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New thiopyrazolo[3,4-d]pyrimidine derivatives
as anti-mycobacterial agents
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Abstract—The multiple parallel synthesis of a series of N,S-bis-alkylated thiopyrazolo[3,4-d]pyrimidines, based on sequential S- then
N-alkylation, is reported. These compounds showed significant anti-mycobacterial activity (MICs down to 62 lg/ml) and their
potential as significant drug-like leads is substantiated through cytotoxicity evaluation and in silico profiling.
� 2007 Elsevier Ltd. All rights reserved.
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Synthetic drugs for treating tuberculosis (TB) have been
available for over half a century, but incidences of the
disease continue to rise world-wide. In 2004, the last
year for which statistics are available, it is estimated that
24,500 people developed active disease and close to 5500
died from TB every day.1 Co-infection with HIV is driv-
ing the increase in incidence2 and the cause of death in
31% of AIDS patients in Africa can be attributed to
TB.3,4 When coupled with the emergence of multi-drug
resistant strains of Mycobacterium tuberculosis (MDR-
TB), the scale of the problem is amplified. It is now more
than a decade since the WHO declared TB ‘a global
health emergency’.1 The need for new drugs to extend
the range of TB treatment options is hence acute; in par-
ticular, new chemical entities5 with novel mechanisms of
action are required.6

Purine-containing molecules are ubiquitous in nature
and are found as components of nucleosides, nucleo-
tides, co-factors and signalling molecules. A significant
proportion of any genome codes for proteins that recog-
nise purine-containing ligands (e.g., kinases, DNA and
RNA polymerases, ATPases, GTPases, purine recep-
tors). Unsurprisingly, structural analogues of purines
have proved attractive templates for drug discovery pro-
grammes, leading to a number of significant synthetic
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drugs (e.g., 6-thiopurine for leukaemia,7 acyclovir as
an anti-viral8 and allopurinol for treatment of gout9).
Recently, the purine core has been exploited in the syn-
thesis of protein kinase inhibitors,10–13 inhibitors of car-
bohydrate14 and estrogen15 sulfotransferases, as well as
in compounds displaying osteogenesis-inducing activity
in stem cells.16 Compounds of this generic nature (1–5)
have also been reported to display anti-mycobacterial
activity (Fig. 1).17–20
N

MIC 12.5 μg/mlMIC 1.3 μg/ml
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Figure 1. Purine-related anti-mycobacterials: (1),17 (2),18 (3),19(4),20 (5).25
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Figure 2. Strategy for development of initial SAR data.

Table 1. MIC data30 for an initial set of nine 4-thiopyrazolopyrimidine

derivatives against Mycobacterium tuberculosis H37Rv

These compounds are based around literature hit 5.25
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The isomeric pyrazolo[3,4-d]pyrimidine nucleus has
attracted comparatively little attention, though it has
been exploited in inhibitors of Src protein kinases,21

EGF receptor tyrosine kinases,22 cyclic AMP phosphodi-
esterases23 and Staphylococcus aureus DNA polymerase
III.24 Interestingly, such a compound reported as an
intermediate in the synthesis of prospective HIV replica-
tion inhibitors showed modest anti-mycobacterial activi-
ty (compound 5; MIC 12.5 lg/ml).25 In addition, the
often present alkylsulfanyl moiety has been previously
reported as important for anti-mycobacterial activity.26

This result prompted us to explore the thiopyrazolo[3,4-
d]pyrimidine template (TPP) in our search for new anti-
mycobacterial agents, given an encouraging level of
potency and straightforward syntheses via sequential S-
then N-alkylation of a commercial heterocycle.

To explore the potential of this observation, we first
constructed a 3 · 3 array around this hit. Synthetically,
the S-alkylation reactions of commercially available
1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidine-4-thione with
the requisite alkyl bromides were readily accomplished
in good yields (60–90%) using hydroxide resin in
DMF.27 The subsequent 1-N-alkylation reactions
(employing alkyl bromides with triethylamine or
K2CO3 in DMF) proved somewhat capricious, but
yields of the desired compounds varying from 25% to
80% were ultimately achieved. In spite of these issues,
the requisite compounds were produced and purified
in parallel on a 100 mg scale.28,29 Compounds from this
first iteration were assayed against M. tuberculosis
H37Rv; MIC data are recorded in Table 1.30

Whilst in our hands compound 5 (R1 = benzyl;
R2 = propargyl) was marginally less active (MIC 32 lg/
ml vs 12.5), activity was established with all nine com-
pounds. In a second iteration, a set of 11 prospective S/
N-substituents was selected to construct a bigger array;
however, to lessen the synthetic burden, we employed
stepwise logic in our synthetic execution with the
11 · 11 matrix of possible combinations. Thus, of the
121 possible structures this presents, an initial sub-set
of 40 compounds was synthesized by restricting the
choice of either the S- or N-substituent to one of two
groups (allyl or benzyl) and exploiting all 11 options at
the second site (Fig. 2). These initial sets of compounds,
plus the mono-alkylated intermediates, were assayed to
identify preferred S-(R1) and N-(R2) substituents, with
a view to focusing SAR work in subsequent iterations,
without having to make all 121 elements of the matrix.

Compounds from this second iteration were also as-
sayed against M. tuberculosis H37Rv; MIC data are
recorded in Table 2.30 Analysis of the partially filled
rows and columns of this matrix enabled us to select a
focused set of 3 · 3 R1 and R2 groups for the second
iteration, displayed in the inner box of Table 2.

The results obtained provided evidence to vindicate our
approach. An examination of the proportion of com-
pounds with an MIC 68 lg/ml generated by the ‘blind
synthesis’ (main entries, Table 1) versus the ‘oriented syn-
thesis’ (central table entries, Table 2) shows an improve-
ment from 5% at or below the 8 lg/ml threshold to 33%
in the second iteration. Pleasingly, one com-
pound (R1 = 4-chlorobenzyl; R2 = 3-pyridylmethylene)29

showed an MIC62 lg/ml. Subsequent re-testing showed
this compound to have an MIC between 0.5 and 1 lg/ml.

In this exercise, we were able to substantiate the origi-
nally reported TPP as a genuine hit and improved on
it, whilst delineating some SAR. It is interesting to com-
pare the presence of electron poor aromatic rings in our
more active molecules with the reported QSAR study
based on electron withdrawing properties of substituents
on S-benzyl thiopyridine derivatives31 and alkylthio-
chloropyrimidines.32 Clearly, any future work should
first focus on S-benzyl analogues in order to explore
electron withdrawing substituents, their preferred posi-
tioning, thus enabling possible QSAR studies.

In order to substantiate these molecules as robust leads,
which might warrant a significant programme of medic-



Table 2. MIC data for 4-thiopyrazolopyrimidinez derivatives against Mycobacterium tuberculosis H37Rv
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The central table entries represent compounds with R1 and R2 groups selected for a subsequent round of optimisation.
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Table 3. In silico prediction of parameters associated with bioavailability for all compounds possessing MICs <8 lg/ml

Com-

pound

H-bond

donors

H-bond

acceptors

Mw C logP Lipinski

compliant?

Rotatable

bonds

PSA

(Å2)

Veber

compliant?

C logD at

pH 7.4

C logD at

pH 6.5

Topliss

score

Bioavailability

(Topliss)

6 0 4 316.8 3.72 Yes 5 68.9 Yes 2.2 2.2 4.07 Class 4

7 0 5 333.4 2.56 Yes 5 81.8 Yes 2.56 2.56 3.98 Class 3

8 0 5 315.7 2.20 Yes 5 92.7 Yes 3.72 3.72 3.41 Class 3

9 0 5 230.2 2.45 Yes 5 92.7 Yes 3.16 3.16 4.01 Class 4

10 0 5 367.8 3.16 Yes 5 81.8 Yes 3.11 3.11 3.82 Class 3

Only 2 of the 18 Topliss assessment criteria calculated are included in the table.

Table 4. Cytotoxicity and anti-mycobacterial activity of hit com-

pounds. Isoniazid (INH), Rifampicin (RIF) and Ethambutol (ETH)

were employed as controls in the MIC assays
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inal chemistry, we generated cytotoxicity data (Tox 50)
on the most potent compounds in a HepG2 cell line
and generated in silico predictions of the likely oral
pharmacokinetic profile. Encouragingly, three of the five
hit molecules were shown non-cytotoxic at the highest
concentration assayed (Table 4). The in silico predictors
also indicated a strong likelihood of good oral bioavail-
ability;35 through the generation of predictors based on
the calculated parameters described by Lipinski,33

Veber34 and Topliss35 (Table 3).

In summary, N-,S-di-alkyl 4-thio-1H-pyrazolo[3,4-d]py-
rimidines have been investigated as anti-mycobacterial
agents. The best compound exhibited activity in vitro
that is comparable to clinically successful drugs (e.g.,
ethambutol MIC 2 lg/ml) coupled with no cytotoxicity
against a HepG2 cell line. The SAR developed herein,
coupled with favourable pharmacokinetic predictions,
substantiate these molecules as a significant lead series
in the search for new anti-tubercular agents.
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