

pubs.acs.org/OrgLett

Letter

Rh(III)-Catalyzed Relay Double Carbenoid Insertion and Diannulation of Sulfoximine Benzamides with α -Diazo Carbonyl Compounds: Access to Furo[2,3-c]isochromenes

Chen Yang, Chen Chen, Shunfan Li, Xinwei He, Youpeng Zuo, Wangcheng Hu, Tongtong Zhou, Jian Wang,* and Yongjia Shang*

ABSTRACT: An efficient rhodium-catalyzed construction of furo [2,3-c] isochromene scaffolds through tandem double carbenoid insertion and diannulation of sulfoximine benzamides with α -diazo carbonyl compounds has been developed. Mechanistic studies revealed that the alkyl-rhodium intermediate generated by carbenoid insertion was directly trapped with another molecule of carbene species, followed by subsequent intramolecular cyclization reactions. Sulfoximine was released in situ, featuring a traceless directing fashion. The reactions proceeded smoothly under mild conditions with wide functional group tolerance.

ransition metal-catalyzed carbenoid insertion reactions L have been extensively studied due to the unique and diverse reactivities of carbenes.¹ In particular, α -diazo carbonyl compounds were widely used as C2 building blocks in the construction of cyclic compounds based on its potency of coordinating to metal centers, migratory insertion, and subsequent condensation annulation of the carbonyl group with the directing groups (Scheme 1a).² A seminal work on the coupling of benzylmethylamines with diazomalonates was developed with isoquinolones being afforded efficiently by Yu and co-workers.³ Later, continuous synthetic methods were reported under the catalysis of Rh,⁴ Ir,⁵ Ru,⁶ Co,⁷ etc.⁸ For example, our group has developed efficient methods directed toward isocoumarins, 9 aminoisoquinolines, 10 and other N(O)containing heterocycles¹¹ through Rh-catalyzed C-H bond activation and carbenoid insertion reactions. Very recently, an unexpected and interesting Rh-catalyzed cyclization of pyrazol-5-amine with 1,3-diketone-2-diazo compounds for the synthesis of pyrazolo[3,4-b]pyridines was disclosed using N,Ndimethylformamide as a carbon-hydrogen source.¹² However, compared with the transition metal-catalyzed monocyclization reactions mentioned above, relevant double carbenoid insertion and diannulations, which could facilitate the formation of complex fused heterocycles, have been studied far less. In 2016, Dong and co-workers developed an Ircatalyzed synthesis of pentacyclic-fused carbazole derivatives via cascade cyclization of indoles with α -diazo carbonyl compounds (Scheme 1b).¹³ In the same year, the Zeng group developed an elegant Rh-catalyzed relay cross-coupling/ cyclization cascade between arylketoimines and diazoesters for the synthesis of π -conjugated 1-azaphenalenes via a double aryl C-H bond carbenoid functionalization process (Scheme 1c).¹⁴ Later, the synthesis of naphthoquinolizinones through a Rh-catalyzed double C-H bond carbenoid insertion and annulation of 2-aryl-3-cyanopyridines with α -diazo carbonyl compounds was developed by Fan and co-workers (Scheme 1d).¹⁵ Recently, the coupling of benzoylacetonitriles with α diazo compounds through Rh-catalyzed double carbenoid insertion and diannulation to afford benzo[de]chromene derivatives was reported independently by Liu, Wang, and Fan (Scheme 1e).¹⁶ To the best of our knowledge, Rhcatalyzed continuous double carbenoid insertion and tandem annulation for the synthesis of fused polyheterocyclic scaffolds have no precedent.

Received: December 28, 2019

Scheme 1. Catalytic C–H Bond Carbenoid Insertion and Annulation Reactions

Monoannulation (a) Double C-H Bond Carbenoid Insertion and Annulation: [Cp*IrCl2]2 (2 mol %) CO₂Et AqOAc (0.3 equiv) HOAC (1 equiv) (b) DCE, 100 °C . CO₂Et Ph [Cp*RhCl₂]₂ (2.5 mol %) AqSbF₆ (10 mol %) (c) DCE: 80 °C: 8 h . R1 R⁴HN CO₂R³ [Cp*RhCl₂]₂, additive (d) solvent 80 °C Rh(III) Continuous C-H Bond Carbenoid Insertion and Diannulation: [Cp*RhCl2]2 (3 mol %) AgSbF₆ (20 mol %) AgOAc (50 mol %) (f) DCE, 70 °C, 6 h R²O 28 examples, up to 78% vield Relay catalysis Formation of two C-C and two C-O Bonds Reusable directing group Two rings formation

Directing group-assisted catalytic C-H bond functionalization and annulation has attracted much attention due to the feasibility and step economy for access to diverse cyclic heteroarenes, which are ubiquitous in many pharmaceuticals, natural products, and functional materials.¹⁷ Due to our longstanding research interest in the construction of privileged heterocycles,¹⁸ we envisioned that the transformable methylphenyl sulfoximine (MPS)¹⁹ could promote transition metalcatalyzed carbenoid insertion and annulation reactions and open a novel avenue to challenging heterocycles. We herein developed the first Rh-catalyzed continuous double carbenoid insertion and diannulation reaction (Scheme 1f). The MPS-DG played a vital role in catalytic access to furo 2,3c]isochromene derivatives. Closure of two oxygen-containing rings was realized in one pot accompanied by the formation of four new bonds (two C-C bonds and two C-O bonds). Mechanistic studies revealed that the alkyl-rhodium intermediate generated by carbenoid insertion was directly trapped with another molecule of carbene species, followed by tandem intramolecular cyclization reactions.

The study was initiated with *N*-benzoyl methyl phenyl sulfoximine (**1a**) and ethyl 2-diazo-3-oxobutanoate (**2a**) as the substrates using $[Cp*RhCl_2]_2$ as the catalyst and AgSbF₆ and AgOAc as the additives in DCE at 60 °C (entry 1, Table 1). Surprisingly, an unexpected polycyclic product diethyl-2,3a-dimethyl-5-oxo-5*H*-furo[2,3-*c*]isochromene-1,9b(3*aH*)-dicarboxylate (**3a**) was generated in 50% yield, the structure of which has been characterized by X-ray crystallography analysis. We then moved onto the optimization of the reaction

Table 1. Optimization of Reaction Conditions^a

O MPS	5 $^{\circ}$	cataly additive additive sol	rst (3 mol %) 1 (20 mol %) 2 (100 mol %) vent, 4 h	$\frac{1}{1000}$ 1	
entry	catalyst	additive 1	additive 2	solvent	yield ^b (%)
1	[Cp*RhCl ₂] ₂	AgSbF	AgOAc	DCE	50
2	$[\{\operatorname{RuCl}_2(p- cymene)\}_2]$	AgSbF ₆	AgOAc	DCE	42
3	$[Cp*IrCl_2]_2$	AgSbF ₆	AgOAc	DCE	0
4		AgSbF ₆	AgOAc	DCE	0
5	[Cp*RhCl ₂] ₂	AgNTf ₂	AgOAc	DCE	37
6	[Cp*RhCl ₂] ₂	$AgBF_4$	AgOAc	DCE	0
7	[Cp*RhCl ₂] ₂		AgOAc	DCE	0
8	[Cp*RhCl ₂] ₂	AgSbF ₆	CsOAc	DCE	20
9	[Cp*RhCl ₂] ₂	AgSbF ₆	Ag ₂ CO ₃	DCE	30
10	[Cp*RhCl ₂] ₂	AgSbF ₆	HOAc	DCE	0
11	[Cp*RhCl ₂] ₂	AgSbF ₆		DCE	0
12 ^c	$[Cp*RhCl_2]_2$	AgSbF ₆	AgOAc	DCE	45
13 ^d	[Cp*RhCl ₂] ₂	AgSbF ₆	AgOAc	DCE	54
14 ^d	[Cp*RhCl ₂] ₂	AgSbF ₆	AgOAc	MeOH	0
15 ^d	[Cp*RhCl ₂] ₂	AgSbF ₆	AgOAc	toluene	trace
16 ^d	[Cp*RhCl ₂] ₂	AgSbF ₆	AgOAc	acetone	26
17 ^{d,e}	$[Cp*RhCl_2]_2$	AgSbF ₆	AgOAc	DCE	68
$18^{d_l f}$	$[Cp*RhCl_2]_2$	AgSbF ₆	AgOAc	DCE	46
19 ^{<i>d,e,g</i>}	$[Cp*RhCl_2]_2$	AgSbF ₆	AgOAc	DCE	75
20 ^{<i>d,e,h</i>}	[Cp*RhCl ₂] ₂	AgSbF ₆	AgOAc	DCE	73

^aReaction conditions: 1a (0.1 mmol), 2a (0.3 mmol), catalyst (3 mol %), additive 1 (20 mol %), additive 2 (100 mol %), solvent (2.0 mL), 60 °C, 4 h. ^bYield of isolated products. ^cWith 25 mol % AgOAc. ^dWith 50 mol % AgOAc. ^eAt 70 °C. ^fAt 80 °C. ^gFor 6 h. ^hFor 8 h.

conditions. The reaction was less efficient or even suppressed when using $[\{RuCl_2(p\text{-cymene})\}_2]$ and $[Cp*IrCl_2]_2$ as the catalyst (entries 2–4). No better results were obtained when the additives were changed to other silver salts (entries 5–11). AgSbF₆ and AgOAc proved to be essential in this transformation (entries 7 and 11). The reaction yield increased to 54% after the optimization of the equivalents of AgOAc (entry 13). Solvents were then screened using methanol, toluene, and acetone, and it was found that none of them was superior to DCE (entries 14–16). The desired product was obtained in 75% yield at an elevated temperature of 70 °C for 6 h (entries 17–20).

With the optimized conditions in hand, we then turned our attention to the substrate scope of N-aroyl methyl phenyl sulfoximine derivatives (1) with ethyl diazoacetoacetate (2a) as the reaction partner. Both electron-donating and -withdrawing groups on the phenyl ring could tolerate the reaction conditions, and the corresponding products were generated in moderate to good yields (Scheme 2, 3a-3q). The efficiency of substrates bearing electron-withdrawing groups was lower than that of electron-donating ones, with isocoumarin scaffolds derived from monocarbenoid insertion and annulation reaction being generated as the main byproducts. For example, nitrosubstituted product 31 was obtained in only 38% yield. In addition, easily transformable bromide could survive the reaction conditions and the corresponding products 3j, 3o, and 3q were generated in moderate yields. Dimethylsubstituted products 3r-3t were afforded in 65%, 73%, and

Scheme 2. Scope of N-Aroyl Methyl Phenyl Sulfoximine Derivatives a

"Reaction conditions: 1 (0.1 mmol), 2a (0.3 mmol), $[Cp*RhCl_2]_2$ (3 mol %), AgSbF₆ (20 mol %), and AgOAc (50 mol %) in DCE (2.0 mL) at 70 °C for 6 h. Yield of isolated products.

63% yields, respectively. The 2-naphthoic acid-derived substrate underwent catalytic carbenoid insertion and annulation smoothly, delivering **3u** in 60% yield. Fortunately, thiophenyl C–H bond double carbenoid insertion was carried out smoothly to give **3v** in 52% yield.

Next, the scope of diazo compounds 2 was investigated with N-benzoyl methyl phenyl sulfoximine (1a) (Scheme 3). When R^2 was Me, 'Pr, 'Bu, and Bn, 4a-4d were produced in moderate to good yields. Ethyl-substituted products 4e and 4f were obtained in 51% and 49% yields, respectively. However, large steric propyl- and cyclopropyl-substituted diazo compounds could not undergo the reaction to give the desired products. Efforts to broaden the utility of the reaction to other types of diazo compounds were not successful either.

A 1 mmol scale preparation of 3a was conducted, and the product was obtained in 69% yield with 78% of MPS being recovered, which could be used for the synthesis of starting material 1a in 93% yield. The catalytic annulation could be repeated without a loss of efficiency using the recovered substrate (71% yield), thus demonstrating the reusability of the directing group (Scheme 4a). Further derivatization of product 3a was carried out to demonstrate the potential synthetic applications of this reaction (Scheme 4b). The cyclic carbonyl group of 3a could act as an effective directing group that assisted the oxidative C–H bond olefination under Rh catalysis, affording the corresponding product 5 in 73% yield.²⁰

Scheme 3. Scope of Diazo Compounds^a

"Reaction conditions: 1a (0.1 mmol), 2 (0.3 mmol), $[Cp*RhCl_2]_2$ (3 mol %), AgSbF₆ (20 mol %), and AgOAc (50 mol %) in DCE (2.0 mL) at 70 °C for 6 h. Yield of isolated products.

Scheme 4. Derivatization of Product 3a^a

^{*a*}Reaction conditions: (a) **1a** (1 mmol), **2a** (3 mmol), $[Cp*RhCl_2]_2$ (3 mol %), AgSbF₆ (20 mol %), and AgOAc (50 mol %) in DCE (20 mL) at 70 °C for 6 h; (b) **3a** (0.2 mmol), ethyl acrylate (0.4 mmol), $[Cp*RhCl_2]_2$ (2.5 mol %), AgSbF₆ (10 mol %), and Cu(OAc)₂ (2.0 equiv) in DCE (2.0 mL) at 110 °C for 22 h.

To gain further insights into the mechanism of this novel transformation, a control experiment using benzoic acid in place of N-benzoylated sulfoximine was carried out first (Scheme 5, eq 1). No desired product was detected, revealing the essential role of the MPS-DG. The isocoumarin remained unreacted when it was subjected to the reaction with 2a, indicating that the possibility of isocoumarin acting as an intermediate for the formation of 3a could be ruled out (eq 2). The intermolecular competitive reactions between equimolar mixtures of 1a and *para*-substituted N-benzoylated sulfoximines 1b (*p*-Me), 1g (*p*-OMe), 1i (*p*-Cl), and 1l (*p*-NO₂) under standard conditions were carried out in 10 min, to test the electronic preference of the reaction (eq 3). The ratios of

substituted products to 3a were 1.8, 1.58, 0.43, and 0.12 for OMe, Me, Cl, and NO₂, respectively, indicating that an electrophilic C-H bond activation was probably involved in the reaction mechanism.²¹ Then the H/D exchange experiment with N-benzoylated sulfoximines 1a with D2O was carried out, and 47% of 1a was deuterated, revealing a reversible C-H bond activation process (eq 4). Finally, a set of KIE experiments were performed to understand the ratedetermining step of this annulation reaction. The intermolecular competition experiment between 1a and 1a- d_5 (1:1) with **2a** was carried out for 10 min and exhibited a $k_{\rm H}/k_{\rm D}$ of 4.0 (eq 5). Parallel reactions of 2a with 1a and $1a-d_5$ were conducted under the standard conditions for 10 min. Products **3a** and **3a**- d_4 were generated with a ratio of 1.8:1 (eq 6). These results indicated that the electrophilic metalation rather than C-H bond activation was probably involved in the ratelimiting step.

On the basis of the experimental results and literature reports, a possible reaction mechanism is depicted in Scheme 6. After the in situ generation of active catalytic species I, MSP-

Scheme 6. Proposed Mechanism

DG coordinated to the metal center and assisted C–H bond cleavage for the formation of five-membered rhodium cyclic intermediate II. Carbene coordination and migratory insertion generated intermediate III, which was trapped by another molecule of a carbene species immediately. Intermediate IV was generated, followed by protonation to give V, with catalyst I being released to complete the catalytic cycle. Subsequent intramolecular tandem cyclization afforded the title product 3a, and MPS-DG was released.

In conclusion, we have developed efficient access to furo[2,3-c]isochromenes through rhodium-catalyzed relay double carbenoid insertion and diannulation of sulfoximine benzamides with α -diazo carbonyl compounds. The reactions proceed smoothly under mild conditions with wide functional group tolerance. Mechanistic studies revealed that the alkyl-rhodium intermediate generated by carbenoid insertion was directly trapped with another molecule of a carbene species, followed by tandem intramolecular cyclization reactions. Sulfoximine was released in situ, featuring a traceless directing strategy.

ASSOCIATED CONTENT

1 Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.9b04659.

General experimental procedure and characterization data of the compounds (PDF)

Accession Codes

CCDC 1970166 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

- Jian Wang Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China; ⊙ orcid.org/0000-0003-0806-9590; Email: wang_jian989@163.com
- Yongjia Shang Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China; ⊙ orcid.org/0000-0001-9873-9150; Email: shyj@mail.ahnu.edu.cn

Authors

- Chen Yang Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
- Chen Chen Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
- Shunfan Li Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
- Xinwei He Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China; ⊙ orcid.org/0000-0002-1974-2464
- Youpeng Zuo Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
- Wangcheng Hu Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
- Tongtong Zhou Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.9b04659

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by National Natural Science Foundation of China (21772001 and 21702003) and

the Natural Science Foundation of Anhui Province (1808085QB31 and 1808085MB41).

REFERENCES

(1) (a) Gillingham, D.; Fei, N. Chem. Soc. Rev. 2013, 42, 4918.
 (b) Gurmessa, G. T.; Singh, G. S. Res. Chem. Intermed. 2017, 43, 6447.
 (c) Xia, Y.; Qiu, D.; Wang, J. Chem. Rev. 2017, 117, 13810.

(2) (a) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981. (b) Xiang, Y.; Wang, C.; Ding, Q.; Peng, Y. Adv. Synth. Catal. 2019, 361, 919.

(3) Chan, W.-W.; Lo, S.-F.; Zhou, Z.; Yu, W.-Y. J. Am. Chem. Soc. 2012, 134, 13565.

(4) (a) Shi, L.; Yu, K.; Wang, B. Chem. Commun. 2015, 51, 17277.
(b) Wang, J.; Zha, S.; Chen, K.; Zhang, F.; Zhu, J. Org. Biomol. Chem. 2016, 14, 4848. (c) Zhou, T.; Li, B.; Wang, B. Chem. Commun. 2016, 52, 14117. (d) Lin, X.; Chauvin, R.; Yu, Y.; Wang, L.; Xu, L.; Cui, X. ChemistrySelect 2017, 2, 2383. (e) Li, P.; Xu, X.; Chen, J.; Yao, H.; Lin, A. Org. Chem. Front. 2018, 5, 1777. (f) Karishma, P.; Mahesha, C. K.; Agarwal, D. S.; Mandal, S. K.; Sakhuja, R. J. Org. Chem. 2018, 83, 11661. (g) Guo, S.; Sun, L.; Liu, Y.; Ma, N.; Zhang, X.; Fan, X. Org. Lett. 2019, 21, 4082. (h) Qi, B.; Li, L.; Wang, Q.; Zhang, W.; Fang, L.; Zhu, J. Org. Lett. 2019, 21, 6860. (i) Chen, X.; Wang, M.; Zhang, X.; Fan, X. Org. Lett. 2019, 21, 2541.

(5) (a) Phatake, R. S.; Patel, P.; Ramana, C. V. Org. Lett. 2016, 18, 292. (b) Yang, X.; Jie, J.; Li, H.; Piao, M. RSC Adv. 2016, 6, 57371.
(c) Tang, G.-D.; Pan, C.-L.; Li, X. Org. Chem. Front. 2016, 3, 87.
(d) Patel, P.; Borah, G. Chem. Commun. 2017, 53, 443. (e) Bai, S.; Chen, X.; Hu, X.; Deng, Y.; Jiang, H.; Zeng, W. Org. Biomol. Chem. 2017, 15, 3638. (f) Aher, Y. N.; Lade, D. M.; Pawar, A. B. Chem. Commun. 2018, 54, 6288. (g) Borah, G.; Patel, P. Org. Biomol. Chem. 2019, 17, 2554. (h) Lade, D. M.; Aher, Y. N.; Pawar, A. B. J. Org. Chem. 2019, 84, 9188.

(6) (a) Li, Y.; Qi, Z.; Wang, H.; Yang, X.; Li, X. Angew. Chem., Int. Ed. 2016, 55, 11877. (b) Borah, G.; Ramaiah, D.; Patel, P. ChemistrySelect 2018, 3, 10333. (c) Su, L.; Yu, Z.; Ren, P.; Luo, Z.; Hou, W.; Xu, H. Org. Biomol. Chem. 2018, 16, 7236. (e) Kong, L.; Han, X.; Li, X. Chem. Commun. 2019, 55, 7339.

(7) (a) Zhao, D.; Kim, J. H.; Stegemann, L.; Strassert, C. A.; Glorius, F. Angew. Chem., Int. Ed. 2015, 54, 4508. (b) Li, J.; Tang, M.; Zang, L.; Zhang, X.; Zhang, Z.; Ackermann, L. Org. Lett. 2016, 18, 2742.
(c) Hu, X.; Chen, X.; Shao, Y.; Xie, H.; Deng, Y.; Ke, Z.; Jiang, H.; Zeng, W. ACS Catal. 2018, 8, 1308. (d) Xu, M.; Yuan, Y.; Wang, Y.; Tao, Q.; Wang, C.; Li, Y. Org. Lett. 2019, 21, 6264.

(8) (a) Yao, T.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2012, 51, 775. (b) Arunprasath, D.; Sekar, G. Org. Lett. 2019, 21, 867. (c) He, M.; Chen, N.; Zhou, T.; Li, Q.; Li, H.; Lang, M.; Wang, J.; Peng, S. Org. Lett. 2019, 21, 9559.

(9) Yang, C.; He, X.; Zhang, L.; Han, G.; Zuo, Y.; Shang, Y. J. Org. Chem. 2017, 82, 2081.

(10) Zuo, Y.; He, X.; Ning, Y.; Wu, Y.; Shang, Y. J. Org. Chem. 2018, 83, 13463.

(11) (a) Zuo, Y.; He, X.; Ning, Yi.; Wu, Y.; Shang, Y. ACS Omega 2017, 2, 8507. (b) He, X.; Han, G.; Zuo, Y.; Shang, Y. Tetrahedron 2018, 74, 7082. (c) Zuo, Y.; He, X.; Ning, Y.; Zhang, L.; Wu, Y.; Shang, Y. New J. Chem. 2018, 42, 1673. (d) Cai, P.; Zhang, E.; Wu, Y.; Fang, T.; Li, Q.; Yang, C.; Wang, J.; Shang, Y. ACS Omega 2018, 3, 14575. (e) Liu, Y.; Wu, J.; Qian, B.; Shang, Y. Org. Biomol. Chem. 2019, 17, 8768.

(12) Ning, Y.; He, X.; Zuo, Y.; Cai, P.; Xie, M.; Wang, J.; Shang, Y. Adv. Synth. Catal. **2019**, 361, 3518.

(13) Li, S.-S.; Xia, Y.-Q.; Hu, F.-Z.; Liu, C.-F.; Su, F.; Dong, L. Chem. - Asian J. 2016, 11, 3165.

(14) Xie, Y.; Chen, X.; Liu, X.; Su, S.-J.; Li, J.; Zeng, W. Chem. Commun. 2016, 52, 5856.

(15) Zhang, B.; Li, B.; Zhang, X.; Fan, X. Org. Lett. 2017, 19, 2294.
(16) (a) Fang, F.; Zhang, C.; Zhou, C.; Li, Y.; Zhou, Y.; Liu, H. Org.
Lett. 2018, 20, 1720. (b) Yan, K.; Li, B.; Wang, B. Adv. Synth. Catal.
2018, 360, 2272. (c) Zhang, B.; Li, B.; Guo, C.; Zhang, X.; Fan, X.
Tetrahedron Lett. 2018, 59, 3094.

(18) (a) He, X.; Wang, H.; Cai, X.; Li, Q.; Tao, J.; Shang, Y. Org. Biomol. Chem. 2018, 16, 7191. (b) Li, Q.; He, X.; Tao, J.; Xie, M.; Wang, H.; Li, R.; Shang, Y. Adv. Synth. Catal. 2019, 361, 1874.
(c) He, X.; Xie, M.; Tang, Q.; Zuo, Y.; Li, R.; Shang, Y. J. Org. Chem. 2019, 84, 11623.

(19) (a) Yadav, M. R.; Rit, R. K.; Sahoo, A. K. Chem. - Eur. J. 2012, 18, 5541. (b) Yadav, M. R.; Rit, R. K.; Sahoo, A. K. Org. Lett. 2013, 15, 1638. (c) Yadav, M. R.; Rit, R. K.; Shankar, M.; Sahoo, A. K. J. Org. Chem. 2014, 79, 6123. (d) Parthasarathy, K.; Bolm, C. Chem. - Eur. J. 2014, 20, 4896. (e) Yadav, M. R.; Shankar, M.; Ramesh, E.; Ghosh, K.; Sahoo, A. K. Org. Lett. 2015, 17, 1886. (f) Shankar, M.; Ghosh, K.; Mukherjee, K.; Rit, R. K.; Sahoo, A. K. Org. Lett. 2016, 18, 6416. (g) Shankar, M.; Ghosh, K.; Mukherjee, K.; Rit, R. K.; Sahoo, A. K. Org. Lett. 2018, 20, 5144.

(20) (a) Park, S. H.; Kim, J. Y.; Chang, S. Org. Lett. 2011, 13, 2372.
(b) Wang, F.; Qi, Z.; Sun, J.; Zhang, X.; Li, X. Org. Lett. 2013, 15, 6290.

(21) Xia, Y.; Liu, Z.; Feng, S.; Zhang, Y.; Wang, J. J. Org. Chem. 2015, 80, 223.