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Abstract

Treatment ofN-1-(2-chloroalkylidene)arylamine8 with KCN in CH3CN at reflux afforded zarylamino-2-
alkenenitriles3 (42-58%), which underwent autoxidation, yielding the correspondirdgydroperoxyimidoyl
cyanides (95-100%). © 2000 Elsevier Science Ltd. All rights reserved.
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N-Alkyl -cyanoenamine$ andN-methylN-phenyl -cyanoenamine® have received considerable
attention as starting materials for the preparation of a variety of organic compbuxdeng them,
trialkylketenimines’, prepared by treatment df with methylmagnesium iodide in ether, followed by
addition of water, reacted with singlet oxygen to give 3-alkylimino-1,2-dioxetanes, exhibiting weak
chemiluminescence upon heatihélevertheless, -hydroperoxyN-alkylimidoyl cyanides, which may
act as precursors to the above 1,2-dioxetanes have never been isolated. Furthermore, a survey of the
literature shows that no 3-arylimino-1,2-dioxetanes were detected even under the same conditions as for
the isolation of 3-alkylimino-1,2-dioxetanés.

In a continuation of our study on exploiting the synthetic utility of 2,5-diarylisoxazolidine-3-thiyfies
we have found that 2,5-diphenyl-4,4-dimethylisoxazolidine-3-théa@R'=R?=Me, Ar=Ar'=Ph} reac-
ted with diethylaluminum cyanide (EAICN) in toluene at reflux under a nitrogen atmosphere to give 3-
methyl-2-phenylamino-2-butenenitrifa (R'=R?*=Me, Ar=Ph) in 41% yiel8 (Scheme 1). Interestingly,
compoundawas slowly converted to -hydroperoxyN-phenylimidoyl cyanidéa (R1=R?=Me, Ar=Ph)
either in crystalline or in a solution state in the air. The results prompted us to investigate the stability of
otherN-aryl -cyanoenamine3, which could be readily prepared frasaryl -chloroaldimines$’ and
KCN in CH3CN at reflux according to the literature mettfold has been found that all of the compounds
3 prepared undergo autoxidation, yielding hydroperoxides analogdees ®eaction times, yields, and
mps of 2-arylamino-2-alkenenitril&sand -hydroperoxyN-arylimidoyl cyanides are summarized in
Table 1.
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Scheme 1.
Table 1
Reaction times, yields, and mps of 2-arylamino-2-alkenenitBlasd -hydroperoxyN-arylimidoyl
cyanidess
) Time  Yield® Mp® Time Yield®  Mp®
R! R>  Ar Compd. Compd. P
P o w0
Me Me Ph 3a 8 55 61-63 5a 44 100 53-55
Me Me 4-CICH, 3b 9 50 85 -87 5b 58 97 c
Me Me 4-BrCH, 3¢ 13 42 91-93 5¢ 54 98 c
Me Me 3-MeCH, 3d 12 53 81-82 5d 59 97 c
Me Me 4-MeCH, 3e 9 58 74 -76 Se 50 95 61 -63
Me Me 2-MeCH, 3f 12 57 69 - 70 5f 54 98 54-57
Me Me 4-MeOCH, 3g 9 52 liquid 5g 44 98 c
Et Et Ph 3h 12 54 liquid 5h 360 95 c
Me Et 4-MeCH, 3i 12 56 . . ]
Et  Me 4-MeCH, 3 @Gi3j=1:1) Hqud 5P 240 96 c
-(CH,)s- Ph 3k 12 57 82 -84 5j 44 99 85-86

“ Isolated yields. * Recrystallized from a mixture of n-hexane and CH,Cl, except for 5j (n-hexane). © Sticky
solid.

The extent of the conversion 8ainto 5awas determined based on the chemical shifts (GP&JO0
MHz) of the methyl protons cBaat 1.86 and 2.12 ppm and thosed#at 1.63 ppm as a single peak.

The conversion proceeded faster in non-polar solvents than in polar solvents as shown in Table 2. An
analogous effect of the solvent effect was observed from rapid oxygen uptake of acyl cyanide in non-polar
solvents®®¢ When R and R were methyl groups as Ba-g, it took 44 to 59 h for complete conversions
to the correspondinga—g in CHCls. In contrast, when one of the methyl groups was substituted for ethyl
group as in a mixture ddi and3j or both R and R were ethyl groups as i8h, it took 240 h and 360
h, respectively, until the spots correspondin@tioad completely disappeared. The results indicate that
the presence of a bulkier group(s) than the methyl group at tpesition ofN-aryl -cyanoenamines
3 drastically retards the autoxidation. Nevertheless, it is interesting to note that the same reaction times
took the same period (44 h) for the conversion of Bkh(R-(CH,)s-R?) and3ato the corresponding
hydroperoxide®j and5a, respectively.

Unexpectedly, treatment @& with N-chlorosuccinimide (NCS) in Cglat room temperature gaéa
as a major product (67%) along with-chloroN-phenylimidoyl cyanide’ (22%), whereas compourdd
was obtained as a major product (61%) under nitrogen atmosphere (Scheme 2). The result may be due to
no rigorous exclusion of oxygen in view of the formation ethloro-N-alkylimidoyl cyanides in almost
quantitative yields under the same conditidfs.

Compoundsba, 5¢, 5f, and5j among the compounds prepared were obtained in crystalline states



1471

Table 2
Percentages for the conversi@ad 5a) for 44 h

Solvent %
Benzene 100
CH,Cl, 100
CHCI; 100
Et,O 49
THF 56
CH,;COCH, 74
EtOAc 26
CH;CN 23
MeOH 8
Neat 9
NCS N~Ph N~Ph
3a _— %_</ + — > </
CCly, rt, 4 h HOO CN Cl CN
5a 7
Scheme 2.

by recrystallization. However, compoun&—-d and 5g-i were sticky solids, whose structures were
identified by conversion to the corresponding peroxiglesd and8g-i, respectively (Scheme 3), which
gave satisfactory spectroscopic (NMR, IR) and analytical data.

R'"  Nv~Ar
R'  N~Ar p-TsOH R® {
R2 > </ P N (I) CN 8 (57 - 88%)
HOO  CN CH.Cl, OO~
5 rt, 5 min T
Scheme 3.

Compounds undergo slow decomposition in the air. For example, comp&a(®=R?=Me, Ar=4-
BrCsH4) showed several spots on TL&£0.35, n-hexane:EtOAc=5:1) in a few days (Scheme 4).
The GC-MS data of the mixture exhibited a fragment witlz 197, corresponding to the molecular
weight of 4-bromophenylisocyanate, where the retention time was identical to that of the authentic
sample. This result may be rationalized based on an intramolecular cyclizatibo tof give 4,4-
dimethyl-N-(4-bromophenyl)imino-1,2-dioxetan® which subsequently undergoes decomposition to
yield 4-bromophenylisocyanate and acetone. Analogous reactions have been reported for the formation
of alkylisocyanates and carbonyl compounds from decomposition of 4-substituted 3-alkylimino-1,2-
dioxetanes.?

4‘BrC6H4 4-BFCBH4
3N N (0]
/ — Y ——+  4-BrCgH,NCO  + /U\
HOO  CN 020
5c 9
Scheme 4.

In summary, apart from 2-alkylamino-2-alkenenitriles, 2-arylamino-2-alkenenitriles undergo slow
autoxidation to give their -hydroperoxyN-arylimidoyl cyanides. Some of them are isolable in cryst-
alline states. Since the hydroperoxides undergo slow decompositioN-giglimino-4,4-dimethyl-
1,2-dioxetanes, they may be useful model compounds for further study of the working of natural
bioluminescent systems.
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9. Crystalline compoun@®a (100 mg, 0.58 mmol) was dissolved in chloroform (10 mL). The conversion was monitored by
TLC. The spot corresponding @8a (R=0.45, CHCl,) completely disappeared in 44 h. After removal of the solvéHit,
and3C NMR spectra of the residusa were taken. ThéH and3C NMR spectra oba- were recorded at 300 and 75
MHz, respectively, in CDGL Compoundsa: mp 53-55°C ii-hexane—CkCl,); *H NMR  1.63 (s, 6H, 2Me), 7.09 (d, 2H,
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