Novel Synthesis of α -Methylene- β -lactams Toshio Agawa, Masaru Ishida, Yoshiki Ohshiro* Department of Petroleum Chemistry, Faculty of Engineering, Osaka University, Yamadakami, Suita, Osaka 565, Japan Considerable attention has been paid to the synthesis of α methylene- β -lactams from the viewpoint of biological activities 1.2, and we have already proposed a method for their preparation by thermolysis of α -phenylthio- β -lactam derivatives2. Our method, however, required rather severe reaction conditions, so we have now developed a novel process for an effective preparation of α -methylene- β -lactams by use of methyl-phenylseleno-ketene, as a synthon of methyleneketene. Methyl-phenylseleno-ketene (2) was produced in situ by dehydrochlorination of 2-phenylselenopropanoyl chloride (1) with triethylamine because of its unstability. The reaction of 2 with imines 3 gave a mixture of the cis- and trans- α -phenylseleno- β -lactams 4 and 4'. The isomers were separated in the reaction of benzylidenaniline, but in the other cases, separations were not successful except for the isolation of the cis-isomer of the β -lactam 4c. The results are summarized in Table 1. $$\begin{array}{c} C_{6}H_{5}-Se \\ H_{3}C \\ \end{array} \begin{array}{c} CH-C-CI \\ H_{3}C \\ \end{array} \begin{array}{c} C_{2}H_{5}J_{3}N/C_{6}H_{6} \\ \end{array} \begin{array}{c} C_{6}H_{5}-Se \\ H_{3}C \\ \end{array} \begin{array}{c} C=C=O \\ \end{array} \\ \end{array} \begin{array}{c} C_{6}H_{5}-Se \\ H_{3}C \\ \end{array} \begin{array}{c} C=C=O \\ \end{array} \\ \end{array} \begin{array}{c} R-N=CH-C_{6}H_{5} \\ (3a-c) \\ \end{array} \begin{array}{c} C_{6}H_{5} \\ (3a-c) \\ \end{array} \begin{array}{c} C_{6}H_{5} \\ H_{3}C H_{2}O_{2}/N \\ \end{array} \begin{array}{c} CH_{2}CI_{2} \\ \end{array} \begin{array}{c} CH_{3}C \\ \end{array} \begin{array}{c} CH_{3}C \\ CH_{3} \\ \end{array} \begin{array}{c} CH_{3}C \\ \end{array} \begin{array}{c} CH_{3}C \\ CH_{3} \\ CH_{3} \\ \end{array} \begin{array}{c} CH_{3}C \\ CH_{3} CH_{4} CH_{$$ The α -methylene- β -lactams **6** were derived effectively from the α -phenylseleno- β -lactams 4 by treatment with hydrogen peroxide³. In these reactions, except for the β -lactam 4a, mixtures of isomers were used and satisfactory results obtained (Table 2). SYNTHESIS **Table 1.** Synthesis of α -Phenylseleno- β -lactams 4a-c | Product
No. | R | Yield
[%] | m.p.
[°C] | Molecular
formula ^a | I.R.
(Nujol)
_{PC} _0
[cm ⁻¹] | 'H-N.M.R. (CDCl ₃)
δ [ppm] | M.S. (70 eV) m/e (80Se; relative intensity %) | |----------------|---------------------------------|-----------------|---------------|---|--|---|---| | 4a (cis) | C ₆ H ₅ | 52 | 204.5-205.5° | C ₂₂ H ₁₉ NOSe
(392.4) | 1730 | 1.77 (s, 3 H, CH ₃); 5.03 (s, 1 H, CH); 7.0–7.8 (m, 15 H _{stop}) | 393 (M ⁺ , 12); 274 (14);
212 (52); 181 (100) | | 4'a (trans) | C_6H_5 | 4 | 130.0-132.0° | C ₂₂ H ₁₉ NOSe
(392.4) | 1735 | 1.21 (s, 3 H, CH ₃); 5.03 (s, 1 H, CH);
7.0-7.9 (m, 15 H _{arem}) | 393 (M ⁺ , 17); 274 (26);
212 (54); 181 (100) | | 4b | CH ₃ | 50 ^b | | C ₁₇ H ₁₇ NOSe (330.3) | 1740 | cis: 1.68 (s, 3 H, CH ₃); 2.88 (s, 3 H, NCH ₃); 4.51 (s, 1 H, CH); 7.0–8.0 (m, 10 H _{arom}) trans: 1.13 (s, 3 H, CH ₃); 2.54 (s, 3 H, NCH ₃); 4.48 (s, 1 H, CH); 7.0–8.0 (m, 10 H _{arom}) | 331 (M ⁺ , 21); 274 (24);
212 (100); 174 (53) | | 4c | t-C ₄ H ₉ | 52° | cis: 152-154° | C ₂₀ H ₂₃ NOSe
(372.4) | 1725 | cis: 1.32 (s, 9 H, t-C ₄ H ₉); 1.62 (s, 3 H, CH ₃); 4.54 (s, 1 H, CH); 7.1–8.0 (m, 10 H _{arom}) trans: 1.05 (s, 9 H, t-C ₄ H ₉); 1.13 (s, 3 H, CH ₃); 4.72 (s, 1 H, CH); 7.1–8.0 (m, 10 H _{arom}) | 373 (M , 10); 274 (100); 117 (50) | $^{^{\}rm a}$ Satisfactory microanalyses obtained: C $\pm 0.22,$ H $\pm 0.15,$ N $\pm 0.07.$ Table 2. Synthesis of α-Methylene-β-lactams 6a-c | Prod-
uct | Yield
[%] | m.p.
[°C] | Molecular
formula ^a | I.R. (N | ujol) cm ¹ $\nu_{\rm C=CH_2}$ | 'H-N.M.R. (CDCl ₃)
δ [ppm] | M.S. (70 eV) m/e (relative intensity %) | |--------------|-----------------|--------------|---|---------|--|--|---| | 6a | 92 ^b | 150.5–152.0° | C ₁₆ H ₁₃ NO
(235.7) | 1730 | 930 | 5.17 (t, 1 H, —СН <u>Н</u>); 5.42 (t, 1 H, СН);
5.86 (t, 1 H, —С <u>Н</u> H); 7.0-7.5 (m, 10 H _{атом}) | 235 (M ⁺ , 60); 116 (100) | | 6b | 67 | | C ₁₁ H ₁₁ NO
(173.2) | 1740 | 910 | 2.89 (s, 3 H, NCH ₃); 4.96 (t, 1 H, CH or — CḤH); 5.07 (t, 1 H, — CḤH or CH); 5.73 (t, 1 H, — CHḤ); 7.2–7.7 (m, | 173 (M ⁺ , 62); 144 (11);
116 (100) | | 6с | 85 | 138.0-140.0° | C ₁₄ H ₁₇ NO
(215.3) | 1735 | 920 | 5 H _{arom})
1.26 (s, 9 H, <i>t</i> -C ₄ H ₉); 4.91 (t, 1 H, CH or
СНН); 5.07 (t, 1 H,СНН or CH);
5.65 (t, 1 H,СНН); 7.2-7.5 (m,
5 H _{arom}) | 215 (M ⁺ , 5); 200 (100);
115 (54) | ^{*} Satisfactory microanalyses obtained: C ± 0.16 , H ± 0.20 , N ± 0.10 . Substitution of the phenylseleno group of the β -lactam 4a by the methyl group was achieved by treatment with lithium/naphthalene⁴ followed by treatment with methyl iodide, to give the α , α -dimethyl- β -lactam 5a in high yield. #### 2-Phenylselenopropanoyl Chloride (1): Ethyl 2-Phenylselenopropanoate: To a solution of sodium benzeneselenolate (17.9 g, 0.1 mol) in ethanol (100 ml), ethyl 2-chloropropanoate (13.7 g, 0.1 mol) in ethanol (40 ml) is added. The mixture is stirred for 1 h at room temperature and an additional 1 h at reflux temperature. The mixture is then distilled to give ethyl 2-phenylselenopropanoate; yield: 77%; b.p. 91–93 °C/0.25 torr. M.S. (70 eV): m/e = 258 (M +). I.R. (neat): $\nu = 1720 \text{ cm}^{-1} \text{ (C=-O)}$. ¹H-N.M.R. (CDCl₃): δ = 1.19 (t, 3 H, CH₃); 1.51 (d, 3 H, CH₃); 3.81 (q, 1 H, CH); 4.12 (q, 2 H, CH₂); 7.2-7.8 ppm (m, 5 H_{arom}). 2-Phenylselenopropanoic Acid: To a solution of potassium hydroxide (5.5 g, 98 mmol) in ethanol/water (1/1; 100 ml), ethyl 2-phenylselenopropanoate (19.6 g, 77 mmol) in ethanol (100 ml) is added dropwise, and the resultant mixture is stirred under nitrogen for 8 h at reflux temperature. The mixture is acidified with conc. hydrochloric acid and extracted with ether (2 × 50 ml). The product is recrystallized from hexane; yield: 88%; m.p. 55-56 °C. M.S. (70 eV): m/e = 230 (M⁺). I.R. (Nujol): $\nu = 1680 \text{ cm}^{-1} \text{ (C-O)}.$ ¹H-N.M.R. (CDCl₃): δ = 1.51 (d, 3 H, CH₃); 3.78 (q, 1 H, CH); 7.2–7.8 (m, 5 H_{arom}); 11.91 ppm (s, 1 H, COOH). 2-Phenylselenopropanoyl Chloride (1): 2-Phenylselenopropanoic acid (15.5 g, 68 mmol) in carbon tetrachloride (50 ml) is treated with thionyl chloride (12 g, 0.1 mol) for 3 h at reflux temperature. The product is isolated by distillation in vacuo; yield: 94%; b.p. 75.5-76.5 °C/0.2 torr. M.S. (70 eV): m/e = 212 (M⁺ – Cl). I.R. (neat): $\nu = 1760 \text{ cm}^{-1} \text{ (C - O)}$. 1 H-N.M.R. (CDCl₃): δ = 1.57 (d, 3 H, CH₃); 4.01 (q, 1 H, CH); 7.2-7.9 ppm (m, 5 H_{arom}). ## α -Phenylseleno- β -lactams 4; General Procedure: To a refluxing benzene solution (50 ml) of 2-phenylselenopropanoyl chloride (1; 1.24 g, 5 mmol) and the imine 3 (10 mmol), triethylamine (0.51 g, 5 mmol) in benzene (40 ml) is added dropwise within 2 h. After standing overnight at room temperature, the mixture is extracted with diethyl ether $(3 \times 50 \text{ ml})$, the extract washed with water (50 ml), and dried with sodium sulfate. The condensate is crystallized from ethanol, chromatographed (silica gel, benzene/hexane, 1:1), or distilled in a Kugelrohr apparatus to isolate the product (Table 1). # α -Methylene-β-lactams 6; General Procedure: To a dichloromethane solution (20 ml) of the β -lactam 4 (2 mmol) and pyridine (4 mmol), 28% aqueous hydrogen peroxide (6 mmol) is added dropwise at room temperature within 40 min. After addi- b 76:24 cis/trans mixture. ^c 30:70 cis/trans mixture. ^b From cis-4a. November 1980 Communications 935 tion of hydrogen peroxide, the reaction mixture is heated at 30-40 °C for 15-30 min and the product then separated from the mixture by column chromatography (silica gel, benzene as eluent for 6a, or chloroform as eluent for 6b, 6c) (Table 2). #### 3,3-Dimethyl-2-oxo-4-phenylazetidine (5a): The cis- β -lactam 4a is treated with 2.6 mol equivalents of lithium naphthylide⁴ in tetrahydrofuran at $-50\,^{\circ}\mathrm{C}$ for 20 min followed by treatment with methyl iodide (4 mol equivalents) for 10 min, and the reaction mixture is allowed to stand for 12 h at room temperature. The α , α -dimethyl- β -lactam 5 is isolated by column chromatography (silicagel, benzene); yield: 86%; m.p. 156.5–158.0 °C. C₁₇H₁₇NO calc, C 81.24 H 6.82 N 5.57 (251.3) found 81.00 6.77 5.60 I.R. (Nujol): $\nu = 1740 \text{ cm}^{-1} \text{ (C = -0)}$. ¹H-N.M.R. (CDCl₃): δ = 0.85 (s, 3 H, CH₃); 1.53 (s, 3 H, CH₃); 4.82 (s, 1 H, CH); 6.9–7.7 ppm (m, 10 H_{arom}). M.S. (70 eV): m/e = 251 (M⁺). This work was carried out with Grant-in-aid for Scientific Research No 147079 from the Ministry of Education. Received: July 9, 1980 0039-7881/80/1132-0935 \$ 03.00 © 1980 Georg Thieme Verlag · Stuttgart · New York ¹ (a) E. J. Moriconi, J. E. Kelly, *J. Am. Chem. Soc.* **88**, 3657 (1966) ⁽b) S. R. Fletcher, I. T. Kay, J. Chem. Soc. Chem. Commun. 1978, 903. ⁽c) S. Kano, T. Ebata, K. Funaki, S. Shibuta, Synthesis 1978, 746. ⁽d) P. J. Giddings, D. I. John, E. J. Thomas, *Tetrahedron Lett.* 21, 395 (1980). ² M. Ishida, T. Minami, T. Agawa, J. Org. Chem. 44, 2067 (1979) ³ H. J. Reich, J. M. Renga, I. L. Reich, *J. Org. Chem.* **39**, 2133 (1974). ⁴ T. Cohen, R. B. Weisenfeld, J. Org. Chem. 44, 3601 (1979).