH₃CN (2 mL) and vapour diffused with Et₂O (20 mL) to give $Pb_2L4(CF_3SO_3)_4$ (0.061 g, 0.032 mmol, 49%) as an orange solid. ¹H NMR (400 MHz, [D₃]acetonitrile): δ 8.36 (t, J = 7.7 Hz, 1H, H-23), 8.32 (s, 1H, H-3), 8.19 (s, 1H, H-18), 8.11 (t, J = 8.0 Hz, 1H, H-33), 8.01 (dd, J = 6.6, 3.0 Hz, 1H, H-10), 7.93 (d, J = 7.7 Hz, 1H, H-24), 7.69 (m, 4H, H-9/12/13/14), 7.59 (d, J = 7.7 Hz, 1H, H-22), 7.50 (m, 2H, H-25/34), 7.04 (d, J = 8.8 Hz, 1H, H-8), 6.84 (s, 1H, H-31), 3.87 (d, J = 10.4 Hz, 2H, H-35), 3.41 (s, 3H, H-28), 3.27 (s, 3H, H-16) ppm. Selected IR v/cm⁻¹: 3413 (br. wk. O-H). 3085 (br. wk). 1590 (sh. md). 1571 (sh. md). 1542 (sh. md. C=N), 1492 (sh, md), 1396 (sh, md), 1315 (sh, md), 1279 (sh, str), 1221 (br, str, SO₃CF₃⁻), 1150 (sh, str), 1125 (sh, str), 1050 (sh, md), 1020 (sh, str). HR-ESI-MS: Calcd for [L4+Pb]²⁺ (C₅₁H₄₇N₁₅O₂Pb) m/z 554.6899; Found 554.6867. Elemental analysis calcd for C55H47F12N15O14Pb2S4: C, 34.54; H, 2.48; N, 10.98. Found: C, 34.63; H, 2.57; N, 11.12. Single crystals of $[Pb_2L4(CF_3SO_3)_3]CF_3SO_3 \cdot CH_3CN$ were obtained by vapour diffusion of Et₂O into a solution of L4 and five equivalents of Pb(CF₃SO₃)₂·H₂O in CH₃CN. Single crystals of [Pb2L4CF3SO3(CH3OH)2](CF3SO3)3·2CH3OH·2H2O were obtained by vapour diffusion of Et₂O into a solution of L4 and five equivalents of Pb(CF₃SO₃)₂,H₂O in CH₃OH.

Reaction of L5 with Pb(CF₃SO₃)₂·H₂O. A mixture of L5 (0.020 g, 0.020 mmol) and Pb(CF₃SO₃)₂·H₂O (0.052 g, 0.099 mmol) in CH₃CN (25 mL) was stirred at RT for 2 h and the orange solution evaporated *in vacuo* to a yellow solid. The solid was dissolved in CH₃CN (2 mL) and vapour diffused with Et₂O (20 mL) to give an orange solid (0.046 g). Selected IR v/cm⁻¹: 1718 (sh, md, C=O), 1594 (sh, md), 1574 (sh, md), 1546 (sh, md, C=N), 1482 (sh, md), 1454 (sh, md), 1407 (sh, md), 1206 (br, str, SO₃CF₃·), 1162 (sh, str), 1012 (sh, str). HR-ESI-MS: Calcd for [L5+Pb+CF₃SO₃]⁺ (C₅₈H₅₁F₃N₁₅O₇PbS) *m/z* 1366.3536; Found 1366.3523. Calcd for [L5+Pb]²⁺ (C₅₇H₅₁N₁₅O₄Pb) *m/z* 608.7006; Found 608.7083. Single crystals of [Pb₃L5(CF₃SO₃)₅]CF₃SO₃·3CH₃CN·Et₂O were obtained by vapour diffusion of Et₂O into a solution of the bulk solid in CD₃CN.

Keywords: single helicate • lead • supramolecular chemistry

- [1] A. M. Stadler, J. Ramírez, J. M. Lehn, Chem. Eur. J. 2010, 16, 5369-5378.
- [2] M. Barboiu, A. M. Stadler, J. M. Lehn, Angew. Chem. Int. Ed. 2016, 55, 4130-4154.
- [3] a) M. Stadler, N. Kyritsakas, G. Vaughan, J. M. Lehn, *Chem. Eur. J.* **2007**, *13*, 59-68; b) Barboiu, J. M. Lehn, *Proc. Natl. Acad. Sci. U. S. A*. **2002**, *99*, 5201-5206.
- [4] a) D. Curry, M. A. Robinson, D. H. Busch, *Inorg. Chem.* 1967, 6, 1570-1574; b) Wester, G. J. Palenik, *Inorg. Chem.* 1976, *15*, 755-761.
- [5] a) J. Horn, A. J. Blake, N. R. Champness, A. Garau, V. Lippolis, C. Wilson, M. Schroder, *Chem. Commun.* 2003, 312-313; b) J. Horn,
 A. J. Blake, N. R. Champness, V. Lippolis, M. Schroder, *Chem. Commun.* 2003, 1488-1489; c) J. Wang, Y. C. Wang, H. C. Kao, *J. Chin. Chem. Soc.* 2010, *57*, 876-882; d) Kennepohl, A. Thomas, R. McDonald, *Acta Crystallogr., Sect. E.* 2006, *62*, 2967-2969.
- [6] C. Piguet, G. Bernardinelli, G. Hopfgartner, *Chem. Rev.* 1997, 97, 2005-2062.

a) Barboiu, G. Vaughan, R. Graff, J. M. Lehn, *J. Am. Chem. Soc.*2003, *125*, 10257-10265; b) M. Senegas, S. Koeller, G. Bernardinelli, C. Piguet, *Chem. Commun.* 2005, 2235-2237; c) K. Al-Rasbi, H. Adams, L. P. Harding, M. D. Ward, *Eur. J. Inorg. Chem.*2007, *2007*, 4770-4780; d) Eerdun, S. Hisanaga, J. Setsune, *Chem. Eur. J.* 2015, *21*, 239-246; e) S. Tsang, C. C. Yee, S. M. Yiu, W. T. Wong, H. L. Kwong, *Polyhedron.* 2014, *83*, 167-177; f) Liu, H. Zhou, Z. Q. Pan, D. Hu, Q. M. Huang, H. P. Zhang, X. L. Hu, X. G. Meng, *Inorg. Chem. Commun.* 2007, *10*, 805-807.

 [8] a) P. Thummel, C. Hery, D. Williamson, F. Lefoulon, J. Am. Chem. Soc. 1988, 110, 7894-7896; b) J. Cathey, E. C. Constable, M. J. Hannon, D. A. Tohcer, M. D. Ward, J. Chem. Soc., Chem. Commun. 1990, 621-622; c) L. Kwong, H. L. Yeung, W. S. Lee, W. T. Wong, Chem. Commun. 2006, 4841-4843.

- [9] P. K. K. Ho, K. K. Cheung, S. M. Peng, C. M. Che, J. Chem. Soc., Dalton Trans. 1996, 1411-1417.
- [10] A. M. Stadler, N. Kyritsakas, J. M. Lehn, Chem. Commun. 2004, 2024-2025.

a) M. Najar, I. S. Tidmarsh, M. D. Ward, *CrystEngComm.* 2010, *12*, 3642-3650; b) J. Romero, R. Carballido, L. Rodriguez-Silva, M. Maneiro, G. Zaragoza, A. M. Gonzalez-Noya, R. Pedrido, *Dalton Trans.* 2016, *45*, 16162-16165.

[12] D. J. Hutchinson, L. R. Hanton, S. C. Moratti, *Inorg. Chem.* 2011, 50, 7637-7649.

[13] A. M. Stadler, J. M. Lehn, J. Am. Chem. Soc. **2014**, 136, 3400-3409.

[14] a) C. Kao, Y. C. Wang, W. J. Wang, *Res. Chem. Intermed.* 2017, 43, 3539-3552; b) J. Fu, W. Y. Sun, W. N. Dai, M. H. Shu, F. Xue, D. F. Wang, T. C. W. Mak, W. X. Tang, H. W. Hu, *Inorg. Chim. Acta.* 1999, 290, 127-132; c) Onodera, G. Hirata, T. Seike, R. Takeuchi, M. Kimura, *Polyhedron.* 2016, 112, 43-50.

- H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512-7515.
- Agilent, Agilent Technologies Ltd, Yarnton, Oxfordshire, England, 2014.
- Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307-326.
- G. M. Sheldrick, University of Göttingen, Göttingen, 1996.
- [19] G. M. Sheldrick, Acta Crystallogr., Sect. A. 2015, 71, 3-8.
 - A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115-119.
- [21] G. M. Sheldrick, Acta Crystallogr., Sect. C. 2015, 71, 3-8.
- [22] L. Farrugia, J. Appl. Crystallogr. 2012, 45, 849-854.
- [23] A. Spek, Acta Crystallogr., Sect. D. 2009, 65, 148-155.
- [24] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Crystallogr. 2008, 41, 466-470.
- [25] N. T. Coogan, M. A. Chimes, J. Raftery, P. Mocilac, M. A. Denecke, J. Org. Chem. 2015, 80, 8684-8693.
- [26] N. M. Shavaleev, R. Scopelliti, F. Gumy, J. C. G. Bünzli, *Inorg. Chem.* 2009, 48, 6178-6191.
- [27] F. S. Han, M. Higuchi, D. G. Kurth, Org. Lett. 2007, 9, 559-562.

[15]

[16]

[17]

[18]

[20]

FULL PAPER

Entry for the Table of Contents (Please choose one layout)

Layout 1:

FULL PAPER

