CHEMISTRY LETTERS, pp. 813-816, 1988.

© 1988 The Chemical Society of Japan

Photoinduced Masked-Formylation of Vinylsulfone Derivatives with 1,3-Dioxolane. Application to the Synthesis of 3,4-Disubstituted Pyrroles

> Katsuhiko INOMATA,^{*} Hiroshi SUHARA, Hideki KINOSHITA, and Hiroshi KOTAKE

Department of Chemistry, Faculty of Science, Kanazawa University, Kanazawa 920

It was found that α -cyanovinylsulfones, which were prepared by an improved Knoevenagel condensation, react readily with 1,3-dioxolane under ultraviolet irradiation in the presence of a photosensitizer. The reaction provided a new convenient method for the preparation of 3,4-disubstituted pyrroles.

We have been investigating the preparation of vinyl- and allylsulfones¹⁾ and the related new synthetic reactions.²⁾ In the course of the study, we found that vinylsulfones (<u>1</u>) react with THF (<u>2</u>) and 1,3-dioxolane (<u>3</u>) in the presence of 2,2'-azobisisobutyronitrile (AIBN) or under irradiation by ultraviolet light giving the corresponding addition products (<u>4</u>).³⁾ The addition of 1,3-dioxolane means the masked-formylation⁴⁾ on β -position of vinylsulfones.

On the other hand, we have developed the convenient methods for the preparation of substituted furans $(\underline{7})$ and pyrroles $(\underline{8})$ starting from 3-p-toluenesulfonyl-propanal ethylene acetal derivatives $(\underline{5})$ as shown in the following scheme.⁵⁾

The above masked-formylation of vinylsulfones therefore prompted us to apply it to the preparation of heterocyclic compounds such as $\underline{7}$ and $\underline{8}$. This paper describes the application of the photoinduced masked-formylation of vinylsulfones to the synthesis of 3,4-disubstituted pyrroles useful as a building block of porphynoids according to Scheme 1.

Chemistry Letters, 1988

An attempt to prepare α -cyanovinylsulfone (<u>11</u>) from aldehyde (<u>9</u>) and sulfonylacetonitrile (<u>10</u>) by general Knoevenagel condensation⁶) resulted in the formation of unseparable mixture of <u>11</u> and α -cyanoallylsulfone (<u>17</u>). The difficulty could be overcome by trapping the initially formed condensation product as a sulfide (<u>18</u>) with a thiol (especially o-toluenethiol was excellent among the examined thiols: methanethiol, t-butanethiol, benzenethiol, p-toluenethiol, otoluenethiol)⁷ followed by the oxidation⁸ with potassium peroxymonosulfate (OXONE, 2KHSO₅·KHSO₄·K₂SO₄) in two phases (CH₂Cl₂/H₂O) using a phase transfer catalyst⁹) (Scheme 2).

The masked-formylation of $\underline{11}$ was readily achieved using $\underline{3}$ as a solvent in the presence of a photosensitizer under irradiation with 300 W mercury lamp (Eiko-sha) at room temperature (Table 1).

The 3-cyano-3-sulfonylpropanal ethylene acetal derivatives $(\underline{12})$ thus obtained were next alkylated with alkyl halide and potassium carbonate in N,N-dimethylform-amide (DMF) at room temperature in good yields (Table 2).

Entry	<u>11a-e</u> , R ¹	Photosensi- tizer (1 equiv.)	Time/h ^{b)}	<u>12a-e</u> Yield/%c)	Ratio of diastereomers ^d)
1	<u>11a</u> , Ph(CH ₂) ₂	PhCOPh	2	<u>12a</u> , 79	87/13
2	<u>11b</u> , Ph	MeCOPh	2	<u>12b</u> , 89	83/17
3	<u>11с</u> , (СН ₃) ₂ СН	MeCOPh	1	<u>12c</u> , 79	51/49
4	<u>11c</u> , "	PhCOPh	0.5	<u>12c</u> , 77	51/49
5	<u>11d</u> , CH ₃ (CH ₂) ₄	MeCOPh	1	<u>12d</u> , 80	87/13
6	<u>11e</u> , CH ₃ CH ₂	PhCOPh	2	<u>12e</u> , 84	88/12

Table 1. Photoinduced Masked-Formylation of α -Cyanovinylsulfones $(<u>11</u>, R = Me)^{a}$

a) 0.1 M solution of 11 in 1,3-dioxolane was irradiated at r.t.

b) The progress of the reaction was monitored by a TLC.
c) All compounds gave the satisfactory spectral data.
d) Determined by 400 MHz H-NMR spectra.

The nitrile group of 13 was readily reduced to the amine with lithium aluminum hydride in the case of R = Me but not R = p-Tol. Therefore, the whole procedure for the preparation of 3,4-disubstituted pyrroles is herein given only for the former case. After the reduction and usual work-up, the resulting primary amines were mesylated without isolation. The crude products (14) were then cyclized to the 3,4-disubstituted N-mesylpyrroles (15) in refluxing benzene containing a catalytic amount of p-toluenesulfonic acid in good yields (Table 3).

The treatment of 15 with 2 M-KOH in methanol under refluxing afforded the demesylated 3,4-disubstituted pyrroles (16)^{5d)} in quantitative yields except 15f which was surprisingly not affected at all under the conditions.

As described above, the present photoinduced masked-formylation of α -cyano-

Entry	<u>12a-e</u> , R ¹	R ² X (equiv.)	Reaction time at r.t. ^{b)}	Yield of <u>13a-i</u> /% ^{C)}
1	<u>12a</u> , Ph(CH ₂) ₂	CH ₃ CH ₂ I (1.5)	1.5 d	<u>13a</u> , 74
2	<u>12a</u> , "	CH ₃ (CH ₂) ₂ I (1.5)	1.5 d	<u>13b</u> , 76
3	<u>12b</u> , Ph	CH ₃ (CH ₂) ₂ I (1.2)	4.5 h	<u>13c</u> , 78
4	<u>12b</u> , "	CH ₃ (CH ₂) ₅ I (1.5)	3.5 h	<u>13d</u> , 82
5	<u>12b</u> , "	$H_2C=CHCH_2Br$ (1.2)	1 h	<u>13e</u> , 78
6	<u>12с</u> , (СН ₃) ₂ СН	CH ₃ (CH ₂) ₅ I (1.2)	5 d	<u>13f</u> , 90
7	<u>12d</u> , CH ₃ (CH ₂) ₄	CH ₃ CH ₂ I (1.5)	2.5 d	<u>13</u> g, 90
8	<u>12d</u> , "	CH ₃ (CH ₂) ₂ I (1.5)	2.5 d	<u>13h</u> , 75
9	<u>12е</u> , СН ₃ СН ₂	PhCH ₂ Br (1.5)	9.5 h	<u>13i</u> , 94

Table 2.	Alkylation of 3-Cyano-3-mesylpropanal	Ethylene	Acetal
	Derivatives $(12, R = Me)^{a}$		

a) 1.5 equiv. of K_2CO_3 was used as a base in DMF. b) The progress of²the reaction was monitored by a TLC.

c) Obtained as a mixture of diastereomers. The spectral data for

new compounds were in accordance with the structures assigned.

Entry	<u>13a-i</u>		Reduction	Yield of	Refluxing	Yield of
	R ¹	R ²	time/h	<u>15a-i</u> /% ^{b)}	hydrolysis ^C	<u>16a-i</u> /% ^{b)}
1	Ph(CH ₂) ₂	CH ₃ CH ₂	1	<u>15a</u> , 84	2 h	<u>16a</u> , quant
2	"	CH ₃ (CH ₂) ₂	1.5	<u>15b</u> , 73	1.5 h	<u>16b</u> , quant
3	Ph	CH ₃ (CH ₂) ₂	1.5	<u>15c</u> , 68	10 min	<u>16c</u> , quant
4		CH ₃ (CH ₂) ₅	. 3	<u>15d</u> , 74	10 min	<u>16d</u> , quant
5		H ₂ C=CHCH ₂	2.5	<u>15e</u> , 55	10 min	<u>16e</u> , quant
6	(CH ₃) ₂ CH	CH ₃ (CH ₂) ₅	1	<u>15f</u> , 57	2 h	d)
7	CH ₃ (CH ₂) ₄	CH ₃ CH ₂	1.5	<u>15</u> g, 82	4 h	<u>16g</u> , quant
8	"	CH ₃ (CH ₂) ₂	1.5	<u>15h</u> , 90	4.5 h	<u>16h</u> , quant
9	сн ₃ сн ₂	PhCH ₂	2	<u>15i</u> , 61	1 h	<u>16i</u> , quant

Table 3. Formation of 3,4-Disubstituted N-Mesyl- and N-Demesylpyrroles $(15 \text{ and } 16) \text{ from } 13 (R = Me)^{a}$

a) (1) LiAlH₄ (4 equiv.) in Et_2O at r.t. (2) CH_3SO_2Cl (2 equiv.)/ Et_3N (2.2 equiv.) in CH₂Cl₂ at r.t. for 10 min. (3) p-TolSO₃H (catalytic amount) in benzene/refluxed for 15 min.

b) All compounds gave the satisfactory spectral data.

c) Refluxed in 2 M-KOH in methanol.

d) 15f was recovered quantitatively.

vinylsulfone derivatives with 1,3-dioxolane provided a new convenient method for the preparation of 3,4-disubstituted pyrroles. Further work is in progress in our labolatory.

This work is partly supported by the Research Grant-in-Aid from The Ministry of Education, Science and Culture (No. 62540376).

References

- 1) K. Inomata, S. Sasaoka, T. Kobayashi, Y. Tanaka, S. Igarashi, T. Ohtani, H. Kinoshita, and H. Kotake, Bull. Chem. Soc. Jpn., <u>60</u>, 1767 (1987) and references cited therein; T. Kobayashi, Y. Tanaka, T. Ohtani, H. Kinoshita, K. Inomata, and H. Kotake, Chem. Lett., <u>1987</u>, 1209.
 2) K. Inomata, S. Igarashi, M. Mohri, T. Yamamoto, H. Kinoshita, and H. Kotake,
- Chem. Lett., <u>1987</u>, 707 and references cited therein. 3) Presented at the 54th National Meeting of the Chemical Society of Japan,
- Tokyo, April 1987.
- 4) C. Giordano, F. Minisci, E. Vismara, and S. Levi, J. Org. Chem., <u>51</u>, 536 (1986); M. Matsukawa, J. Inanaga, and M. Yamaguchi, Tetrahedron Lett., <u>28</u>, 5877 (1987).
- 5) a) K. Inomata, S. Aoyama, and H. Kotake, Bull. Chem. Soc. Jpn., <u>51</u>, 930 (1978); b) H. Kotake, K. Inomata, H. Kinoshita, S. Aoyama, and Y. Sakamoto, Heterocycles, <u>10</u>, 105 (1978); c) K. Inomata, Y. Nakayama, M. Tsutsumi, and H. Kotake, ibid., <u>12</u>, 1467 (1979); d) H. Kinoshita, K. Inomata, M. Hayashi, T. Kondoh, and H. Kotake, Chem. Lett., <u>1986</u>, 1033.
 6) G. Jones, Org. React., <u>15</u>, 204 599 (1967); F. D. Popp and A. Catala, J. Org. Chem., <u>26</u>, 2738 (1961).
 7) W. E. Parham and F. L. Ramp, J. Am. Chem. Soc. <u>73</u>, <u>1293</u> (1951).
- 7) W. E. Parham and F. L. Ramp, J. Am. Chem. Soc., <u>73</u>, 1293 (1951).
- 8) S. Ranganathan, D. Ranganathan, and S. K. Singh, Tetrahedron Lett., 28, 2893 (1987).
- 9) R. Curci, M. Fiorentino, L. Troisi, J. O. Edwards, and R. H. Pater, J. Org. Chem., <u>45</u>, 4758 (1980).

(Received February 16, 1988)