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Use of Nitriles in Synthesis. First Total Synthesis of ent-Sachalinol A
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Abstract: The total synthesis of ent-sachalinol A, has been
achieved by utilizing a Sharpless epoxidation and nitrile substitu-
tion as the key reactions.
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Recently Kadota et al. described the isolation of Sachali-
nols A–C, from Rhodiola Sachalinensis,1 as new mono-
terpenoids. Rosiridin, the glucoside of Sachalinol A,
which was previously isolated from Rhodiola Rosea,2 and
exhibited non-competitive endopeptidase inhibition
against Flavobacterium PEP with an IC50 of 84 mM
(Figure 1).

Figure 1

Continuing our studies on iodine cyclization for the syn-
thesis of 2,2,6,6-tetrasubstituted tetrahydropyrans, we
have described a straightforward synthesis of epoxide 1,
starting from acetone and propargyl alcohol (Scheme 1).3

The synthesis of ent-sachalinol A from this tosylepoxide
would require the addition of one extra carbon, epoxide-
opening, and establishment of the olefin with E stereo-
chemistry. Nitrile chemistry could answer these three
questions.

Nitriles4 and a,b-unsaturated nitriles5 are very useful com-
pounds in organic synthesis. There are several methods
for the synthesis of the latter, including: alkenation of
aldehydes, displacement of halides from vinyl halides by
cyanide ion, transformation of a,b-alkylenenitriles, or

dehydration of oximes.6 We have experience in epoxide-
opening to give allylic alcohols,7 so we decided to treat
epoxide 1, obtained as a single enantiomer by Sharpless
epoxidation (ee >97%, Scheme 1), with NaCN in
HMPA,8 (Scheme 2) followed by deprotection of the tet-
rahydropyranyl group with p-TsOH in MeOH. This gave
the a,b-unsaturated nitrile 2,9 which has the chiral alcohol
and the olefin with the E configuration (Scheme 2).5 First-
ly, we decided to carry out the synthetic sequence with the
hydroxy group of 2 unprotected. Reduction of the nitrile
group was carried out with DIBAL in two steps.10 The
first reduction gave aldehyde 4, although in low yield
(35%), and a second DIBAL reduction gave triol 6 in 40%
yield. The spectroscopic properties of 6 were in agree-
ment with those reported for sachalinol A1 except for the
specific rotation being [a]D

20 –17.1 (c 0.17, MeOH) for
the natural compound and [a]D

20 –2.0 (c 1.0, MeOH),
[a]D

20 –7.4 (c 0.19, MeOH) for 6. In order to check the
enantiomeric excess of 6, the Mosher diester with (S)-(+)-
a-methoxy-a-trifluoromethylphenylacetyl chloride (10
equivalents) was obtained,11 giving only one compound
by NMR with a specific rotation of [a]D

20 –48.0 (c 1.1,
CHCl3). 

Thus, compound 6 was established as ent-sachalinol A
and in this manner we have corroborated the structure and
stereochemistry of the natural sachalinol A. The differ-
ence in the specific rotation of the natural compound
sachalinol A and 6 could be understood in terms of the low
concentration used for the measurement of the natural
product. In order to obtain 6 in better yield, alcohol 2 was
protected as its TBDMS derivative 3 under the usual con-
ditions.12 Double DIBAL reduction as before and final
TBAF deprotection13 gave ent-sachalinol in 37% overall
yield (from epoxide 1).
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Scheme 1 Reagents and conditions: a) L-(+)-DET, Ti(i-PrO)4, 
TBHP, CH2Cl2, –23 °C (63%); b) TsCl, py, 0 °C, (92%).3
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The use of the enantiomer of epoxide 1 obtained by
Sharpless epoxidation with D-(–)-DET will lead to the
correct stereochemistry for sachalinol A.

In conclusion, we have developed an easy procedure for
the synthesis of sachalinol A and its enantiomer.

Scheme 2 Reagents and conditions: a) NaCN, HMPA, r.t., then
p-TsOH, MeOH, r.t. (80%); b) TBDMSOTf, 2,6-Lutidine, THF, r.t.
(85%); c) DIBAL (1 equiv), –78 °C, CH2Cl2; 2 to 4 (35%), 3 to 5
(85%); d) DIBAL (1 equiv), –78 °C, CH2Cl2; 4 to 6 (35%), 5 to 7
(65%); e) TBAF, THF (75%).
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