

Tetrahedron 55 (1999) 8353-8364

TETRAHEDRON

Synthesis of Nectrisine and Related Compounds,

and Their Biological Evaluation

Yong Jip Kim,* Akira Takatsuki,^b Naoto Kogoshi^{a,b} and Takeshi Kitahara**

 ^aDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
 ^bAnimal and Cellular Systems Laboratory, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan

Received 10 March 1999; accepted 19 May 1999

Abstract : An efficient and novel process is described for the synthesis of nectrisine 5 and its related derivatives 6,7 as potent glucosidase inhibitors *via* the corresponding lactams starting from D-(-)-diethyl tartrate. Also the results of biological evaluation of the synthesized compounds are described. © 1999 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

During the past 10 years, some new and interesting compounds have been revealed that are potent inhibitors of glycosidase.¹ But these compounds generally suffer from lack of specificity and in some cases from low activity at cellular levels. In connection with a programme on the development of more effective glycosidase inhibitors, we have developed the versatile synthetic method of polyhydroxylated pyrrolidine compounds as potent α -glucosidase inhibitors.

Naturally occurring product DAB-1 1, isolated from Angylocalyx boutiqueanus and Arachniodes standishii² and its enantiomer LAB-1 3 are powerful inhibitors of a range of α -glucosidases.³ We have recently shown that DAB-1 and its N-protected derivative 2 and LAB-1 and its N-protected derivative 4 could be readily synthesized from optically active diethyl tartrate.⁴

Nectrisine 5, a fungal metabolite isolated from *Nectria lucida*, is a potent α -glucosidase and α -mannosidase inhibitor.^{5,6} Although 4-*epi*-nectrisine 6 has been reported to exist as a complex equilibrium mixture with dimerized and hydrated forms, its biological activities are not known.⁷ In the previous

communication, we reported the synthesis of nectrisine and 4-epi-nectrisine.⁸ We now present the details of this synthesis and the application of this synthetic method to produce various derivatives including 5-deoxynectrisine 7. Furthermore, this paper presents the results of biological evaluation of the synthesized compounds in this programme using several glycosidases.

RESULTS AND DISCUSSION

1) Synthesis of Nectrisine

Our synthesis began with modified Strecker reaction⁹ of the aldehyde 8,¹⁰ which was readily obtained from D-(-)-diethyl tartrate in good yield (4 steps, >90%) and is depicted in Scheme 1. Reaction of this aldehyde 4 with 2.4 eq. of *p*-methoxybenzylamine and 1.2 eq. of diethyl phosphorocyanidate (DEPC) in THF gave aminonitrile 9 (2 steps, 96%), as an inseparable diastereometric mixture, the ratio of which was not determined because this stereocenter was epimerized concomitantly on the methanolysis of the nitrile 11 to the ester 12. The aminonitrile 9 was subsequently deprotected with tetra-*n*-butylammonium fluoride (TBAF) in THF to the corresponding amino alcohol 10 in 87% yield.

Scheme 1: a) p-(CH₃O)C₆H₄CH₂NH₂, (EtO)₂P(O)CN, THF; 96%; b) TBAF, THF; 87%; c) TPAP, NMO, MS4A, CH₂Cl₂; d) NaOMe, MeOH, 0°C \rightarrow r.t. then 1N HCl ; 2 steps, 71%; e) LiBH₄, THF; 87%; f) TPSCl, imid., DMF; 96%; g) CAN, CH₃CN-H₂O (9:1); 84%; h) conc. HCl, MeOH-H₂O (2:1); 92%; i) (Boc)₂O, Et₃N, DMAP, CH₂Cl₂; quant.; j) LiEt₃BH, THF, -78°C; 93%; k) 6N HCl, THF, 50°C, 2h; >80%, then Dowex 1-X2 (OH⁻), 90%

The amino alcohol 10 was oxidized by reaction with tetra-*n*-propylammonium perruthenate (TPAP)¹¹ and *N*-methylmorpholine-N-oxide (NMO) in CH₂Cl₂ at room temperature for 40 min, and cyclized to give the lactam 11. Without purification, the lactam was treated with 3 eq. of sodium methoxide in methanol at room temperature to give the methyl ester 12 (2 steps, 71%), which was reduced with $LiBH_4$ (lithium borohydride) in THF to form an alcohol and produced a chromatographically separable mixture of two diastereomers in 87% yield, *trans*-lactam 13 and *cis*-lactam 14, in a ratio of 56:44. The latter was utilized for the synthesis of 4-*epi*-nectrisine 6.

Protection of the primary alcohol of trans-lactam 13 with t-butyldiphenylsilyl chloride (TPSCI) and Et_nN gave the silvl ether 15 in 96% yield. At this juncture, the structure of compound 15 was further confirmed by a synthesis of (3S, 4R, 5R)-3.4-dihydroxy-5-hydroxymethyl-2-pyrrolidone 17. Thus treatment of 15 with ceric ammonium nitrate (CAN)¹² in CH₂CN-H₂O (9:1) at 0°C to afford lactam 16 in 84% yield and then the lactam was treated with conc. HCl in MeOH and $H_2O(2:1)$ at 60°C for 2h to furnish the corresponding pyrrolidone 17 in 92% yield which was identical in all respects with the literature.⁶ The key step in this synthesis is the reduction of lactam to amino alcohol. Accordingly, we examined the reduction of 15 with various reducing reagents (DIBAL-H, LiEt₃BH, NaBH₄ etc), but reduction product was not obtained. Faced with this problem, we decided to replace the N-protecting group, -PMB, with the more electron-withdrawing and easily removable -Boc group. Thus lactam 16 was treated with di-t-Butyl dicarbonate (Boc₂O) and Et₃N in CH₂Cl₂ to give an imide 18 in quantitative yield. Thus, reduction of the imide 18 with LiEt₃BH (Super Hydride[®]) in THF at -78° cleanly afforded amino alcohol 19 in 93% yield. The final task was the removal of the protecting groups. This was accomplished by treatment of 6N HCl in THF at 50°C for 2h to give the amino sugar precursor¹³ (>80% yield), followed by ion exchange column chromatography (Dowex resin, OH-form) which afforded nectrisine 5 in 90% yield. Comparison of the specific optical rotation, ¹H and ¹³C NMR data of our synthetic nectrisine 5 with those in the literature^{5,6} completely confirmed the identity of them.

2) Synthesis of 4-epi-Nectrisine

The 4-epi-nectrisine 6 was then synthesized from 14, following the set of reactions described above for the nectrisine 5.

Scheme 2: a) TPSCI, imid., DMF; 92%; b) CAN, CH_3CN-H_2O (9:1), 0°C; 82%; c) (Boc)₂O, Et₃N, DMAP, CH_2Cl_2 ; quant.; d) LiEt₃BH, THF, -78°C; 95%; e) 6N HCl, THF, 50°C, 2h, then Dowex 1-X2 (OH⁻); >80%; f) Ac₂O, H₂O; Dowex 50W-X2 (H⁺); quant.

Thus, as depicted in Scheme 2, protection of the primary hydroxyl function with TPSCl gave the silyl ether 20 in 92% yield. Removal of the protecting PMB group by CAN gave lactam 21 in 82% yield, which

was then treated with Boc_2O to give an imide 22 (quant. yield). The imide was reduced to amino alcohol 23 with Super Hydride[®] in THF at -78°C in 95% yield. Finally, deprotection of 23 with 6N HCl in THF at 50°C for 2h yielded a mixture of products (>80% yield). 4-*epi*-Nectrisine 6 was reported to exist as an equilibrium mixture of several forms.⁷ For identification, we decided to acetylate the amino group. Treatment of the mixture of products with Ac_2O in H_2O gave 24 (quant. yield) which was identical in all respects with that in the literature.⁷

3) Synthesis of 5-Deoxynectrisine

We also looked into the synthesis of 5-deoxynectrisine 7 (Scheme 3). Thus esterification of 13 with *p*toluenesulfonyl chloride (*p*-TsCl) in pyridine afforded the tosylate which was then converted into iodo compound 25 with sodium iodide (NaHCO₃, DMF) in 91% yield (based on the recovered tosylate). Hydrogenolysis of iodo compound 25 under palladium on carbon in EtOH gave the 5-deoxylactam 26 in quantitative yield. Removal of the -PMB protecting group in 26 with CAN provided lactam 27 (79% yield) which was treated with Boc₂O to give an imide 28 in quantitative yield. Reduction of the imide 28 with LiEt₃BH (Super Hydride[®]) in THF at -78°C cleanly afforded aminoalcohol 29 in 96% yield. The final task was the removal of the protecting groups. This was accomplished by treatment with 6N HCl in THF at 50°C for 1h and successive purification with ion exchange column chromatography (H⁺ form) to give the 5deoxynectrisine 7 (>80% yield).

Scheme 3: a) *p*-TsCl, pyr.; b) Nal, NaHCO₃, DMF; 91% in 2steps; c) H₂, Pd-C, EtOH; quant.; d) CAN, CH₃CN-H₂O (9:1), 0°C; 79%; e) (Boc)₂O, Et₃N, DMAP, CH₂Cl₂; quant.; f) LiEt₃BH, THF, -78°C; 96%; g) 6N HCl, THF, 50°C, 1h, then Dowex 50WX-2 (H⁺); > 80%.

4) Glycosidase Inhibition¹⁴

Biological activities of synthesized compounds in this programme are shown in Table 1. The natural product DAB-1 1 showed potent inhibitory activity towards wide range of glycosidases (α - and β -glucosidases and α -mannosidase) and in particular the potent competitive inhibition of yeast α -glucosidase with 50% inhibition (IC₅₀) of enzymic activity at 1.5×10^{-7} M which are comparable with those reported.³ Interestingly, compound 2 and 4, *N*-PMB protected form of 1 and 3, showed comparatively potent inhibition activity against yeast α -glucosidase with 50% inhibition at 1.0×10^{-6} M and 4.0×10^{-6} M. Besides, they also showed some

specificity between α -glucosidase and α -mannosidase. It appears that the three hydroxy functionalities of DAB-1 and LAB-1 are important for their biological activities. On the other hand, nectrisine 5 was also powerful inhibitor of yeast α -glucosidase (IC₅₀ 0.04×10⁻⁶M) which are comparable with those reported.^{5,6} 4-*epi*-Nectrisine 6 whose glycosidase inhibitor properties are unknown so far showed comparatively potent inhibition activity against yeast α -glucosidase with 50% inhibition at 8.0×10⁻⁶M. 5-Deoxynectrisine 7 possessed a remarkably potent inhibitory activity (IC₅₀ 1.9×10⁻⁶M) against yeast α -glucosidase, showing that the hydroxyl group of C-5 in nectrisine has a little effect in the inhibition. However, pyrrolidone 17 showed a weak inhibition against yeast α -glucosidase (IC₅₀ 40×10⁻⁶M).

Inhibitors	1	<u>, , , , , , , , , , , , , , , , , , , </u>	2	4	_		~	
Enzymes ^b		2	3	4	3	0	7	17
α-Glu. (Yeast)	0.15ª	1	15	4	0.04	8	1.9	40
β-Glu. (Almonds)	500	1000	2000	>2000	2.2	125	7.5	NI¢
α-Man. (Jack Bean)	200	800	>2000	>2000	3	800	15	NI
β-Man. (Snail)	>2000	700	>2000	>2000	42	NI	_d	NI
β-Gal. (Jack Bean)	2000	800	>2000	>2000	-	-	-	NI

Table 1. Biological activities of pyrrolidine derivatives.

 ${}^{a}IC_{50}$ (×10-6M) determined as described¹⁴, ${}^{b}Glu$.: Glucosidase, Man.: Mannosidase, Gal.: Galactosidase, ${}^{c}NI$; no inhibition up to $1.0 \times 10^{-3}M$, d -: not tested.

In conclusion, we have developed a new type of oxidative lactam formation which has been successfully used in total synthesis of the nectrisine 5 and 4-*epi*-nectrisine 6. Also this work could give access to an efficient method for the synthesis of pyrrolidone 17 and 5-deoxynectrisine 7 and some other derivatives. These pathways furnish various synthetic intermediates and analogs which may be helpful in evaluating structure-activity relationships of these glycosidase inhibitors. Further utilization of this methodology in the synthesis of other azasugars and related systems will be reported in due course.

EXPERIMENTAL

IR: Jasco A-102 spectrometer. - ¹H NMR (in CDCl₃ CD₃OD or D₂O): Jeol JNM EX-90 spectrometer (90

MHz), Bruker AC-300 spectrometer (300 MHz) or Jeol JNM- A 500 spectrometer (500MHz). - Optical rotations: Jasco DIP-371 polarimeter. - High resolution mass measurement: JEOL JMS-SX 102/SX102. - Column chromatography: Merck Kieselgel 60 (Art. Nr. 7734). - Melting points: uncorrected values.

Methods of biological evaluation were the same as described in reference.¹⁴

(1RS, 2S, 3R) - 2, 3-B is (me thoxy me thy l) ox y - 4 - (t - buty ld i me thy ls il yl) ox y - 1 - c yano - N - (4methoxybenzyl)butanamine (9). To a cooled (0°C) solution of aldehyde 8 (26g, 80.6mmol) and DEPC (15.8g, 96.7mmol) in THF (150ml) was slowly added a solution of p-methoxybenzylamine (26.6g, 193mmol) in THF (50ml). The reaction mixture was then allowed to warm to room temperature and stirred for 1h. The solvents were removed under reduced pressure and the residue was purified by SiO₂ column chromatography

(EtOAc/Hexane, 1:6) to give 36g (96%) of 9 as a colorless oil; $[\alpha]_D^{21} = +43.1$ (c 1.5 in CHCl₃). IR (neat): ν_{max}

(film)/cm⁻¹: 3320, 2930, 2210, 1510, 1460, 1250, 1030, 840 and 780. ¹H-NMR (CDCl₃) δ : 0.06 (6H, d, J=2.7Hz), 0.88 (9H, d, J=3.5Hz), 3.42 (6H, d, J=6.2Hz), 3.80 (3H, s), 3.66-3.85 (4H, m), 3.88-4.20 (4H, m), 4.74 (4H, d, J=4.9Hz), 6.86 (2H, d, J=8.6Hz) 7.27 (2H, d, J=8.6Hz). Anal. Calcd. for C₂₃H₄₀N₂O₆Si: C, 58.94; H, 8.60; N, 5.98. Found: C, 58.47; H, 8.57; N, 5.58.

(1 R S, 2 R, 3 R) - 2, 3 - B is (methoxy methyl) oxy - 4 - hydroxy - 1 - cyano-N- (4methoxybenzyl)butanamine (10). To a cold (0°C) solution of 9 (8.8g, 18.8mmol) in THF (50ml) was added a solution of TBAF (6.2g, 22.6mmol) in THF (15ml). The resulting mixture was allowed to warm to room temperature. After being stirred for 2h, H₂O (20ml) was added and the mixture was extracted with Et₂O (50ml, 3times). The extract was washed successively with H₂O, brine, dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by SiO₂ column chromatography (EtOAc/Hexane, 1:3) to give 5.8g (87%) of 10 as a pale yellow oil; $[\alpha]_D^{25}$ + 20.2 (c 1.0 in CHCl₃). IR (neat): ν_{max} (film)/cm⁻¹: 3480, 3320, 2940, 2210, 1610, 1510, 1460, 1250, 1030, 830 and 730. ¹H-NMR (CDCl₃) δ : 3.40 (6H, dd, J=2.3, 3.5Hz),

3.79 (3H, s), 3.72-3.94 (6H, m), 3.96 (1H, d, J=2.2Hz), 4.13 (1H, d, J=4.0Hz), 4.60 (1H, s), 4.75 (4H, dd, J=2.7, 5.3Hz), 6.87 (2H, d, J=8.6Hz) 7.26 (2H, d, J=8.6Hz). Anal. Calcd. for $C_{17}H_{26}N_2O_6$: C, 57.61; H, 7.39; N, 7.90. Found: C, 57.23; H, 7.26; N, 7.63.

(3*S*, 4*R*, 5*RS*)-*N*-(4-Methox ybenzyl)-3, 4-bis(methoxy methyl) oxy-5-c yano-2- pyrrolidino ne (11). The alcohol 10 (2.5g, 7.0mmol) was dissolved in CH_2Cl_2 (30ml) containing both the powdered 4A molecular sieves and NMO (2.5g, 21mmol). After stirring the mixture for 10min, solid TPAP (0.25g, 0.7mmol) was added in one portion at room temperature under argon atmosphere. This reaction was exothermic and thus the reaction mixture was allowed to reflux. After being stirred for 1h, the reaction mixture was filtered through SiO₂ under pressure, eluting with EtOAc. The filtrate was concentrated *in vacuo* to give 2.5g (quant.) of crude pyrrolidinone 11 as an oil ; IR (neat): ν_{max} (film)/cm⁻¹: 2960, 2840, 2210, 1720, 1620, 1510, 1440, 1250, 1050, 830 and 730. ¹H-NMR (CDCl₃) δ : 3.44 (6H, s), 3.80 (3H, s), 3.84-3.92 (1H, m), 4.01-4.34 (3H, m), 4.55 (1H, d, *J*=7.5Hz), 4.80 (2H, d, *J*=8.0Hz), 5.05 (2H, dd, *J*=3.6, 6.6Hz), 6.87 (2H, d, *J*=8.6Hz) 7.20 (2H, d, *J*=8.6Hz). This compound was used for the next step without further purification.

(3S, 4R, 5RS)-N-(4-Methoxy benzyl)-3, 4-bis (methoxy methyl) oxy-5-methoxy carbonyl-2pyrrolidinone (12). Sodium (0.5g, 21.3mmol) was dissolved in 25ml of MeOH. To this solution a dropwise solution of 11 (2.5g, 7.1mmol) in MeOH (10ml) was added and stirred for 30min. The reaction mixture was cooled (0°C) and acidified to pH 4 with 2M HCl. The reaction mixture was then allowed to warm to room temperature and the mixture was stirred for 3h. The solvents were evaporated and the residue was partitioned with H₂O (15ml) and EtOAc (30ml). The aqueous layer was extracted with EtOAc (30ml, 3times) and the combined organic layers were washed with saturated aqueous NaHCO₃, brine, dried (MgSO₄) and concentrated *in vacuo*. The residue was chromatographed over SiO₂ (EtOAc/Hexane, 1:2) to give 1.9g (71%) of **12** as an oil ; $[\alpha]_D^{25} = -78.2$ (*c* 1.3 in CHCl₃). IR (neat): ν_{max} (film)/cm⁻¹: 2950, 1760, 1710, 1610, 1510, 1440, 1040, 820 and 730. ¹H-NMR (CDCl₃) δ : 3.30 (3H, d, *J*=5.8Hz), 3.43 (3H, d, *J*=2.3Hz), 3.66 (3H, d, *J*=9.3Hz), 3.77 (3H, s), 3.82-4.13 (2H, m), 4.24-4.44 (2H, m), 4.58 (1H, d, *J*=3.1Hz), 4.65 (2H, d, *J*=2.3Hz), 4.71-4.92 (1H, m), 5.07 (1H, dd, *J*=5.2, 6.7Hz), 6.82 (2H, d, *J*=8.6Hz), 7.15 (2H, dd, *J*=3.0, 8.6Hz). Anal. Calcd. for C₁₈H₂₅NO₈: C, 57.39; H, 6.57; N, 3.65. Found: C, 57.25; H, 6.51; N, 3.78. (**3S**, **4R**)-N-(**4**-Methoxybenzyl)-**3**, **4**-bis (methoxymethyl)oxy-**5**-hydroxymethyl-**2**-pyrrolidinone (13, 14). To a stirred and cooled (0°C) solution of the methylester 12 (2g, 5.2mmol) in THF(30ml) LiBH₄ (4ml of 2M THF solution, 7.8mmol) was added. The reaction mixture was allowed to warm to room temperature and stirred for 20h. After quenching the reaction by addition of H₂O (10ml), the reaction

to room temperature and surred for 20n. After quenching the reaction by addition of H₂O (10ml), the reaction mixture was thoroughly extracted with EtOAc (30ml, 5times). The organic layer was washed with brine, dried (MgSO₄) and concentrated *in vacuo*. Purification of the resulting residue by SiO₂ column chromatography (EtOAc/Hexane, 1:1) gave 0.85g (46%) of (5*R*)-isomer 13 and 0.76g (41%) of (5*S*)-isomer 14 as solid; 13; m.p.= 56-57°C. [α]₀²⁷= 3.0 (*c* 0.82 in CHCl₃). IR (neat): ν_{max} (nujol)/cm⁻¹: 3460, 2920, 2850, 1680, 1610, 1510, 1450, 1380, 1250, 1160, 1030, 980, 840 and 740. ¹H-NMR (CDCl₃) δ: 3.34 (3H, s), 3.35 (1H, m), 3.50 (3H, s), 3.69 (1H, dt, *J*=3.0, 5.5Hz), 3.78 (1H, m), 3.79 (3H, s), 4.18 (1H, dd, *J*=5.0, 10Hz), 4.24 (1H, d, *J*=15.0Hz), 4.36 (1H, d, *J*=5.0Hz), 4.66 (1H, d, *J*=7.0Hz), 4.72 (1H, d, *J*=15.0Hz), 4.79 (2H, dd, *J*=6.5, 9.5Hz), 5.12 (1H, d, *J*=6.5Hz), 6.86 (2H, d, *J*=8.5Hz), 7.20 (2H, d, *J*=8.5Hz). Anal. Calcd. for C₁₇H₂₅NO₇: C, 57.45; H, 7.09; N, 3.94. Found: C, 57.44; H, 7.04; N, 3.97. **14**; m.p.= 64-66°C. [α]₀²⁷= -138.1 (*c* 0.82 in CHCl₃). IR (neat): ν_{max} (nujol)/cm⁻¹: 3440, 2940, 2840, 1700, 1610, 1510, 1440, 1370, 1250, 1150, 1040, 920, 830 and 760. ¹H-NMR (CDCl₃) δ: 3.38 (3H, s), 3.45 (3H, s), 3.50 (1H, m), 3.69 (1H, dt, *J*=3.4, 5.5Hz), 3.75 (1H, dd, *J*=2.2, 6.4Hz), 3.79 (3H, s), 4.04 (1H, d, *J*=14.7Hz), 4.30 (1H, dd, *J*=7.9, 15.6Hz), 4.59 (1H, d, *J*=7.6Hz), 4.70 (1H, d, *J*=4.3Hz), 4.79 (2H, dd, *J*=3.9, 6.7Hz), 6.84 (2H, d, *J*=8.5Hz), 7.17 (2H, d, *J*=8.5Hz). Anal. Calcd. for C₁₇H₂₅NO₇: C, 57.45; H, 7.09; N, 3.94. Found: C, 57.45; H, 7.09; N, 3.94. Found: C, 57.45; H, 7.09; N, 3.95 (1H, dd, *J*=2.2, 6.4Hz), 3.79 (3H, s), 4.04 (1H, d, *J*=14.7Hz), 4.30 (1H, dd, *J*=7.9, 15.6Hz), 4.59 (1H, dd, *J*=2.2, 6.4Hz), 3.79 (3H, s), 4.07 (2H, dd, *J*=3.9, 6.7Hz), 6.84 (2H, d, *J*=8.5Hz), 7.17 (2H, d, *J*=8.5Hz). Anal. Calcd. for C₁₇H₂₅NO₇: C, 57.45; H, 7.09; N, 3.94. Found: C, 57.49; H, 7.09; N, 4.05.

(3 S, 4 R, 5 R) - N - (4 - Me tho x y b e n z y l) - 3, 4 - b is (me tho x y me thy l) o x y - 5 - (t - butyldiphenylsiloxymethyl)-2-pyrrolidinone (15). To a stirred solution of the alcohol 13 (0.7g, 1.97mmol), imidazole (0.16g, 2.4mmol) in DMF (15ml) was added dropwise a solution of TPSCl (0.77g, 3mmol) in DMF (5ml) at room temperature. After stirring for an additional 6h, H₂O (10ml) was added and the mixture was extracted with Et₂O (50ml, 3times). The ether extract was washed with brine, dried (MgSO₄) and concentrated *in vacuo*. The residue was purified by SiO₂ column chromatography (EtOAc/Hexane, 1:4) to give 1.12g (96%) of 15 as an oil; $[\alpha]_D^{27}$ + 21.6 (c 0.71 in CHCl₃). IR (neat): ν_{max} (nujol)/cm⁻¹: 2930, 1710, 1610, 1510, 1430, 1250, 1150, 1110, 920, 860 and 710. 'H-NMR (CDCl₃) δ : 1.07 (9H, s), 3.25 (4H, s), 3.46 (3H, s), 3.62 (1H, d, *J*=15.3Hz), 3.68 (1H, dd, *J*=4.0, 11.3Hz), 3.74 (3H, s), 3.75 (1H, dd, *J*=4.0, 11.3Hz), 4.35 (2H, d, *J*=4.3Hz), 4.61 (1H, d, *J*=6.7Hz), 4.74 (1H, d, *J*=7.0Hz), 4.80 (1H, d, *J*=6.4Hz), 4.97 (1H, d,

J=15.0Hz), 5.13 (1H, d, J=6.7Hz), 6.73 (2H, d, J=8.3Hz), 6.84 (2H, d, J=8.5Hz), 7.44 (6H, m), 7.66 (4H, dd, J=6.7, 14Hz). Anal. Calcd. for C₃₃H₄₃NO₇Si: C, 66.75; H, 7.30; N, 2.36. Found: C, 66.54; H, 7.31; N, 2.42.

(3*S*, 4*R*, 5*R*)-3, 4-B is (me thox y meth yl) ox y-5- (*t*-bu tyld iphen ylsilox y methyl)-2- pyrrolidi none (16). To a precooled (0°C) solution of 15 (0.7g, 1.2mmol) in CH₃CN-H₂O (9:1, 15ml) a solution of CAN (1.9g, 3.6mmol) in CH₃CN-H₂O (9:1, 10ml) was added dropwise. After stirring for 30min at 0°C, the reaction mixture was allowed to warm to room temperature and stirred for an additional 3h. The reaction mixture was diluted with 10ml of H₂O and thoroughly extracted with EtOAc (30ml, 5times). The organic extracts were washed with saturated aqueous NaHCO₃, brine, dried (MgSO₄) and concentrated *in vacuo*. The residue was chromatographed over SiO₂ (EtOAc/Hexane, 1:2) to give 0.47g (84%) of 16 as a white crystalline solid ; m.p.= 89-91°C. $[\alpha]_D^{20}$ = +7.0 (*c* 0.63 in CHCl₃). IR (neat): ν_{max} (film)/cm⁻¹: 3250, 2920, 2860, 1730, 1680, 1460, 1110, 1060, 920, 820 and 710. ¹H-NMR (CDCl₃) δ : 1.03 (9H, s), 3.16 (3H, s), 3.40 (3H, s), 3.55 (1H, dt, *J*=3, 5.5Hz), 3.58 (1H, dd, *J*=7.9, 9.8Hz), 3.86 (1H, dd, *J*=2.4, 7.3Hz), 3.93 (1H, dd, *J*=5.8, 11.9Hz), 4.36 (1H, d, *J*=7.0Hz), 4.54 (1H, d, *J*=6.7Hz), 4.67 (1H, d, *J*=6.4Hz), 4.74 (1H, d, *J*=6.4Hz), 5.03 (1H, d, *J*=6.2Hz), 5.82 (1H, bs), 7.39 (6H, m), 7.61 (4H, d, *J*=6.7Hz). Anal. Calcd. for C₂₅H₃₅NO₆Si: C, 63.40; H, 7.45; N, 2.96. Found: C, 63.54; H, 7.42; N, 2.90.

(35, 4R, 5R)-3,4-Dihydroxy-5-hydroxymethyl-2-pyrrolidone (17). Conc. HCl (1ml) was added to a stirred solution of compound 16 (0.05g, 0.1mM) in MeOH (6ml) and H₂O (3ml). The reaction mixture was stirred at 60°C for 2h and concentrated *in vacuo*. The resulting residue was then purified by SiO₂ flash column chromatography (CHCl₃/MeOH/28% aq.NH₄OH, 5:3:1) to give 17, as a white crystalline solid (0.018g, 92%); m.p.= 135-138°C. [α]_D²¹= +15.2 (*c* 0.4 in H₂O). IR (KBr): ν_{max} (film)/cm⁻¹: 3200, 2910, 2850, 1658, 1340,

1314, 1278, 1090 and 1060. 'H-NMR (D_2O) δ : 3.36 (1H, ddd, J=8.0, 5.0, 4.0Hz), 3.51 (1H, dd, J=12.5Hz), 3.70 (1H, dd, J=12.4Hz), 3.91 (1H, t, J=8.0Hz), 4,21 (1H, d, J=8.0Hz). Anal. Calcd. for $C_5H_9NO_4$: C, 40.82; H, 6.17; N, 9.52. Found: C, 40.48; H, 6.02; N, 9.03.

(3 S, 4 R, 5 R) - N- (t - B utox y car bonyl) - 3, 4 - bis (methox y methyl) o xy - 5 - (t - butyldiphenylsiloxymethyl)-2-pyrrolidinone (18). To a stirred solution of 16 (0.5g, 1.1mmol), Et₃N (0.14g, 1.4mmol) and DMAP (catalytic amount) in CH₂Cl₂ (15ml) was added a solution of (Boc)₂O (0.32g, 1.5mmol) in CH₂Cl₂ (5ml) at room temperature. After being stirred for overnight, the solvents were removed under reduced pressure. The residue was then partitioned with H₂O (10ml) and EtOAc (20ml). The aqueous layer was extracted with EtOAc (30ml, 3times) and the combined organic layers were washed with saturated aqueous NaHCO₃, brine, dried (MgSO₄) and concentrated *in vacuo*. The residue was chromatographed over SiO₂ (EtOAc/Hexane, 1:4) to give 0.6g (quant.) of 18 as an oil ; $[\alpha]_D^{21}$ = -42.4 (c 0.71 in CHCl₃). IR (neat): ν_{max} (film)/cm⁻¹: 2930, 1800, 1770, 1720, 1470, 1370, 1310, 1150, 1110, 1040, 920, 820, 740 and 704. 'H-NMR (CDCl₃) & 1.04 (9H, s), 1.42 (9H, s), 3.34 (3H, s), 3.42 (3H, s), 3.86 (2H, m), 4.04 (1H, m), 4.23 (1H, d, J=3.4Hz), 4.37 (1H, dd, J=2.8, 5.5Hz), 4.67 (2H, dd, J=1.8, 6.7Hz), 4.72 (1H, d, J=6.7Hz), 4.96 (1H, d, J=6.7Hz), 7.38 (6H, m), 7.64 (4H, dd, J=6.5, 10.5Hz). Anal. Calcd. for C₃₀H₄₃NO₈Si : C, 62.80; H, 7.55; N, 2.44. Found: C, 62.44; H, 7.50; N, 2.85.

(3S, 4R, 5R)-N-(t-Butoxycarbonyl)-2-hydroxy-3, 4-bis(methoxymethyl)oxy-5-(t-

butyldiphenylsiloxymethyl) pyrrolidine (19). To a precooled (-78°C) solution of 18 (0.32g, 0.56mmol) in THF (10ml) under argon atmosphere LiEt₃BH (0.7ml of a 1M THF solution, 0.73mmol) was slowly added. After being stirred at -78° C for 30min, the solution was quenched at this temperature with methanol (5ml) and subsequently with 10ml of saturated aqueous NaHCO₃ solution. The resulting foamy slurry was allowed to warm to room temperature and then it was vigorously extracted with EtOAc (20ml, 3times). The extracts were dried (MgSO₄) and concentrated *in vacuo*. The residue was chromatographed over SiO₂ (EtOAc/Hexane, 1:3) to give 0.3g (93%) of 19 as an oil ; $[\alpha]_{D^{21}} = -29.1$ (*c* 0.3 in CHCl₃). IR (neat): ν_{max} (film)/cm⁻¹: 3450, 2930, 1700, 1470, 1430, 1380, 1150, 1110, 1040, 920, 820, 740 and 704. ¹H-NMR (CDCl₃) δ : 1.05 (9H, s), 1.31 (4.5H, bs), 1.51 (4.5H, bs), 3.28 (3H, bs), 3.42 (3H, s), 3.69-4.11 (4H, m), 4.44-4.70 (1H, m), 4.74 (4H, s), 5.36 (0.5H, bs), 5.51 (0.5H, bs), 7.38 (6H, m), 7.62 (4H, m). Anal. Calcd. for C₃₀H₄₅NO₈Si: C, 62.58; H, 7.88; N, 2.43. Found: C, 62.30; H, 7.83; N, 2.44.

Synthesis of nectrisine (5). To a stirred solution of 19 (0,1g, 0,17mmol) in THF (3ml) was added dropwise a solution of 6N HCl in THF (1:1 v/v, 2ml) at room temperature. The reaction mixture was stirred at 50°C for 2h and concentrated *in vacuo*. The resulting residue was then purified by SiO₂ flash column chromatography (CHCl₃/MeOH/28% aq. NH₄OH, 5:3:1) to give the 4-amino-4-deoxy-D-arabinose which was subjected to ion exchange chromatography purification (Dowex 1-X2, OH⁻) to obtain pure nectrisine 5 (0,02g, 91%); $[\alpha]_D^{20}$ = +19.6 (*c* 0.5 in H₂O), [lit⁵ : $[\alpha]_D^{20}$ = +21.8 (*c* 0.6 in H₂O)]. IR (KBr): ν_{max} (film)/cm⁻¹: 3300, 2900, 1640, 1560, 1400, 1040 and 850. ¹H-NMR (D₂O) &: 7.67 (1H, bs), 3.09-4.08 (5H, m), ¹³C NMR (D₂O) &: 170.7, 83.6, 78.5, 77.0, 61.4.13. HRFABMS m/z: 131.0591 [M]⁺ (Calcd. for C₅H₉NO₃ 131.0582)

(3S, 4R, 5S) - N - (4 - Methoxybenzyl) - 3, 4 - bis (methoxymethyl) oxy - 5 - (t - butyldiphenylsiloxymethyl) - 2-pyrrolidinone (20). In the same manner as described for the preparation of $15, 14 (1.3g, 3.68mmol) yielded 2.0g (92%) of 20 as an oil.; <math>[\alpha]_D^{27} = -74.0$ (c 0.67 in CHCl₃). IR (neat): v_{max} (film)/cm⁻¹: 1710, 1610, 1510, 1370, 1250, 1150, 1110, 1040, 920, 860 and 710. ¹H-NMR (CDCl₃) δ : 1.05 (9H, s), 3.24 (3H, s), 3.36 (1H, d, *J*=11.9Hz), 3.43 (3H, s), 3.59 (1H, d, *J*=14.5Hz), 3.62 (1H, dd, *J*=2.5, 11.5Hz), 3.75 (3H, s), 3.78 (1H, dd, *J*=2.5, 11.5Hz), 4.15 (1H, dd, *J*=7.9, 16.2Hz), 4.59 (1H, d, *J*=6.7Hz), 4.71 (1H, d, *J*=6.5Hz), 4.85 (2H, d, *J*=6.5Hz), 5.04 (1H, d, *J*=15.0Hz), 5.12 (1H, d, *J*=6.7Hz), 6.76 (2H, d, *J*=8.3Hz), 7.01 (2H, d, *J*=8.5Hz), 7.39 (6H, m), 7.64 (4H, dd, *J*=6.7, 14Hz). Anal. Calcd. for C₃₃H₄₃NO₇Si: C, 66.75; H, 7.30; N, 2.36. Found: C, 66.30; H, 7.38; N, 2.38.

(3*S*, 4*R*, 5*S*)-3, 4-B is (methoxymethyl) oxy-5-(*t*-butyldiphenyls iloxymethyl)-2-pyrrolidinone (21). In the same manner as described for the preparation of 16, 15 (0.7g, 1.2mmol) yielded 0.46g (82%) of 21 as colorless needles; m.p.= 143-145°C. $[\alpha]_D^{27}$ = -71.5 (*c* 0.62 in CHCl₃). IR (neat): ν_{max} (film)/cm⁻¹: 3250,

2920, 2860, 1730, 1680, 1460, 1110, 1060, 920, 820 and 710. ¹H-NMR (CDCl₃) δ : 1.03 (9H, s), 3.23 (3H, s), 3.41 (3H, s), 3.66 (1H, d, *J*=7.6Hz), 3.74 (2H, m), 4.36 (1H, dd, *J*=7.3, 14.7Hz), 4.52 (1H, d, *J*=7.6Hz), 4.58 (1H, d, *J*=6.7Hz), 4.70 (1H, d, *J*=6.7Hz), 4.77 (1H, d, *J*=6.4Hz), 5.04 (1H, d, *J*=6.4Hz), 5.88 (1H, bs), 7.42 (6H, m), 7.66 (4H, dd, *J*=6.4, 10.1Hz). Anal. Calcd. for C₂₅H₃₅NO₆Si: C, 63.40; H, 7.45; N, 2.96. Found: C, 63.54; H, 7.42; N, 2.90.

(3S, 4R, 5S) - N - (t - Butoxycarbonyl) - 3, 4 - bis(methoxymethyl) oxy - 5 - (t - butyldiphenylsiloxymethyl) - 2-pyrrolidinone (22). In the same manner as described for the preparation

of 18, 21 (0.32g, 0.67mmol) yielded 0.39g (quant.) of 22 as an oil ; $[\alpha]_D^{21} = -30.1$ (c 0.62 in CHCl₃). IR (neat): ν_{max} (film)/cm⁻¹: 2930, 1790, 1770, 1720, 1470, 1430, 1360, 1310, 1150, 1110, 1030, 920, 870, 820, 760 and 704. ¹H-NMR (CDCl₃) δ : 1.03 (9H, s), 1.48 (9H, s), 3.33 (3H, s), 3.44 (3H, s), 3.91 (2H, d, J=1.8Hz), 4.17 (1H, d, J=8.2Hz), 4.32 (1H, dd, J=8.6, 17.4Hz), 4.71 (1H, d, J=6.4Hz), 4.82 (2H, dd, J=6.7, 13.7Hz), 5.05 (1H, d, J=9.2Hz), 5.09 (1H, d, J=6.4Hz), 7.38 (6H, m), 7.62 (2H, d, J=7.9Hz), 7.74 (2H, d, J=6.7Hz). Anal. Calcd. for C₃₀H₄₃NO₈Si: C, 63.80; H, 7.55; N, 2.44. Found: C, 62.60; H, 7.51; N, 2.59.

 $(3S, 4R, 5S) - N - (t - Butox y carbonyl) - 2 - hydroxy - 3, 4 - bis (methox y methyl) ox y - 5 - (t - butyldiphenylsiloxymethyl) pyrrolidine (23). In the same manner as described for the preparation of 19, 22 (0.26g, 0.45mmol) yielded 0.25g (95%) of 23 as an oil; <math>[\alpha]_D^{21} = -3.3$ (c 0.50 in CHCl₃). IR (neat):

 ν_{max} (film)/cm⁻¹: 3470, 2930, 1690, 1390, 1110, 920, 870, 820, 740 and 704. ¹H-NMR (CDCl₃) δ : 1.07 (9H, s), 1.34 (4.5H, bs), 1.51 (4.5H, bs), 3.28 (3H, bs), 3.42 (3H, s), 3.75-3.97 (3H, m), 4.17 (1H, bs), 4.46 (1H, br), 4.73-4.83 (4H, m), 5.16 (0.5H, bs), 5.25 (0.5H, bs), 7.39 (6H, m), 7.69 (2H, bs), 7.76 (2H, d, J=6.0Hz). Anal. Calcd. for C₃₀H₄₅NO₈Si: C, 62.58; H, 7.88; N, 2.43. Found: C, 62.15; H, 7.84; N, 2.88.

Synthesis of 4-epi-nectrisine (6). To a stirred solution of 23 (0.1g, 0.17mmol) in THF (3ml) was added dropwise a solution of 6N HCl in THF (1:1 v/v, 2ml) at room temperature. The reaction mixture was stirred at 50°C for 2h and concentrated *in vacuo*. The resulting residue was then subjected to ion exchange chromatography purification (Dowex 1-X2, OH⁻) to give a mixture of products, including dimeric form and 4-*epi*-nectrisine 6 (0.03g, 80%). This compound was used for the next step and for bioassay without further purification.

4-Acetoamido-4-deoxy-L-xylose (24). To a stirred solution of a mixture of products **6** (0.03g, 0.2mmol) in H₂O (5ml) was added Ac₂O (0.12g, 1mmol). The reaction mixture was stirred at room temperature for overnight and concentrated *in vacuo*. The resulting residue was then subjected to ion exchange chromatography purification (Dowex 50WX-2, H⁺) to give 0.21g (quant.) of **24** as an oil ; $[\alpha]_D^{20} = -47.7$ (*c* 0.9 in H₂O), [lit^{7a} : $[\alpha]_D^{24} = -53-49$ (*c* 3.3 in H₂O)]. IR (neat): ν_{max} (film)/cm⁻¹: 3330, 2920, 2850, 1710, 1640, 1560, 1460, 1380, 1070. ¹H-NMR (D₂O) δ : 5.24 (α - anomer, 0.4H, d, *J*=3.5Hz), 4.57 (β -anomer, 0.6H, d, *J*=7.5Hz), 3.89 (2H, m), 3.67 (2H, m), 3.31 (1H, m), 2.02 (3H, s), ¹³C NMR (D₂O) δ : 175.3, 97.3, 93.1, 75.4, 74.1, 72.7, 70.9, 64.2, 60.0, 51.8(2C), 22.7. HRFABMS m/z: 192.0858 [M+H] (Calcd. for C₇H₁₃NO₅ 191.0793)

(3S, 4R, 5R) - N - (4 - Methoxybenzyl) - 3, 4 - bis (methoxymethyl) oxy - 5 - iodo-methyl - 2pyrrolidinone (25). To a stirred solution of the alcohol 13 (0.25g, 0.7mM) in pyridine (7ml) was added ptoluenesulfonyl chloride (0.27g, 1.4mM) and a catalytic amount of DMAP. The solution was stirred forovernight and H₂O (10ml) was added to the reaction mixture. It was then partitioned between Et₂O and H₂O.The aqueous layer was separated and extracted with Et₂O (30ml, 3 times). The combined ether layers werewashed with a solution of CuSO₄ (30ml, 3 times), brine, dried (MgSO₄), and concentrated in*vacuo*. To astirred solution of crude tosylate in DMF (10ml) was slowly added NaI (0.19g, 1.2mM) and NaHCO₃ (0.17g,2.0mM). The reaction mixture was heated to 65-70°C for 2h and then cooled to room temperature. Et₂O (30ml)and H₂O (20ml) were added and the layers were separated. The aqueous phase was extracted with ether (30ml,3 times) and the combined organic phases were washed with H₂O, brine, dried (MgSO₄) and concentrated in *vacuo.* The resulting residue was purified by SiO₂ column chromatography (EtOAc/Hexane, 1:2) to afford 0.24g (74%) of **25** and 0.07g (19%) of recovered starting tosylate compound; $[\alpha]_D{}^{19}$ = -12.8 (*c* 0.5 in CHCl₃). IR (neat): v_{max} (film)/cm⁻¹: 2940, 1710, 1610, 1510, 1440, 1250, 1150, 1110, 1040, 920 and 830. ¹H-NMR (CDCl₃) & 3.10-3.25 (2H, m), 3.35 (3H, s), 3.47 (3H, s), 3.40-3.75 (1H, m), 3.80 (3H, s), 3.90-4.15 (2H, m), 4.45 (1H, d, *J*=5.7Hz), 4.65-4.82 (3H, m), 4.95-5.20 (2H, m), 6.82 (2H, d, *J*=8.6Hz), 7.21 (2H, d, *J*=8.6Hz). Anal. Calcd. for C₁₇H₂₄INO₆: C, 43.88; H, 5.20; N, 3.01. Found: C, 44.22; H, 5.19; N, 3.00.

(3*S*, 4*R*, 5*R*)-*N*-(4-Methoxybenzyl)-3, 4-bis(methoxymethyl)oxy-5-methyl-2-pyrrolidinone (26). A solution of 25 (0.2g, 0.43mM) in EtOH (5ml) was hydrogenated over 10% palladium on carbon (0.1g) and NaHCO₃ (0.3g) at atmospheric pressure for 3h. After filtration, the catalyst was washed with EtOH (10ml) and the resulting EtOH solution was evaporated in *vacuo*. The resulting residue was purified by SiO₂ column chromatography (EtOAc/Hexane, 1:2) to afford 0.14g (quant.) of 26 as a colorless oil ; $[\alpha]_D^{20}$ = +32.7 (*c* 0.4 in CHCl₃). IR (neat): *v*_{max} (film)/cm⁻¹: 2940, 1703, 1610, 1510, 1440, 1380, 1250, 1150, 1040, 920, 840, 810 and 760. ¹H-NMR (CDCl₃) δ : 1.27 (3H, d, *J*=6.2Hz), 3.16-3.37 (1H, m), 3.34 (3H, s), 3.43 (3H, s), 3.78 (3H, s), 3.83-4.00 (2H, m), 4.32 (1H, d, *J*=5.7Hz), 4.60-4.83 (3H, m), 5.02-5.19 (2H, m), 6.84 (2H, d, *J*=8.6Hz), 7.15 (2H, d, *J*=8.6Hz). Anal. Calcd. for C₁₇H₂₅NO₆: C, 60.16; H, 7.42; N, 4.13. Found: C, 60.13; H, 7.40; N, 4.13.

(3S, 4R, 5R)-3,4-Bis(methoxymethyl)oxy-5-methyl-2-pyrrolidinone (27). In the same manner as described for the preparation of 16, 26 (0.21g, 0.61mmol) yielded 0.11g (79%) of 27 as a white crystalline solid ; m.p.= 46-48°C. $[\alpha]_D^{19}$ = -15.2 (*c* 0.08 in CHCl₃). IR (neat): ν_{max} (film)/cm⁻¹: 3320, 2920, 1720, 1670, 1460, 1380, 1120, 1050, 990 and 920. ¹H-NMR (CDCl₃) δ : 1.35 (3H, d, *J*=6.2Hz), 3.41 (3H, s), 3.45 (3H, s), 3.89 (1H, m), 4.30-4.38 (1H, m), 4.34 (1H, d, *J*=65.7Hz), 4.74-4.88 (3H, m), 5.06-5.13 (1H, m), 6.56 (1H, bs, -NH). Anal. Calcd. for C₉H₁₇NO₅: C, 49.31; H, 7.82; N, 6.39. Found: C, 49.61; H, 7.87; N, 6.37.

(3*S*, 4*R*, 5*R*)-*N*- (t-Butoxy carbony l)-3, 4-bis (me tho xy me thy l) ox y-5 -me thy l-2- py rroli din one (28). In the same manner as described for the preparation of 18, 27 (0.1g, 0.46mmol) yielded 0.15g (quant.) of 28 as a crystalline solid ; m.p.= 46-48 °C. $[\alpha]_D^{20}$ = -132.1 (*c* 0.21 in CHCl₃). IR (neat): ν_{max} (film)/cm⁻¹: 2980, 2830, 1790, 1720, 1460, 1370, 1310, 1210, 1150, 1110, 1040, 990, 920, 850, 760 and 670. ¹H-NMR (CDCl₃) & 1.43 (3H, d, *J*=6.5Hz), 1.53 (9H, s), 3.24-3.57 (1H, m), 3.39 (3H, s), 3.42 (3H, s), 3.78-4.05 (1H, m), 4.19 (1H, d, *J*=3.5Hz), 4.72 (3H, m), 5.01 (1H, d, *J*=6.7Hz). Anal. Calcd. for C₁₄H₂₅NO₇: C, 52.65; H, 7.89; N, 4.39. Found: C, 52.68; H, 7.84; N, 4.39.

(3S, 4R, 5R) - N - (t-Butoxycarbonyl) - 2 - hydroxy - 3, 4 - bis (methoxymethyl)oxy - 5 $methylpyrrolidine (29). In the same manner as described for the preparation of 19, 28 (0.024g, 0.08mmol) yielded 0.023g (96%) of 29 as an oil; <math>[\alpha]_D^{20} = -9.2$ (c 0.08 in CHCl₃). IR (neat): ν_{max} (film)/cm⁻¹:

3440, 2930, 1700, 1390, 1050 and 920. ¹H-NMR (CDCl₃) δ : 1.43 (3H, d, *J*=6.5Hz), 1.53 (9H, s), 3.39 (3H, s), 3.42 (3H, s), 3.78-4.05 (2H, m), 4.72 (5H, m), 5.20 (1H, br). Anal. Calcd. for C₁₄H₂₇NO₇: C, 52.32; H, 8.47; N, 4.36. Found: C, 51.87; H, 8.51; N,4.04.

Synthesis of 5-deoxynectrisine (7). To a stirred solution of 29 (0.05g, 0.16mmol) in THF (2ml) was added dropwise a solution of 6N HCl in THF (1:1 v/v, 1ml) at room temperature. The reaction mixture was stirred at 50°C for 2h and concentrated *in vacuo*. The resulting residue was then purified by SiO₂ flash column

chromatography (CHCl₃/MeOH, 5:1) and then ion exchange chromatography (Dowex 1-X2, OH⁻) to give 0.014g (80%) of 7 ; $[\alpha]_D^{20}$ = -6.5 (*c* 1.0 in H₂O). IR (neat): ν_{max} (nujol)/cm⁻¹: 3390, 2920, 1650, 1460, 1380, 1040 and 720. ¹H-NMR (D₂O) δ : 1.16 (3H, d, *J*= 7Hz), 3.01-3.89 (3H, m), 7.47 (1H, s). HRFABMS m/z: 115.0662 [M]⁺ (Calcd. for C₅H₉NO₂ 115.0633)

ACKNOWLEDGMENTS

The financial support by the Special Coordination Funds of the Science and Technology Agency of the Japanese Government is acknowledged. We are indebted to Mrs. Y. Naito for the elemental analysis.

REFERENCES

- a) Merrer, Y. L.; Poitout, L.; Depezay, J. D.; Dosbaa, I.; Geoffroy, S.; Foglietti, Foglietti, M. J. Bioorganic & Medicinal Chemistry 1997, 5, 519. b) Winchester, B.; Fleet, G. W. J. Glycobiology 1992, 2, 199 and references cited therein.
- a) Furukawa, J.; Okuda, S.; Saito, K.; Hatanaka, S.I.; *Phytochemistry* 1985, 24, 593. b) Nash,
 R.J.; Bell, E.A.; Williams, J.M. *Phytochemistry* 1985, 24, 1620 and references cited therein.
- 3) Fleet, G.W.J.; Nicholas, S.I.; Smith, P.W.; Evans, S.V.; Fellows, L.E.; Nash, R.J. *Tetrahedron* Lett. **1985**, *26*, 3127 and references cited therein.
- 4) Kim, Y. J.; Kido. M.; Bando, M.; Kitahara, T. Tetrahedron 1997, 53, 7501.
- 5) Shibata, T.; Nakayama, O.; Tsurumi, Y.; Okuhara, M.; Terano, H. and Kohsaka, M. J. Antibiot. 1988, 41, 296.
- For previous synthetic studies on the nectrisine 5, see, Chen, S.H.; Danishefsky, S.J. Tetrahedron Lett. 1990, 31, 2229.; Kayakiri, H.; Nakamura, K.; Takase, S.; Setoi, H.; Uchida, I.; Terano, H.; Hashimoto, M.; Tada, T.; Koda, S. Chem. Pharm. Bull. 1991, 39, 2807.
- a) El-Ashmawy, A.E.; Horton, D. Carbohydr. Res. 1966, 3, 191. b) Paulsen, H.; Propp, K.; Bruning J. Chem. Ber. 1969, 102, 469. c) Paulsen, H.; Bruning, J.; Propp, K.; Heyns, K. Tetrahedron Lett. 1968, 8, 999.
- 8) Kim, Y. J.; Kitahara, T. Tetrahedron Lett. 1997, 38, 3423.
- 9) Harusawa, S.; Hamada, Y.; Shioiri, T. Tetrahedron Lett. 1979, 48, 4663.
- a) Iida, H.; Yamazaki, N.; Kibayashi, C. J. Org. Chem. 1987, 52, 3337. b) Kuwahara, S.; Moriguchi, M.; Miyagawa, K.; Konno, M.; Kodama, O. Tetrahedron 1995, 51, 8809 and references cited therein.
- 11) Griffith, W.P.; Ley, S.V.; Whitcombe, G.P.; White, A.D. J. Chem. Soc., Chem. Commun. 1987, 1625.
- 12) Kronenthal, D.R.; Han, C.Y.; Taylor, M.K. J. Org. Chem. 1982, 47, 2765.
- 13) Naleway, J.J.; Raetz, C.R.H.; Anderson, L. Carbohydr. Res. 1988, 179, 199.
- For details of the biological evaluation, see, Tsujii, E.; Muroi, M.; Shiragami, N.; Takatsuki, A. Biochem. Biophys. Res. Commun. 1996, 220, 459.