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Abstract

Treatment ofN-1-(2-chloroalkylidene)arylamines6 with KCN in CH3CN at reflux afforded 2-arylamino-2-
alkenenitriles3 (42–58%), which underwent autoxidation, yielding the corresponding�-hydroperoxyimidoyl
cyanides (95–100%). © 2000 Elsevier Science Ltd. All rights reserved.
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N-Alkyl �-cyanoenamines1 andN-methyl-N-phenyl�-cyanoenamines2 have received considerable
attention as starting materials for the preparation of a variety of organic compounds.1 Among them,
trialkylketenimines,2 prepared by treatment of1 with methylmagnesium iodide in ether, followed by
addition of water, reacted with singlet oxygen to give 3-alkylimino-1,2-dioxetanes, exhibiting weak
chemiluminescence upon heating.3 Nevertheless,�-hydroperoxy-N-alkylimidoyl cyanides, which may
act as precursors to the above 1,2-dioxetanes have never been isolated. Furthermore, a survey of the
literature shows that no 3-arylimino-1,2-dioxetanes were detected even under the same conditions as for
the isolation of 3-alkylimino-1,2-dioxetanes.3c

In a continuation of our study on exploiting the synthetic utility of 2,5-diarylisoxazolidine-3-thiones4,4

we have found that 2,5-diphenyl-4,4-dimethylisoxazolidine-3-thione4a(R1=R2=Me, Ar=Ar0=Ph)5 reac-
ted with diethylaluminum cyanide (Et2AlCN) in toluene at reflux under a nitrogen atmosphere to give 3-
methyl-2-phenylamino-2-butenenitrile3a (R1=R2=Me, Ar=Ph) in 41% yield6 (Scheme 1). Interestingly,
compound3awas slowly converted to�-hydroperoxy-N-phenylimidoyl cyanide5a(R1=R2=Me, Ar=Ph)
either in crystalline or in a solution state in the air. The results prompted us to investigate the stability of
otherN-aryl�-cyanoenamines3, which could be readily prepared fromN-aryl�-chloroaldimines67 and
KCN in CH3CN at reflux according to the literature method.8 It has been found that all of the compounds
3 prepared undergo autoxidation, yielding hydroperoxides analogous to5a. Reaction times, yields, and
mps of 2-arylamino-2-alkenenitriles3 and�-hydroperoxy-N-arylimidoyl cyanides5 are summarized in
Table 1.
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Scheme 1.

Table 1
Reaction times, yields, and mps of 2-arylamino-2-alkenenitriles3 and�-hydroperoxy-N-arylimidoyl

cyanides5

The extent of the conversion of3a into 5a was determined based on the chemical shifts (CDCl3, 300
MHz) of the methyl protons of3aat� 1.86 and 2.12 ppm and those of5aat� 1.63 ppm as a single peak.

The conversion proceeded faster in non-polar solvents than in polar solvents as shown in Table 2. An
analogous effect of the solvent effect was observed from rapid oxygen uptake of acyl cyanide in non-polar
solvents.3e When R1 and R2 were methyl groups as in3a–g, it took 44 to 59 h for complete conversions
to the corresponding5a–g in CHCl3. In contrast, when one of the methyl groups was substituted for ethyl
group as in a mixture of3i and3j or both R1 and R2 were ethyl groups as in3h, it took 240 h and 360
h, respectively, until the spots corresponding to3 had completely disappeared. The results indicate that
the presence of a bulkier group(s) than the methyl group at the�-position ofN-aryl �-cyanoenamines
3 drastically retards the autoxidation. Nevertheless, it is interesting to note that the same reaction times
took the same period (44 h) for the conversion of both3k (R1-(CH2)5-R2) and3a to the corresponding
hydroperoxides5j and5a, respectively.

Unexpectedly, treatment of3a with N-chlorosuccinimide (NCS) in CCl4 at room temperature gave5a
as a major product (67%) along with�-chloro-N-phenylimidoyl cyanide7 (22%), whereas compound7
was obtained as a major product (61%) under nitrogen atmosphere (Scheme 2). The result may be due to
no rigorous exclusion of oxygen in view of the formation of�-chloro-N-alkylimidoyl cyanides in almost
quantitative yields under the same conditions.10

Compounds5a, 5e, 5f, and5j among the compounds5 prepared were obtained in crystalline states
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Table 2
Percentages for the conversion (3a!5a) for 44 h

Scheme 2.

by recrystallization. However, compounds5b–d and 5g–i were sticky solids, whose structures were
identified by conversion to the corresponding peroxides8b–d and8g–i, respectively (Scheme 3), which
gave satisfactory spectroscopic (NMR, IR) and analytical data.

Scheme 3.

Compounds5 undergo slow decomposition in the air. For example, compound5c (R1=R2=Me, Ar=4-
BrC6H4) showed several spots on TLC (Rf=0.35, n-hexane:EtOAc=5:1) in a few days (Scheme 4).
The GC-MS data of the mixture exhibited a fragment withm/z 197, corresponding to the molecular
weight of 4-bromophenylisocyanate, where the retention time was identical to that of the authentic
sample. This result may be rationalized based on an intramolecular cyclization of5c to give 4,4-
dimethyl-N-(4-bromophenyl)imino-1,2-dioxetane9, which subsequently undergoes decomposition to
yield 4-bromophenylisocyanate and acetone. Analogous reactions have been reported for the formation
of alkylisocyanates and carbonyl compounds from decomposition of 4-substituted 3-alkylimino-1,2-
dioxetanes.3a,b

Scheme 4.

In summary, apart from 2-alkylamino-2-alkenenitriles, 2-arylamino-2-alkenenitriles undergo slow
autoxidation to give their�-hydroperoxy-N-arylimidoyl cyanides. Some of them are isolable in cryst-
alline states. Since the hydroperoxides undergo slow decomposition viaN-arylimino-4,4-dimethyl-
1,2-dioxetanes, they may be useful model compounds for further study of the working of natural
bioluminescent systems.
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