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Abstract: A number of readily available dienes and a triene were applied to exchange the alkene ligand 
on the in situ generated titanium-alkene complexes which react with N,N-dialkylcarboxamides to give 
N,N-dialkylcyclopropylamines. The ligand-exchanged intermediates were found to give the most highly 
substituted alkenylcyclopropylamines (abnormal products) in good yields (47~54%), rather than the 
least substituted alkenylcyclopropylamine (expected products). This has been attributed to an unforeseen 
and unprecedented titanium migration along the ligand. © 1998 Elsevier Science Ltd. All rights reserved. 

Since the discovery by our group of the new titanium-mediated synthesis of N,N-diaikylcyclo- 
propylamines 4 from N,N-dialkylcarboxamides 1 (Scheme 1), 2 which is an adaptation of the original 
Kulinkovich protocol for the conversion of esters to cyclopropanols, 3 we have been further improving the 
methodology 4 and exploring the scope and limitations as to extend the accessible substitution pattern of the 
cyclopropylamine ring system. 

Sooner or later, weS, 6 and others 7 realized that the ligand exchange of alkenes 5 on the titanacyclopro- 
pane intermediate 6 to yield a differently substituted intermediate 2, which was also discovered by 
Kulinkovich et al. 8 and utilized in the synthesis of highly functionalized cyclopropanols,8, 9 could easily be 
adapted for the synthesis of cyclopropylamines with one, two, and three additional substituents on the cyclo- 
propane ring from terminalS, 6,7 and non-terminal alkenes.5, 6 In this preliminary communication we would like 
to report on our novel observation that conjugated dienes and trienes are accepted by titanacyclopropane 
intermediates 6 as particularly good ligands, and the thus formed intermediates 2 generally reacted with 
dibenzylformamide to form cyclopropylamines with an unexpected substitution pattern. 
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Scheme 1 

The reactions were carried out by generating the diisopropyloxytitanium intermediate from the 
respective diene and an alkenetitanium intermediate formed from methyltriisopropyloxytitanium and an 
alkylmagnesium halide in the presence of  N,N-dialkylformamide. Cyclohexylmagnesium bromide was found 
to be superior to any other Grignard reagent previously advertised for this type of ligand-exehange-initiated 
transformation,7, 9 and was simply added as the last reagent to a THF solution containing preformed 
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MeTi(OiPr)3 , the diene and dibenzylformamide, i° Butadiene (9) was thus converted to 2-ethenyl-l-(N,N- 
dibenzylamino)cyclopropane (1O) in 56% yield (Table 1, entry 1). Cyclopropylamine 10 had previously been 
obtained from but-3-en- 1-ylmagnesium bromide in the presence of MeTi(OiPr)3.4 Surprisingly, the reactions 

Table. 1. 2-Alkenyl-l-(N,N-dibenzylamino)cyclopropanes formed from N,N-dibenzylformamide and in situ 
generated titanium-diene complexes applying a ligand exchange approach. 10 

Entry Alkene Conditions Product Yield Diastereom. 
Temp. [°C] Time [hi (%) Ratio (cis/trans) a 
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9 10 

11 Bn2N 12 
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3 @ 0-5 24 o d  
/ 

13 

4 ~ 0-5 24 

14 Bn 

16 Bn 

6 ~ 0-5 22 __d __ 

1 7 '  

7 1 8 ~  0-5 17 Bn2 ~ 1 9  51e 

NBn 2 
8 ~ , , ' ~ V ' ~  0-5 26 ~ 54 

20 21 

56 1:2.7 

59 >98:2 c 

64 1:5.3 

27 1:3 

>98:2 c 

1:1.5:1.5 

a As by integration of the corresponding IH NMR signals. - b First example used to investigate whether dienes can participate as 
ligands in this process. - c The second diastereoisomer was not detected by IH NMR. - d No reaction observed. - • Commercially 
available myrcene after fractional distillation was only ~85-90% pure and therefore some minor products were observed resulting 
from the 10--15% polyene impurity in the starting material. 

with substituted 1,3-dienes such as isoprene (11), 4-methyl-l,3-pentadiene (14) and myrcene (18) gave the 
alkenyldibenzylaminocyclopropanes 12, 15, and 19, respectively, derived from attack on the more highly 
substituted double bond of the conjugated diene unit rather than the expected products which would have been 
formed by attack on the least substituted double bond. As these expected products were not detected in any 
case, 11 and control experiments with 2,3-dimethylbutadiene (13) and 2,5-dimethyl-2,4-hexadiene (17) did not 
yield any cyclopropylamines, it must be concluded that only the alkenyldiisopropyloxytitanacyclopropane 22 
is initially formed from a conjugated diene of type 11 by complexation at the least substituted double bond. It 
is conceivable that 22 then undergoes a titanium shift to the more highly substituted titanacyclopropane 24 
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before it reacts with the carbonyl group in the formamide. This shift might occur via a 1-alkenyltitanacyclo- 
propane 22 to 4-titanacyclopentene 23 rearrangement 12 - corresponding to an intramolecular carbotitanation 
of an alkene by an allyltitanium species - with subsequent ring contraction to give 24. Only if the latter were 
much more reactive than 22 this route would lead to the selective formation of the more highly substituted 
cyclopropylamine 30 via oxatitanacyclopentane 28. More likely, though, the formamide reacts with the 
kineticaUy favored, and also thermodynamically more stable 22 - as calculated at the B3LYP/6- 
311 +G*//HF/3-21G level of theory - via a six-center transition structure 12d to yield the oxatitanacycloheptene 
27 which can only cyclorevert to the observed more highly substituted cyclopropylamine 30. The seven- 
membered ring intermediate 27 could also be formed by addition of formamide to 23 via a four-center 
transition structurel3 or by ring enlargement of the vinyloxatitanacyclopentane 28. 

The formation of the same cyclopropylamine 15 from 2-methyl-l,3-pentadiene (16) as from 4-methyl- 
1,3-pentadiene (14) most probably arises by initial isomerization of 16 to 14 under the conditions employed. 
The fact that the conjugated 6-methyl-l,3,5-heptatriene (20) yields only the 2,3-dialkenylcyclopropylamine 21 
arising from attack at the central double bond in 20 may be taken to indicate that the reacting species is 
actually the less substituted titanacyclopropane of type 22 or a titanacyclopentene of type 23 rather than the 
most highly substituted titanacyclopropane of type 24. 
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