TOTAL SYNTHESIS OF NEOMYCIN B*†

TAKAYUKI USUI AND SUMIO UMEZAWA

Institute of Bioorganic Chemistry, 1614 Ida, Nakahara-ku, Kawasaki 211 (Japan) (Received June 23rd, 1987; accepted for publication, September 2nd, 1987)

ABSTRACT

Total synthesis of neomycin B, a pseudo-tetrasaccharide aminoglycoside antibiotic, has been achieved through two key glycosylation reactions. Coupling of 3-O-acetyl-2,6-diazido-4-O-benzyl-2,6-dideoxy-L-idopyranosyl chloride with 5-Obenzoyl-1,2-O-isopropylidene- α -D-ribofuranose under modified Koenigs-Knorr conditions gave 70% of the desired β -L disaccharide (3) corresponding to neobiosamine in structure. After deisopropylidenation of 3 and acetylation, 1,2-di-O-acetyl-3-O-(3-O-acetyl-2,6-diazido-4-O-benzyl-2,6-dideoxy- β -L-idopyranosyl)-5-O-benzoyl-D-ribofuranose was coupled to HO-5 of 3,2',6'-tri-N-(benzyloxycarbonyl)-1-N:6-O-carbonyl-3',4'-di-O-(o-methoxybenzoyl)neamine, using trimethylsilyl trifluoromethanesulfonate, to give 60% of the pseudo-tetrasaccharide 19 possessing the framework and masked functionality corresponding to neomycin B. Deblocking and reduction of the azido groups then gave neomycin B.

INTRODUCTION

Neomycin B is a main component of the neomycin complex which was independently discovered by H. Umezawa *et al.*³ and Waksman *et al.*⁴. The neomycin group is a representative of pseudo-tetrasaccharide antibiotics, which provide some fascinating problems of synthesis^{5,6}. The complete structures and absolute stereochemistry of the neomycins have been elucidated⁷ and a total synthesis of neomycin C has been achieved⁸. Neamine (neomycin A), the pseudo-disaccharide portion of neomycin B and C, was prepared⁹ by 6'-amination of paromamine and later¹⁰ by a coupling reaction. However, the total synthesis of neomycin B has been hindered¹¹ by the difficulty associated with glycosylation with 2,6-diamino-2,6-dideoxy-L-idose (neosamine B), which distinguishes neomycin B.

The key glycosyl chloride, 3-O-acetyl-2,6-diazido-4-O-benzyl-2,6-dideoxy-Lidopyranosyl chloride¹² (1) was already known and the following reactions were involved: (1) coupling of 1 to HO-3 of a protected ribose¹³ (2) to give a masked

^{*}Dedicated to Professor Hans Paulsen.

^{*}For preliminary reports of part of this work, see refs. 1 and 2.

disaccharide (3) corresponding to neobiosamine B; and (2) coupling of 5, derived from 3, to HO-5 of a selectively protected neamine (18) to give a masked pseudo-tetrasaccharide (19), which was then converted into neomycin B.

RESULTS AND DISCUSSION

Glycosylation of HO-3 of 5-O-benzoyl-1,2-O-isopropylidene- α -D-ribofuranose¹³ (2) with 3-O-acetyl-2,6-diazido-4-O-benzyl-2,6-dideoxy-L-idopyranosyl chloride¹² (1) in the presence of mercuric cyanide, mercuric bromide, and molecular sieves (4 Å) gave 70% of the desired 1,2- $cis(\beta-L)$ disaccharide derivative 3 together with 7% of the α -L anomer 4 after column chromatography. The β -L and α -L configurations of 3 and 4 assigned on the basis of the $[\alpha]_{\rm D}$ values (+139° and +28°, respectively) were confirmed by the small $J_{2',3'}/J_{4',5'}$ values of 3 (Table I), and the long-range coupling $(J_{2',4'} \ge 1 \text{ Hz})$ indicates the ${}^{1}C_{4}(L)$ conformation almost exclusively^{14,15}. The $J_{2',3'}$ and $J_{3',4'}$ values of the α -L isomer 4 are larger than those of 3, which shows that 4 departs from the pure ${}^{1}C_{4}$ conformer and some contribution of the ${}^{4}C_{1}$ conformer is suggested ${}^{12,14-17}$. However, anomeric configurations of 3 and 4 were not assigned unequivocally because of the small difference of the $J_{1',2'}$ values¹⁸. Therefore, the ¹H-n.m.r. spectra of **3** and **4** were compared with those of other idoside derivatives. The $J_{1,2}/J_{4,5}$ values for methyl 2,6-diamino-2,6-dideoxy- β -L-idopyranoside¹² (8) were close to those of 3, suggesting the β configuration of 3. On the other hand, the $J_{1',2'}$ value of 4 was essentially identical with that of the corresponding α -glycosyl acetate 7, but different from that of the α -glycoside 9. The J values of other related compounds (10-13) prepared in our laboratory¹⁶ are shown in Table I for comparison.

Since the ¹H-n.m.r. data gave no clear-cut conclusion for the anomeric configurations of 3 and 4, the ¹³C-n.m.r. spectra were measured (Table II). The magnitude and the sign of the chemical shift difference of C-1/C-6 of the idoside

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Compound	Chemic	cal shifts ^a						First-o	rder coupl	ling constar	nts				
$3(\beta)$ 5.11 3.59 5.32 3.24 3.91 2.95 3.73 2.0 3.2 3.2 3.8 8.5 $4(\alpha)$ 4.87 3.60 5.12 3.52 4.41 3.27 3.59 3.4 5.5 3.8 8.5 $6^{0}(\beta)$ 7°(\alpha) 8.87 3.60 5.12 3.52 4.41 3.27 3.59 3.4 5.5 3.5 8.5 8.5 $7^{n}(\alpha)$ 8.86 3.52 4.41 3.27 3.59 3.4 5.5 3.5 8.5		I-H	Н-2	Н-3	H-4	Н-5	H-6a	<i>q9-Н</i>	$\mathbf{J}_{I,2}$	$J_{2,3}$	J _{3,4}	J _{4,5}	J _{5,6a}	J _{5,6b}	J _{2,4}	$\mathbf{J}_{I,3}$
	3(<i>b</i>)	5.11	3.59	5.32	3.24	3.91	2.95	3.73	2.0	3.2	3.2	2.2	3.8	8.5	*	0
$\theta(\theta)$ 2.5 4.5 4.5 3.5 8 $T^{h}(\alpha)$ 3.5 4.5 4.5 3.5 8 $\theta^{h}(\theta)$ 3.5 4.5 4.5 3.5 8 $\theta^{h,d}(\alpha)$ 3.5 3.5 3.5 3.5 8 $\theta^{h,d}(\alpha)$ 4.5 6.5 6 3.5 4.5 9 $\theta^{h,d}(\alpha)$ 1.1 4 4 2.5 4 7.5 $11^{0+d}(\theta)$ 3.5 5 4 2.5 4 7.5 $12^{-d}(\alpha)$ 3.5 5 4 2.5 4 7.5	4 (a)	4.87	3.60	5.12	3.52	4.41	3.27	3.59	3.4	~5.5	~4.5	÷	5.4	8.5	0	0
$7^b(\alpha)$ 3.5 4.5 4.5 3.5 8.5 $8^b.4(\beta)$ 2 3.5 3.5 2.5 4.5 8.5 $9^b.4(\alpha)$ 4.5 6.5 $6.$ 3.5 4.5 9.5 $9^b.4(\alpha)$ $1.$ 4.5 6.5 $6.$ 3.5 4.5 9.5 $9^b.4(\alpha)$ $1.$ 4.5 6.5 $6.$ 3.5 4.5 9.5 $9^b.4(\alpha)$ $1.$ $4.$ $4.$ 2.5 $4.$ 7.5 $10^{b.e}(\beta)$ $1.$ $4.$ 2.5 $4.$ 7.5 $12^{c.4}(\beta)$ 1.5 $4.$ 2.5 $4.$ 7.5	6 ^b (B)								2.5	4.5	4.5	÷	S	8	≤1′	
$\mathfrak{g}^{b,d}(\beta)$ 2 3.5 3.5 $2.$ 4.5 8.5 $\mathfrak{g}^{b,d}(\alpha)$ 4.5 6.5 $6.$ 3.5 4.5 9.6 $\mathfrak{g}^{b,d}(\alpha)$ $1.$ 4.5 6.5 $6.$ 3.5 4.5 9.6 $\mathfrak{g}^{b,d}(\alpha)$ $1.$ $4.$ $4.$ 2.5 $4.$ 7.5 $\mathfrak{g}^{b,d}(\alpha)$ 1.5 $5.$ $4.$ 2.5 $4.$ 7.5 $\mathfrak{g}^{c,d}(\beta)$ 1.5 $4.$ 2.5 $4.$ 7.5 $\mathfrak{g}^{c,d}(\beta)$ 1.5 $4.$ 2.5 $4.$ 2.5 $4.$ 7.5 $\mathfrak{g}^{c,d}(\beta)$ 1.5 $4.$ 2.5 $4.$ 2.5 $4.$ 9.5 $\mathfrak{g}^{c,d}(\beta)$ 1.5 $4.$ 2.5 $4.$ 2.5 $4.$ 9.5	$T^{b}(\alpha)$								3.5	4.5	4.5	÷	ŝ	8	≤1'	₹¥
$9^{b,d}(x)$ 4.5 6.5 6 3.5 4.5 9 $10^{b,e}(B)$ 1 4 4 2.5 4 7.5 $11^{c,e}(a)$ 3.5 5 4 2.5 4 9 $12^{c,e}(B)$ 1.5 4 2.5 4 9	8 ^{b, d} (B)								6	3.5	3.5	7	4.5	8.5	7	
$10^{ke}(\beta)$ 1 4 4 2.5 4 7.5 $11^{ke}(\alpha)$ 3.5 5 4 2.5 4 9 $12^{ke}(\beta)$ 1 5 4 4 2.5 4 9	$9^{b,d}(\alpha)$								4.5	6.5	9	3.5	4.5	6		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10c.e(B)								1	4	4	2.5	4	7.5		
12s-d(B) 15 4 4 2	$11^{c,e}(\alpha)$								3.5	5	4	2.5	4	6		
	$12^{c,d}(\beta)$								1.5	4	4	7			-	
$13^{c,d}(\alpha)$ 6 8.5 7.5 4.5	$13^{c,d}(\alpha)$								9	8.5	7.5	4.5				

SYNTHESIS OF NEOMYCIN B

TABLE I

135

portion between $3(\beta)$ and $4(\alpha)$ showed a similar pattern with that between $8(\beta)$ and $9(\alpha)$. The significant up-field shift (6.6 p.p.m. between 3 and 4, 4.3 p.p.m. between 8 and 9) of the signals for C-5 of the α anomers compared to those of the β anomers reflect the γ -gauche effect¹⁹ caused by H-5 and the axially oriented aglycon in the α anomer, which adopts the ${}^{1}C_{4}(L)$ conformation. The consistent shielding of C-5 of α -aldohexopyranose derivatives compared to respective β anomers has been documented²⁰. These results clearly indicate the anomeric configurations of 3 and 4 are as described.

Treatment of 3 with a mixture of acetic acid and 2M hydrochloric acid followed by conventional acetylation gave an $\alpha\beta$ -mixture of glycosyl acetates (5, 92%, $\alpha\beta$ -ratio ~1:3 as estimated from the ¹H-n.m.r. spectrum) which were indistinguishable on chromatography. When deisopropylidenation was carried out with HCl or H₂SO₄ in aqueous alcohol or 1,4-dioxane, the yields were markedly lower.

A suitably protected neamine derivative with HO-5 free was next sought. When tetra-N-(benzyloxycarbonyl)-5,6-O-cyclohexylideneneamine^{21,22} (15) was treated with benzyl bromide and base, a mixture of products resulted. Benzylation under acid catalysis²³ was also unsuccessful. Acetyl and benzoyl protection was in-

		x 3,	· · · ·	_			-
Carbon	3 <i>a</i>	4 ª	85	9 ^b	$\Delta\delta(3-4)$	$\Delta\delta(8-9)$	2
C-1	104.7	104.2					104.1
C-2	76.7	78.8					78.5 ^c
C-3	77.0	79.5					72.2
C-4	75.2	75.9					78.4 ^c
C-5	63.2	62.7					63.4
C-1'	97.5	100.1	101.6	103.1	-2.6	-2.5	
C-2'	57.5	58.6	53.7	54.6	-1.1	-0.9	
C-3'	67.6	67.9	71.4	72.7	-0.3	-1.3	
C-4'	70.9	72.8	69.7	71.4	-1.9	-1.7	
C-5'	74.8	68.2	76.9	72.6	+6.6	+4.3	
C-6'	51.2	50.5	42.1	40.4	+0.7	+1.7	
$C(CH_3)_2$	113.4	113.0					112.8
$C(CH_3)_2$	26.8	26.4					26.5 ^d
S/2	26.9	26.7					
C=O	166.2	166.2					166.5
	169.0	169.6					

¹³C-N.M.R. CHEMICAL SHIFT DATA (CDCl₁, 62.9 MHz) FOR **3** AND **4** COMPARED WITH THOSE FOR **2**, **8**, AND **9**

^aDetermined by the ¹³C⁻¹H shift-correlated 2D spectrum. ^bTaken from ref. 12, measured in 20% ND₃ in D₂O. ^cAssignments may be interchanged. ^dDuplicated.

appropriate because of the use of basic conditions in the subsequent formation of the cyclic carbamate. α -Naphthoyl protection was found to improve the situation, but was still unsatisfactory. Protection by the *o*-methoxybenzoyl group proved to be suitable. Thus, **15** was acylated with *o*-methoxybenzoyl chloride in pyridine to give the 3',4'-di-O-acyl derivative (**16**) in good yield. After decyclohexylidenation (\rightarrow **17**), HO-6 was protected by cyclic carbamate formation with NH₂-1 (\rightarrow **18**), using sodium hydride in *N*,*N*-dimethylformamide. The yield of the carbamate was \sim 60% when the reaction was conducted in the usual manner, but it was raised to \sim 80% by the addition of excess benzyltriethylammonium chloride. Without the quaternary ammonium salt, polar and faster-moving by-products appeared (t.1.c.). The ¹H-n.m.r. spectrum of the higher-mobility substance showed it to be benzyl *o*-methoxybenzoate.

Coupling of 5 and 18 in benzene in the presence of trimethylsilyl trifluoromethanesulfonate²⁴ gave 60% of the desired pseudo-tetrasaccharide derivative 19, having the β -D configuration, as the only isolable product; formation of the α anomer was not detected. Although the resonances of H-1" and H-1" of 19 were overlapped with other signals, the mechanism of the glycoside formation under Lewis-acid catalysis involving neighbouring-group participation²⁵ strongly suggested the formation of a β -D(1,2-trans) ribosyl bond, which was eventually established by the small (2.3 Hz) $J_{1",2"}$ value of fully deblocked neomycin B. The addition of molecular sieves as reported²⁴ did not improve the yield of 19. BF₃etherate and SnCl₄ did not promote the glycosylation, but trityl perchlorate²⁶ showed a result almost identical with that obtained with trimethylsilyl trifluoromethanesulfonate.

Treatment of **19** with sodium benzyloxide in benzyl alcohol gave the 1,3,2',6'-tetra-*N*-(benzyloxycarbonyl) derivative **20**. The *o*-methoxybenzoyl group in **19** was resistant to saponification with aqueous alkali. Catalytic hydrogenolysis of **20** over Pd/C removed both the *N*-benzyloxycarbonyl and *O*-benzyl groups, and the azido groups were converted into amino groups to give 65% of neomycin B. The ¹H-²⁷ and ¹³C-n.m.r.²⁸ spectra of the free base and the specific rotation²⁹ of the hydrochloride accorded with the data reported for natural neomycin B. The synthetic and natural specimens showed the same activity² against Gram-positive and -negative bacteria.

EXPERIMENTAL

General methods. — Melting points were determined with a Kofler block and are uncorrected. Optical rotations were measured at 20–22° with a Perkin–Elmer 241 polarimeter for solutions in chloroform, unless otherwise stated. T.I.c. was performed on Kieselgel 60 F_{254} (Merck) with detection by u.v. light (254 nm), iodine vapor, and charring with sulfuric acid. Flash column chromatography was performed on Kieselgel 60 (40–63 μ m) or Wakogel C-300. I.r. spectra were recorded for KBr discs with a JASCO A-202 grating spectrophotometer. ¹H-N.m.r. (250 MHz) and ¹³C-n.m.r. (62.9 MHz) spectra were recorded with a Bruker WM-250 spectrometer for solutions in CDCl₃ (internal Me₄Si) unless otherwise stated.

3-O-(3-O-Acetyl-2,6-diazido-4-O-benzyl-2,6-dideoxy-β- (3) and -α-L-idopyranosyl)-5-O-benzoyl-1,2-O-isopropylidene-β-D-ribofuranose (4). — A mixture of 1 (1.00 g, 2.62 mmol), 2 (398 mg, 1.35 mmol), Hg(CN)₂ (380 mg, 1.50 mmol), HgBr₂ (100 mg, 0.28 mmol), and powdered molecular sieves (4 Å, 2.5 g) in dry CH₂Cl₂ was stirred for 28 h at room temperature under a gentle stream of N₂. T.l.c. (toluene–ethyl acetate, 4:1) then revealed no 2 (R_F 0.22), and the presence of 3 (0.31), 4 (0.58), and some minor by-products. The mixture was filtered with CHCl₃ through a pad of Celite, washed successively with saturated aqueous NaHCO₃, H₂O, aqueous 10% KI, H₂O, and aqueous 10% NaCl, dried (Na₂SO₄), and concentrated. Column chromatography [silica gel (100 mL); toluene–ethyl acetate, 4:1] of the residue (~1.2 g) gave 3 as a glassy solid (605 mg, 70%), [α]_D +139° (*c* 0.8); ν_{max} 2110 (N₃), 1740 and 1720 (C=O), 1270, 1220, 1040 cm⁻¹. ¹H-N.m.r. (see Table I also): δ 5.87 (d, J_{1,2} 3.7 Hz, H-1), ~4.75 (H-5b), ~4.73 (H-2), ~4.4 (3 H, H-3,4,5a), 1.40 and 1.60 (2 s, each 3 H, CMe₂). See Table II for ¹³C-n.m.r. data.

Faster moving fractions containing 4 were re-chromatographed using preparative h.p.l.c. (Senshu Pak SSC-Silica-842, 5 μ m, 30 × 250 mm; toluene–ethyl acetate, 9:1, 13 mL/min) to give 4 (61 mg, 7%), $[\alpha]_D$ +28° (c 1.1). ¹H-N.m.r. (see Table I also): δ 5.79 (d, $J_{1,2}$ 3.6 Hz, H-1), 4.73 (dd, $J_{2,3}$ 4.4 Hz, H-2), 4.64 (dd, $J_{4,5b}$ 3 Hz, H-5b), 4.50 (dd, J_{5gem} 12.3, $J_{4,5a}$ 5 Hz, H-5a), 4.29 (ddd, $J_{3,4}$ 9.2 Hz, H-4), 3.84 (dd, H-3), 1.36 and 1.57 (2 s, each 3 H, CMe₂). See Table II for ¹³C-n.m.r. data.

Anal. Calc. for $C_{30}H_{34}N_6O_{10}$ (638.6): C, 56.42; H, 5.37; N, 13.16. Found: **3**, C, 56.79; H, 5.28; N, 13.12; **4**, C, 56.61; H, 5.49; N, 13.40.

1,2-Di-O-acetyl-3-O-(3-O-acetyl-2,6-diazido-4-O-benzyl-2,6-dideoxy-β-L-idopyranosyl)-5-O-benzoyl-D-ribofuranose (5). — To a solution of **3** in acetic acid (15 mL) was added 2M hydrochloric acid (7 mL), and the solution was left for 2.5 h at room temperature. After concentration to ~5 mL, CHCl₃ (50 mL) was added and the solution was washed with saturated aqueous NaHCO₃ and aqueous 10% NaCl, dried (Na₂SO₄), and concentrated to dryness. The residue (810 mg) was acetylated with acetic anhydride (0.8 mL) in pyridine (4 mL) in the usual manner, to give **5** as a glassy solid (910 mg, 92%), $[\alpha]_D + 82^\circ$ (c 0.9); ν_{max} 2110, 1740, 1270, 1220 cm⁻¹. ¹H-N.m.r.: δ 6.48 (d, J_{2.3} 4.5 Hz, H-1α), 6.20 (s, H-1β), 5.32 (d, J_{2.3} 4.5 Hz, H-2β), 5.27 (t, $J_{2',3'} = J_{3',4'} = 2.7$ Hz, H-3' β , maybe overlapped with H-3' α), 5.04 (dd, $J_{2,3}$ 7 Hz, H-2 α), 5.00 (d, $J_{1',2'}$ 2 Hz, H-1' β), 4.4–4.9 (m, 6 H, CH₂Ph and H-3,4,5,5), 3.91 (ddd, $J_{4',5'}$ 2, $J_{5',6'a}$ 4, $J_{5',6'b}$ 8.2 Hz, H-5' β), 3.80 (ddd, H-5' α), 3.69 (dd, $J_{6'gem}$ 12.6 Hz, H-6'b α), 3.66 (dd, $J_{6'gem}$ 13 Hz, H-6'b β), 3.48 (apparent t, $J_{2',4'} \ge 1$ Hz, H-2' α), 3.40 (apparent t, $J_{2',4'} \ge 1$ Hz, H-2' β), 3.20–3.22 (H-4' α , β), 3.12 (dd, H-6'a α), 3.02 (dd, H-6'a β), 2.16–1.86 (5 s, 9 H, 3 Ac); the $\alpha\beta$ -ratio varied depending on the signals integrated and was in the range 1:2.7 based on H-6'a to 1:3.7 based on H-1.

Anal. Calc. for C₃₁H₃₄N₆O₁₂ (682.6): C, 54.54; H, 5.02; N, 12.31. Found: C, 54.24; H, 5.11; N, 12.46.

1,3-Di-O-acetyl-2,6-diazido-4-O-benzyl-2,6-dideoxy- α -L-idopyranose (7). — The crystalline $\alpha\beta$ -mixture¹² was repeatedly recrystallised from ether-pentane to give 7 with a constant m.p. 70-71°, $[\alpha]_D - 8.6^\circ$ (c 0.6). The ¹H-n.m.r. data agreed with those¹² of the major anomer (see Table I).

Anal. Calc. for $C_{17}H_{20}N_6O_6$ (404.4): C, 50.49; H, 4.99; N, 20.78. Found: C, 50.80; H, 4.93; N, 20.69.

1,3,2',6'-Tetra-N-(benzyloxycarbonyl)-5,6-O-cyclohexylidene-3',4'-di-O-(omethoxybenzoyl)neamine (16). — The described²¹ preparation of 15 was improved. To a solution of tetra-N-(benzyloxycarbonyl)neamine²² (14; 5.20 g, 6.05 mmol) in dry N, N-dimethylformamide (40 mL) containing 1,1-dimethoxycyclohexane (8 mL) and anhydrous toluene-p-sulfonic acid (200 mg) was added dry CH₂Cl₂ (200 mL), and the cloudy solution was boiled under reflux, using a Soxhlet-type apparatus filled with molecular sieves (5 Å) to trap the methanol liberated. After 6 h, the solution became clear, and it was then washed with saturated aqueous NaHCO₃ and aqueous 10% NaCl, dried (Na₂SO₄), and concentrated to dryness. A solution of the residue (6.18 g, almost pure dicyclohexylidene derivative) in ethanol (65 mL) containing pyridinium toluene-p-sulfonate (300 mg) was kept for 16 h at 25°. Ether (~200 mL) was added to complete the precipitation and the bulk of mother liquor was removed by centrifugation. The solid was collected, washed with H₂O, and dried to give crude 15 (4.88 g, 86%; contaminated with $\leq 10\%$ of 14), which could be used for the next acylation. A portion (430 mg) of this preparation was purified by acetylation (pyridine and acetic anhydride), chromatography of the resulting diacetate (389 mg, 83%; $\delta_{\rm H}$ 1.82 and 1.90 for 2 Ac), and deacetylation (28% NH₄OH-methanol, 1:9) to give 15 as needles (69% overall from 14). Recrystallisation from methanol-H₂O (~6:1) gave material with m.p. 181-182°, $[\alpha]_{\rm D}$ +6.7° (c 0.8), +29° (c 0.8, 1,4-dioxane); lit.²¹ (for amorphous solid) m.p. 185.5-187°, $[\alpha]_{\rm D}$ +5.3° (c 0.9); lit.³⁰ +26.67° (1,4-dioxane).

Anal. Calc. for $C_{50}H_{58}N_4O_{14}$ (939.0): C, 63.95; H, 6.23; N, 5.97. Found: C, 63.87; H, 6.21; N, 6.06.

To an ice-cold solution of crude 15 (1.95 g) in dry pyridine (10 mL) was added a solution of *o*-methoxybenzoyl chloride (1.45 g) in dry CH_2Cl_2 (20 mL) during ~5 min. The mixture was left overnight at room temperature, aqueous 50% pyridine (0.4 mL) was added and, after 0.5 h, the bulk of the solvent was

evaporated. A solution of the residue in CHCl₃ (40 mL) was washed successively with H₂O, saturated aqueous NaHCO₃, aqueous 10% KHSO₄, and H₂O, dried (Na₂SO₄), and concentrated to dryness. The residue (2.77 g) was chromatographed on silica gel (160 mL) with CHCl₃-ethyl acetate (3:1) to give 16 as foamy solid (2.11 g, 84%; 72% from 14), $[\alpha]_{\rm D}$ +22.5° (c 0.8); $\nu_{\rm max}$ 1720 (broad), 1520 (Amide II), 1300, 1250, 1020 cm⁻¹. ¹H-N.m.r.: δ 3.72 and 3.70 (2 s, each 3 H, 2 OMe), 2.43 (H-2e), 1.2-1.6 (11 H, cyclohexylidene and H-2a).

Anal. Calc. for $C_{66}H_{70}N_4O_{18}$ (1207.3): C, 65.66; H, 5.84; N, 4.64. Found: C, 65.95; H, 5.80; N, 4.61.

1,3,2',6' - Tetra-N-(benzyloxycarbonyl)-3',4'-di-O-(o-methoxybenzoyl)neamine (17). — A solution of 16 (2.05 g, 1.70 mmol) in acetic acid-oxolane-H₂O (3:1:1, 35 mL) was kept for 3 h at 60° and then concentrated to dryness with several additions of toluene to give amorphous 17 (1.88 g, 98%), $[\alpha]_D$ +59° (c 0.8); ν_{max} 1720 (broad), 1520, 1250 cm⁻¹. ¹H-N.m.r.: δ 3.68 and 3.62 (2 s, each 3 H, 2 OMe), 2.22 (m, H-2e), 1.43 (m, H-2a).

Anal. Calc. for $C_{60}H_{62}N_4O_{18}$ (1127.2): C, 63.93; H, 5.54; N, 4.97. Found: C, 63.75; H, 5.57; N, 4.74.

3,2',6'-Tri-N-(benzyloxycarbonyl)-1-N:6-O-carbonyl-3',4'-di-O-(o-methoxybenzoyl)neamine (18). — To an ice-cold solution of 17 (330 mg, 0.29 mmol) in dry N,N-dimethylformamide (5 mL) was added NaH (26 mg, 60% suspension in oil, net ~0.65 mmol), and the mixture was stirred under N₂. After 20 min, a solution (10 mL) of benzyltriethylammonium chloride (550 mg, 2.42 mmol) in dry N,N-dimethylformamide was added at 0°, and the mixture was stirred for 2 h, then neutralised with acetic acid, and concentrated. A solution of the residue in CHCl₃ (20 mL) was washed successively with H₂O, saturated aqueous NaHCO₃, aqueous 10% KHSO₄, and H₂O, dried (Na₂SO₄), and concentrated to dryness. The residue (350 mg) was chromatographed on silica gel (30 mL) with CHCl₃-ethanol (25:1) to give amorphous 18 (232 mg, 78%), $[\alpha]_D + 80^\circ$ (c 1.1); ν_{max} 1770 (sh, cyclic carbamate), 1720, 1520, 1300, 1250 cm⁻¹. ¹H-N.m.r.: δ 3.64 and 3.68 (2 s, each 3 H, 2 OMe), 2.15 (m, H-2e), 1.55 (q, $J \sim 12$ Hz, H-2a).

Anal. Calc. for $C_{53}H_{54}N_4O_{17}$ (1019.0): C, 62.47; H, 5.34; N, 5.50. Found: C, 62.38; H, 5.27; N, 5.48.

5-O-[2-O-Acetyl-3-O-(3-O-acetyl-2,6-diazido-4-O-benzyl-2,6-dideoxy- β -Lidopyranosyl)-5-O-benzoyl- β -D-ribofuranosyl]-3,2',6'-tri-N-(benzyloxycarbonyl)-1-N:6-O-carbonyl-3',4'-di-O-(o-methoxybenzoyl)neamine (**19**). — To a solution of **18** (320 mg, 0.31 mmol) and **5** (325 mg, 0.48 mmol) in dry benzene (16 mL) was added trimethylsilyl trifluoromethanesulphonate (100 μ L, ~0.52 mmol) under N₂, and the solution was left for 4 h at room temperature. T.l.c. (CHCl₃-acetone, 2:1) then showed spots of **19** (R_F 0.43), **18** (0.25, slight), and **5** (0.92). The mixture was washed with saturated aqueous NaHCO₃ and aqueous 10% NaCl, dried (Na₂SO₄), and concentrated to dryness. The residue (640 mg) was chromatographed on silica gel (100 mL) with CHCl₃-acetone (5:2) to give **19** (310 mg, 60%). An analytical sample, prepared by re-precipitation from 1,4-dioxane-H₂O, had [α]_D +55° (c 0.6); ν_{max} 2110, 1770 (sh), 1720, 1240 cm⁻¹. ¹H-N.m.r.: δ 3.68 (s, 6 H, 2 OMe), ~2.2 (overlapped with Ac, H-2e), 2.13 and 2.11 (2 s, 6 H, 2 Ac), 1.40 (unresolved q, H-2a).

Anal. Calc. for C₈₂H₈₄N₁₀O₂₇ (1641.6): C, 59.99; H, 5.16; N, 8.53. Found: C, 59.98; H, 5.01; N, 8.33.

Elution with $CHCl_3$ -acetone (1:1) gave 18 (60 mg, 19%).

5-O-[3-O-(2,6-Diazido-4-O-benzyl-2,6-dideoxy-β-L-idopyranosyl)-β-D-ribofuranosyl]-1,3,2',6'-tetra-N-(benzyloxycarbonyl)neamine (20). — To a solution of 19 (150 mg, 91 µmol) in dry N,N-dimethylformamide (0.25 mL) and dry benzyl alcohol (1.9 mL) was added NaH (11 mg, 60% suspension in oil) under N₂, and the solution was left for 4 h at room temperature. After neutralisation with solid CO₂, the solution was diluted with CHCl₃ (15 mL), washed with aqueous 10% NaCl, dried (Na₂SO₄), and concentrated to dryness. The residue (140 mg) was chromatographed on silica gel (15 mL). Elution of the faster moving by-products with 20:1 CHCl₃-ethanol was followed by elution with 10:1 CHCl₃-ethanol to give amorphous 20 (100 mg, 85%), $[\alpha]_D + 40^\circ$ (c 1); ν_{max} 3400 (broad), 2100, 1720 (sh), 1700 (broad), 1260, 1040 cm⁻¹. ¹H-N.m.r. (CDCl₃ + D₂O): δ 7.25 and 7.28 (2 s, 25 H, 5 Ph), 1.95 (H-2e), 1.25 (H-2a).

Anal. Calc. for $C_{62}H_{72}N_{10}O_{21}$ (1293.3): C, 57.58; H, 5.61; N, 10.83. Found: C, 57.23; H, 5.61; N, 10.62.

Neomycin B. — A solution of 20 (80 mg, 62 μ mol) in 1,4-dioxane-H₂Oacetic acid (2:2:1, 7.5 mL) was hydrogenated over 10% Pd/C (150 mg) under 4 kg.cm⁻¹ H₂. After 26 h, t.l.c. of the mixture showed a ninhydrin-positive major spot having the same $R_{\rm F}$ (0.18; CHCl₃-methanol-17% NH₄OH, 1:4:3) as natural neomycin B. The catalyst was removed (Celite), and the filtrate was concentrated to dryness with several additions of toluene. A solution ($\sim 5 \text{ mL}$) of the residue in 5mm NH₄OH was applied to a column (15 mL) of CM-Sephadex C-25 (NH⁺₄ form, equilibrated with 5mM NH₄OH) and, after washing with 5mM NH₄OH (~30 mL), elution was continued with a gradient of NH₄OH (5mM to 0.4M) to give neomycin B (25 mg, 65%). N.m.r. spectra were measured on the sample after passing through a short bed of Dowex 1-X2 (HO⁻) resin with decarbonated water and lyophilising the eluate. ¹H-N.m.r. (D₂O, internal Me₄Si) and ¹³C-n.m.r. (D₂O, corrected to Me₄Si by the signal of 1,4-dioxane at 67.4 p.p.m.) spectra were essentially identical with those reported^{27,28}. Typical values are given below, with the respective reported values^{27,28} in brackets: ¹H, δ 5.45 (d, J 3.5 Hz, H-1') [5.45, J 3.9 Hz], 5.38 (d, J 2.3 Hz, H-1") [5.37, 2.7 Hz], 4.97 (slightly broadened s, H-1") [4.96, J 1.8 Hz], 1.94 (dt, $J \sim 4$, ~ 4 , and ≥ 12 Hz, H-2e) [1.95, J 4.1, 4.1, and 12.4 Hz], 1.20 (q, J≥12 Hz, H-2a) [1.20, J 12.5 Hz]; ¹³C, δ 109.1 (C-1") [109.2], 100.3 (C-1') [100.3], 99.8 (C-1") [99.8], 51.1 (duplicated, C-1 and C-3) [51.2], 36.4 (C-2) [36.5].

The hydrochloride was prepared by dissolving the free base (30 mg) in a minimum amount of H_2O , acidifying to pH ~2 with M hydrochloric acid, and trituration with ethanol (~1 mL) and acetone (~5 mL). The resulting solid was centrifuged and washed with acetone, and the solvent was evaporated. An aqueous

solution was lyophilised to give the amorphous hydrochloride (32 mg), $[\alpha]_D$ +54° (c 1, water); lit.²⁹ +54°.

Anal. Calc. for C₂₃H₄₆N₆O₁₃·6 HCl·H₂O (851.4): C, 32.44; H, 6.39; N, 9.87; Cl, 24.98. Found: C, 32.48; H, 6.44; N, 9.56; Cl, 24.41.

ACKNOWLEDGMENTS

We thank Dr. Tsutomu Tsuchiya of this Institute for helpful discussions, Ms. Yoshiko Koyama for the n.m.r. spectra, and Ms. Hiroko Hino (Institute of Applied Microbiology) for the microanalyses.

REFERENCES

- 1 T. USUI AND S. UMEZAWA, National Meeting of the Chemical Society of Japan, 54th, Tokyo, April, 1987, Abstr. 4IIIL16.
- 2 T. USUI AND S. UMEZAWA, J. Antibiot., 40 (1987) 1464-1467.
- 3 H. UMEZAWA, S. HAYANO, AND Y. OGATA, Jap. Med. J., 1 (1948) 504-511.
- 4 S. A. WAKSMAN AND H. A. LECHEVALIER, Science, 109 (1949) 305-307.
- 5 S. UMEZAWA AND T. TSUCHIYA, in H. UMEZAWA AND I. R. HOOPER (Eds.), Handbook of Experimental Pharmacology, Vol. 62, Springer-Verlag, Berlin, 1982, ch. 2.
- 6 S. UMEZAWA, S. KONDO, AND Y. ITO, in H. PAPE AND H.-J. REHM (Eds.), *Biotechnology*, Vol. 4, VCH, Weinheim, 1986, ch. 11.
- 7 M. HICHENS AND K. L. RINEHART, JR., J. Am. Chem. Soc., 85 (1963) 1547-1548.
- 8 S. UMEZAWA AND Y. NISHIMURA, J. Antibiot., 30 (1977) 189–191; S. UMEZAWA, A. HARAYAMA, AND Y. NISHIMURA, Bull. Chem. Soc. Jpn., 53 (1980) 3259–3262.
- 9 S. UMEZAWA, K. TATSUTA, T. TSUCHIYA, AND E. KITAZAWA, J. Antibiot., Ser. A, 20 (1967) 53-54.
- 10 A. HARAYAMA, T. TSUCHIYA, AND S. UMEZAWA, Bull. Chem. Soc. Jpn., 52 (1979) 3626-3628.
- 11 S. UMEZAWA, in K. L. RINEHART, JR. AND T. SUAMI (Eds.), ACS Symp. Ser., 125 (1980) 20-26.
- 12 T. USUI, Y. TAKAGI, T. TSUCHIYA, AND S. UMEZAWA, Carbohydr. Res., 130 (1984) 165-177.
- 13 (a) I. WATANABE, T. TSUCHIYA, T. TAKASE, S. UMEZAWA, AND H. UMEZAWA, Bull. Chem. Soc. Jpn., 50 (1977) 2369–2374; (b) K. OKA AND H. WADA, Yakugaku Zasshi, 83 (1963) 890–891.
- 14 H. PAULSEN AND M. FRIEDMANN, Chem. Ber., 105 (1972) 705-717.
- 15 N. S. BHACCA, D. HORTON, AND H. PAULSEN, J. Org. Chem., 33 (1968) 2484-2487.
- 16 K. MATSUDA, T. TSUCHIYA, T. TORII, AND S. UMEZAWA, Bull. Chem. Soc. Jpn., 59 (1986) 1397– 1401.
- 17 A. S. PERLIN, B. CASU, G. R. SANDERSON, AND J. TSE, Carbohydr. Res., 21 (1972) 123-132.
- 18 S. J. ANGYAL, Angew. Chem., Int. Ed. Engl., 8 (1969) 175-226.
- 19 A. S. PERLIN, in E. BUNCEL AND C. C. LEE (Eds.), *Isotopes in Organic Chemistry*, Vol. 3, Elsevier, Amsterdam, 1977, ch. 4.
- 20 (a) K. BOCK AND C. PEDERSEN, Adv. Carbohydr. Chem. Biochem., 41 (1983) 27-66; (b) E. BREIT-MAIER AND V. VOELTER, Carbon-13 NMR Spectroscopy, 3rd edn., VCH, Weinheim, 1987, pp. 379-401.
- 21 Y. TAKAGI, D. IKEDA, T. TSUCHIYA, S. UMEZAWA, AND H. UMEZAWA, Bull. Chem. Soc. Jpn., 47 (1974) 3139-3141.
- 22 S. UMEZAWA, S. KOTO, K. TATSUTA, AND H. HINENO, Bull. Chem. Soc. Jpn., 42 (1969) 537-541.
- 23 H.-P. WESSEL, T. IVERSON, AND D. R. BUNDLE, J. Chem. Soc., Perkin Trans. 1, (1985) 2247-2250.
- 24 T. OGAWA, K. BEPPU, AND S. NAKABAYASHI, Carbohydr. Res., 93 (1981) c6-c9.
- 25 S. HANESSIAN AND J. BANOUB, Carbohydr. Res., 59 (1977) 261-267.
- 26 T. MUKAIYAMA, S. KOBAYASHI, AND S. SHODA, Chem. Lett., (1984) 907-910.
- 27 R. E. BOTTO AND B. COXON, J. Carbohydr. Chem., 3 (1984) 545-563.
- 28 S. HANESSIAN, T. TAKAMOTO, R. MASSÉ, AND G. PATIL, Can. J. Chem., 56 (1978) 1482-1491.
- 29 J. D. DUTCHER, N. HOSANSKY, M. N. DONIN, AND O. WINTERSTEINER, J. Am. Chem. Soc., 73 (1951) 1384–1385.
- 30 D. H. R. BARTON, D.-K. ZHENG, AND S. GERO, J. Carbohydr. Chem., 1 (1982) 105-118.