A SPIRO-BIS-y-LACTONE GLUCOSIDE FROM VIBURNUM DILATATUM

TETSUO IWAGAWA and TSUNAO HASE

Department of Chemistry, Faculty of Science, Kagoshima University, Korimoto 1-21-35, Kagoshima 890, Japan

(Received 8 March 1984)

Key Word Index-Viburnum dilatatum, Caprifoliaceae, spiro-bis-y-lactone glucoside dilaspirolactone

Abstract—A new spiro-bis-y-lactone glucoside was isolated from the leaves of Viburnum dilatatum and its structure was elucidated on the basis of spectral and chemical evidence

INTRODUCTION

The deciduous shrub Viburnum dilatatum is widely distributed in Japan The fruits are used as a spice in wine and pickles Previous work on the plant has yielded a number of known compounds from the flowers and fruits [1, 2]We have now examined the methanolic extract of the leaves As a result a new glucoside (1), which is named dilaspirolactone, as well as sitosterol, ursolic acid, sitosteryl β -D-glucoside, isoquercitrin and *p*-hydroxyphenyl β -D-alloside [3] have been isolated

RESULTS AND DISCUSSION

Compound 1 was crystallized as prisms, mp 165-167° with a molecular formula $C_{21}H_{24}O_{13}$ H₂O It exhibited typical IR absorption bands of y-lactones at 1810 and 1780 cm^{-1} , the former band indicating an electronegative substituent in the y-position Further absorption bands at 3300 cm⁻¹, and 1610, 1600, 1515 and 840 cm⁻¹ showed a hydroxyl group and a p-substituted phenyl group, respectively The ¹H NMR spectrum indicated an ABX system at δ 3 35, 3 51 and 5 47 (J = 9, 12 and 17 Hz) arising from a -CH₂CH- group in addition to signals of the psubstituted phenyl group at $\delta 702$ and 752 (A₂B₂, J = 10 Hz) Acetylation of 1 with acetic anhydride in pyridine gave a hexa-acetate (2), C33H36O19 and a pentaacetate (3), $C_{31}H_{34}O_{18}$ The IR spectrum of 3 showed an absorption band typical of a tertiary hydroxyl group at 3480 cm^{-1}

On hydrolysis with 2 N HCl, compound 1 afforded a carboxylic acid (4), mp 133° with a molecular formula $C_{14}H_{12}O_5$ and D-glucose The IR spectrum of 4 showed absorption bands for hydroxyl (3400 cm^{-1}) , carboxylic $(2750-2400 \text{ and } 1710 \text{ cm}^{-1})$ and conjugated carbonyl (1670 cm^{-1}) functionalities together with a *p*-substituted phenyl group (1620, 1600, 1515 and 820 cm^{-1}) An absorption band at 1570 cm⁻¹ suggested that a furan ring was newly produced The ¹HNMR spectrum also indicated the presence of the furan group Signals at $\delta 652$ (1H, dd, J = 2 and 3 Hz), 7 22 (1H, d, J = 3 Hz) and 7 67(1H, d-like, J = 2 Hz) were in good agreement with those observed in the α -furoyl group of furoin [4] An ABX system at δ 2 59, 3 24 and 4 78 (J = 5, 10 and 17 Hz) was due to a -CH2CH- group The presence of the psubstituted phenyl group was confirmed by signals at $\delta 674$ and 715 (2H each, A_2B_2 , J = 8 Hz) The above results suggested that compound 4 was $3-(\alpha-furoyl)-3-(p-$ hydroxyphenyl)-propionic acid, which was also supported by the 13 C NMR spectrum of 4.

Acid methanolysis of 1 yielded a methyl ester (5), $C_{15}H_{14}O_5$ and a methyl ether (6), mp 261–262°, $C_{16}H_{16}O_8$ The ¹H NMR spectrum of 5 was very similar to that of 4 except for an additional three-proton singlet at $\delta 3$ 72 due to a carbomethoxyl group Therefore, compound 5 could be deduced to be methyl 3-(α -furoyl)-3-(p-

hydroxyphenyl)-propionate, which was confirmed as the corresponding methyl ether (7) by preparing it from furan Acylation of furan with p-methoxyphenylacetic acid in the presence of phosphorus pentoxide gave 2-(p-methoxyphenyl)-acetylfuran (8) Condensation of 8 with ethyl bromoacetate in benzene containing sodium resulted in formation of an ethyl ester (9) The ethyl ester 9 was subjected to hydrolysis with 1 N NaOH followed by treatment with diazomethane to give a methyl ester, whose IR and ¹H NMR spectra were identical with those of 7 obtained by methylation of 5 with diazomethane On the other hand, an absorption band at 1800 cm^{-1} in the IR spectrum of 6 showed that the γ -lactone in 1 remained intact The IR spectrum also indicated absorption bands 3590 (OH), 3350 (phenolic OH), 1610, 1590, 840 and 815 cm^{-1} (p-substituted phenyl group) The structure of the aglycone 6 could be established from the $^{1}HNMR$ data A three-proton singlet assignable to a methoxyl group appeared at $\delta 371$

Thus, one oxygen atom remained to be accounted for, and the molecular formula suggested that compound 6had a furanose molety (C-ring) as a third ring This was reminiscent of piptoside having two spiro-joined ylactone rings, one of which was fused to a ketofuranose ring [5] The methoxyl group was therefore formed by methylation of a hemiacetal hydroxyl group at C-9 An ABX system at $\delta 4$ 27, 4 47 and 4 65 (J = 4, 6 4 and 10 Hz) was assigned to the three proton on C-ring (H-11 \times 2 and H-12) Thus, the remaining one aliphatic hydroxyl group to be assigned could be placed at C-12, and its β configuration was assumed from the coupling constant (J = 0 Hz) between the C-12 and C-13 protons Another ABX system at δ 3 15, 3 59 and 4 46 (J = 8 6, 13 and 17 Hz) was very close to that of the A-ring in leucodrin [6], suggesting that the p-hydroxyphenyl group was located at C-4 and had a α -configuration

The glucose was attached to the hydroxyl group at C-12 and the $W_{1/2}$ value (10 Hz) of the anomeric proton at $\delta 5$ 71 in the ¹H NMR spectrum of 1 suggested that the glycosidic linkage must be β in 1

To establish the absolute structure of 1, it was methylated with diazomethane followed by oxidation with sodium periodate yielding fairly racemized (-)-*p*methoxyphenylsuccinic acid, mp 198–200°, $[\alpha]_D - 15^\circ$ [6] Therefore, dilaspirolactone was shown to have the absolute structure 1

A series of natural products containing the 1,7-dioxa-2,6-dioxospiro [4, 4] nona skeleton has so far been isolated, leucodrin, leudrin and leucoglycodrin from *Leucadedron* sp (Proteaceae) [6, 7], conocarpin and two closely related ring-A-opened lactones, conocapric acid and reflexin from *Luecospermum* sp (Proteaceae) [8, 9], and piptoside from *Piptocalys moorei* (Trimeniaceae) [5] This is the first example of the spiro-*bis-y*-lactone isolated from the Caprifoliaceae

EXPERIMENTAL

Extraction and isolation Plant material was collected in Kagoshima city and identified by Dr S Sako (Herbarium sample No 6) Fresh leaves of V dilatatum (29 kg) were extracted with MeOH (13 $l \times 2$) After concentration of the combined MeOH solns, H₂O was added and the insoluble material filtered off The filtrate was extracted with Et₂O and then EtOAc The Et₂O extract was evapd to give a dark green residue (25 g), which was chromatographed on a column of silica gel, eluting with CHCl₃-MeOH with increasing proportions of MeOH From the fractions eluted with CHCl₃, stosterol (326 mg) and ursolic acid (87 mg) were obtained The fractions eluted with CHCl₃-MeOH (9 1) gave sitosteryl β -D-glucoside (98 mg) The EtOAc extract was evapd to give a reddish brown residue (31 g), which was subjected to CC on silica gel with CHCl₃-MeOH with increasing proportions of MeOH Elution with CHCl₃-MeOH (17 3) gave isoquercitrin (70 mg) and *p*-hydroxyphenyl β -D-alloside (110 mg) successively Dilaspirolactone 1 (941 mg) was obtained from the fractions eluted with CHCl₃-MeOH (5 1)

Dilaspirolactone 1 Prisms from Me₂CO-MeOH, mp 165–167°, $[\alpha]_{\rm D}$ – 176° (MeOH, c 0 5), UV $\lambda_{\rm max}^{\rm MeOH}$ nm (ε) 202 (7000), 227 (6800), 276 (1100), 284 (8700), IR $v_{\rm max}^{\rm Nujol}$ cm⁻¹ 3300, 1810, 1780, 1610, 1600, 1515, 900, 840, ¹H NMR (200 MHz, C_5D_5N) $\delta 335$, 351 and 547 (ABX, $J_{A,B} = 17$, $J_{A,X} = 9$ and $J_{B,X} = 12$ Hz, H-3 × 2, and H-4), 4 20–4 80 (10H, m), 5 72 (1H, $W_{1/2}$ 10 Hz, sugar H-1), 7 02 and 7 32 (A₂B₂, J = 8 Hz), ¹³C NMR (22 6 MHz, C₅D₅N) δ34 0 (C-3), 44 3 (C-4), 61 8 (C'-6), 71 0 (C'-4), 74 2* (C'-2), 74 7* (C'-3), 77 1 (C-11), 78 3† (C'-5), 78 6† (C-8), 88 6 (C-12), 90 5 (C-5), 97 5 (C'-1), 108 7 (C-9), 116 (C-15 and C-17), 123 6 (C-13), 130 8 (C-14 and C-18), 159 2 (C-16), 1718 (C-6), 1748 (C-2), MS m/z (rel int) no [M]⁺, 322 (3), 304 (8), 147 (63), 120 (91), 73 (50), 61 (100) (Found C, 51 23, H, 561% Calc for $C_{21}H_{24}O_{13}$ H₂O C, 5120, H, 522%) Compound 1 (40 mg) was acetylated with Ac₂O in pyridine at 5° CC of the crude product gave 2 (24 mg) and 3 (10 mg) Compound 2, an amorphous powder, IR $v_{\text{max}}^{\text{film}}$ cm⁻¹ 1820, 1760, 1615, 1515, 1220, ¹H NMR (100 MHz, CDCl₃) δ2 00 and 2 04 (3H × 4, s, OAc), 2 32 (3H, s, OAc), 2 88-3 52 (2H, m), 3 84-4 20 (2H, m), 4 20-4 90 (2H, m), 5 10-5 48 (5H, m), 7 24 and 7 40 (A₂B₂, J = 8 Hz), MS m/z 736 [M]⁺ (Found C, 54 27, H, 5 32 % Calc for C33H36O14 C, 53 80, H, 493%) Compound 3, an amorphous powder, IR $v_{\text{max}}^{\text{film}}$ cm⁻¹ 3480, 1810, 1750, 1605, 1510, 1225, ¹H NMR (200 MHz, CDCl₃) δ 2 06, 2 07, 2 12, 2 14, 2 30 (3H each, s), 2 94 and 3 51 (AB of ABX, $J_{AB} = 17$ Hz, $J_{AX} = 9$ Hz, $J_{BX} = 13$ Hz, H-3 × 2), 3 52–3 84 (2H, m), 3 88–3 94 (1H, m), 4 01 (1H, s, OH), 4 20 (1H, dd, J = 3 and 13 Hz, H'-6), 4 30 (1H, dd, J)= 2 and 13 Hz, H'-6), 4 56-4 66 (2H, m), 4 92-5 04 (1H, m), 504-528 (3H, m), 714 and 736 (A_2B_2 , J = 9 Hz), MS m/z 694 [M]

Hydrolysis of 1 A soln of 1 (21 mg) in 2 N HCl (1 ml) was refluxed for 2 hr The reaction soln was extracted with Et₂O The Et₂O extract was evapd and recrystallized from CHCl₃-MeOH to give pale yellow needles of 4 (7 mg), mp 133°, UV λ_{max}^{MeOH} nm (ε) 220 (15000), 270 (21000), IR $\nu_{\text{max}}^{\text{Nujol}}$ cm⁻¹ 3450, 2750–2400, 1710, 1670, 1620, 1600, 1570, 1515, 980, 840, 820 ¹H NMR [90 MHz, (CD₃)₂CO] δ 2 59, 3 24 and 4 78 (ABX, $J_{AB} = 17$ Hz, $J_{AX} = 5$ Hz and $J_{BX} = 10$ Hz, H-2 × 2 and H-3), 6 52 (1H, dd, J = 2 and 3 Hz, furan H-4), 6 74 and 7 15 $(A_2B_2, J = 8$ Hz, Ar-H), 7 22 (1H, d, J = 3 Hz, furan H-3), 7 67 (1H, br d, J = 2 Hz, furan H-5), ${}^{13}CNMR$ [226 MHz, (CD₃)₂CO] δ 377 (CH₂), 492 (CH), 112 9 (furan C-4), 116 4 (Ar C-3 and C-5), 118 5 (furan C-3), 1301 (Ar C-1, C-2 and C-6), 1475 (furan C-5), 1531 (Ar C-4), 157 5 (furan C-2), 172 9 (COOH), 187 9 (CO), MS m/z (rel int) $260 [M]^+$ (43), 165 (67), 123 (100), 120 (37), 95 (44) (Found m/z260 0776 Calc for $C_{14}H_{12}O_5 m/z$ 260 0685)

Methanolysis of 1 To a soln of 1 (130 mg) in dry MeOH (3 ml), was added three drops of conc HCl and the mixture refluxed for 6 days The reaction mixture was diluted with H₂O and extracted with Et₂O The extract was washed with H₂O and dried (Na₂SO₄) The crude product was recrystallized from CHCl₃-MeOH to afford 6 (12 mg), prisms, mp 261-262°, $[\alpha]_D$ - 33 3° (MeOH, c 0 33), IR v^{KBr}_{max} cm⁻¹ 3590, 3350, 1800, 1610,

^{*,†}Assignments may be interchanged

1590, 895, 840, 815, ¹H NMR (400 MHz, C₅D₅N) δ315, 359 and 4 49 (ABX, $J_{AB} = 17$ Hz, $J_{AX} = 86$ Hz, and $J_{BX} = 13$ Hz, H-2 × 2 and H-3), 3 62 (1H, s, OH), 3 71 (3H, s, OMe), 4 27, 4 47 and 4 67 (ABX, $J_{AB} = 10$ Hz, $J_{AX} = 64$ Hz and $J_{BX} = 4$ Hz, H- 11×2 and H-10), 7 15 and 7 53 (A₂B₂, J = 8 5 Hz, Ar-H), MS m/z (rel int) 336 [M] + (15), 318 (13), 203 (13), 147 (15), 120 (100), 99 (79), 91 (31) (Found m/z 336 0846 Calc for C₁₆H₁₆O₈ m/z 336 0845) The mother soln was evapd and subjected to CC on silica gel Elution with CHCl₃-MeOH (99 1) gave a solid 5 (11 mg), $[\alpha]_D - 4^\circ$ (MeOH, c 0 75), UV λ_{max}^{MeOH} nm (e), 222 (8700), 272 (12 900), IR v^{film}_{max} cm⁻¹ 3400, 1730, 1665, 1610, 1590, 1560, 1510, 960, 900, 880, 835, 810, ¹H NMR (100 MHz, CDCl₃) δ 2 77, 3 40 and 4 94 (ABX, $J_{AB} = 20$ Hz, $J_{AX} = 6$ Hz and J_{BX} = 10 Hz, H-2 × 2 and H-3), 3 72 (3H, s, COOMe), 6 63 (1H, dd, J = 2 and 4 Hz, furan H-4), 6 96 and 7 39 (A_2B_2 , J = 9 Hz), 7 40 (1H, d, J = 4 Hz, furan H-3), 7.76 (1H, m, furan H-3), MS m/z 274 $[M]^+$ (Found m/z 274 0843 Calc for C₁₅H₁₄O₅ m/z 274 0841)

2-(p-Methoxyphenyl)-acetylfuran (8) P_2O_5 (4 2 g) was weighed into benzene (16 ml) containing furan (2 g) and the soln was slowly added to *p*-methoxyphenylacetic acid (4 88 g) The reaction mixture was refluxed for 4 hr and the benzene layer washed with dil NaOH and H₂O CC of the crude product on silica gel with CHCl₃-hexane (1 1) gave the acetate 8 (200 mg), an oil, IR ν_{max}^{fim} cm⁻¹ 3125, 2850, 1670, 1610, 1565, 1510, 880, 820, ¹H NMR (60 MHz, CDCl₃) δ 3 77 (3H, s), 4 05 (2H, s), 6 50 (1H, dd, J = 1 5 and 4 Hz), 6 72 and 7 20 (A₂B₂, J = 8 Hz), MS m/z 216 [M]⁺

Ethyl 3-(α -furoyl)-3-(p-methoxyphenyl)-propionate (9) To a suspension of powdered Na (40 mg) in dry toluene (0 5 ml) and dry benzene (3 ml), compound **8** (262 mg) was added and the mixture refluxed for 6 hr Ethyl bromoacetate (200 mg) was slowly added to the stirred mixture and the whole refluxed with stirring for 9 hr After cooling, H₂O was added and the benzene soln seperated, dried and evapd CC of the residue on silica gel with CHCl₃-hexane (1 1) afforded **9** (71 mg), an oil, IR $\nu_{\text{max}}^{\text{flm}}$ cm⁻¹ 1725, 1670, 1605, 1560, 1510, 1250, 880, 830, ¹H NMR (60 MHz, CDCl₃) $\delta 1$ 13 (3H, t, J = 7 Hz), 2 78, 3 24 and 4 97 (ABX, J_{AB} = 17 Hz, J_{AX} = 6 Hz and J_{BX} = 9 Hz), 3 85 (3H, s), 4 18 (2H, q, J = 7 Hz), 6 52 (1H, dd, J = 1 5 and 4 Hz), 6 89 and 7 31 (A₂B₂, J = 8 Hz), 7 25 (1H, m), 7 60 (1H, m), MS m/z 302 [M]⁺

Methyl 3-(a-furoyl)-3-(p-methoxyphenyl)-propionate (7) Compound 5 (8 mg) was treated with CH_2N_2 to give a residue, which was subjected to CC on silica gel with CHCl₃, yielding the Me ether 7 (48 mg), an oil, $[\alpha]_D - 354^\circ$ (MeOH, c 024), $IR v_{max}^{film} cm^{-1}$ 1735, 1670, 1605, 1560, 1510, 1250, 880, 830, ¹H NMR (60 MHz, CDCl₃) δ 2 80, 3 40 and 4 90 (ABX, J_{AB} = 17 Hz, J_{AX} = 6 Hz and J_{BX} = 9 Hz, H-2 × 2 and H-3), 3 72 (3H, s, COOMe), 3 83 (3H, s, OMe), 6 50 (1H, dd, J = 1 5 and4 Hz, furan H-4), 6 86 and 7 27 $(A_2B_2, J = 8 \text{ Hz}, \text{Ar}-\text{H})$, 7 23 (1H, m, furan H-3), 7 57 (1H, m, furan H-5), MS m/z 288 [M]⁺ A soln of 9 (60 mg) was added to 1 N NaOH (0 5 ml) and the soln stirred at 85° for 1 hr The reaction mixture was diluted with H₂O and extracted with Et2O to remove neutral material The aq layer was acidified with dil HCl, extracted with Et₂O, washed with H₂O and dried (Na₂SO₄) The crude product was methylated with CH_2N_2 to give a residue CC of the residue on silica gel with CHCl₃ afforded the Me ester 7 (10 mg), an oil, IR $v_{\text{max}}^{\text{film}}$ cm⁻¹ 1735, 1670, 1605, 1565, 1510, 1250, 880, 830, ¹H NMR (60 MHz, CDCl₃) $\delta 2 80$, 3 40 and 4 90 (ABX, $J_{AB} = 17$ Hz, $J_{AX} = 6$ Hz and $J_{BX} = 9$ Hz), 3 72 and 3 83 (3H each, s), 6 38 (1H, dd, J = 1 5 and 4 Hz), 6 91 and 7 32 (A_2B_2 , J = 8 Hz), 7 23 (1H, m), 7 60 (1H, m), MS m/z 288 [M]⁺

Methylation of 1 with CH_2N_2 followed by oxidation with $NaIO_4$ A soln of 1 (160 mg) in MeOH (1 ml) was treated with excess CH_2N_2 The crude product (82 mg) was boiled for 3 min in

1 N KOH (15 ml) and diluted with H_2O (8 3 ml) The soln was treated with NaIO₄ (480 mg) in H_2O (8 3 ml) and stirred at room temp for 4 hr The reaction mixture (pH 6 86) was acidified with dil H_2SO_4 , continuously extracted with Et_2O and washed with Na₂S₂O₃ and H_2O The crude product was recrystallized from HOAc to yield *p*-methoxyphenylsuccinic acid (2 2 mg), needles, mp 198–200°, $[\alpha]_D - 15°$ (MeOH, c 0.05), $IR \nu_{max}^{KBr} cm^{-1}$ 2740–2600, 1700, 1610, 1580, 1512, 930, 735 The IR spectrum was identical with that of an authentic sample of *p*-methoxyphenyl-succinic acid

Sitosterol Plates from MeOH, mp 139–140°, IR ν_{max}^{Nujol} cm⁻¹ 3300, 1640, ¹H NMR (60 MHz, CDCl₃) $\delta 0.68-2.36$ (m), ca 3 40 (1H, m), 5 36 (1H, m), MS m/z 414 [M]⁺ (Found C, 83 78, H, 12 52% Calc for C₂₉H₅₀O C, 83 99, H, 12 15%) The spectral data were identical with those of an authentic sample

Ursolic acid A white powder from MeOH, mp 270–288°, IR v_{max}^{Nujol} cm⁻¹ 3400, 1690, ¹H NMR (60 MHz, C₅D₅N) $\delta 0$ 93–276 (m), 3 50 (1H, m), 5 67 (1H, m) The spectral data were identical with those of an authentic sample

Substeryl β-D-glucoside A white powder from MeOH, mp 263–265°, IR $v_{\rm Mujol}^{\rm Nujol}$ cm⁻¹ 3400, 1650, ¹H NMR (60 MHz, C₅D₅N) δ0 65–2 63 (m), 3 8–4 57 (6H, m), 5 08 (1H, d, J = 8 Hz), 543 (1H, m) (Found C, 71 98, H, 10 90% Calc for C₃₅H₆₀O₆ $\frac{1}{2}$ H₂O C, 72 06, H, 10 54%) The spectral data were identical with those of an authentic sample

Isoquercutrin Needles from MeOH, mp 209–210°, IR v_{max}^{hujol} cm⁻¹ 3250, 1650, 1600, 1550, 1505, ¹H NMR (60 MHz, C₅D₅N) δ 3 92–4 42 (6H, m), 6 08 (1H, d, J = 8 Hz), 6 62 (2H, m), 7 22 (1H, d, J = 8 Hz), 7 93 (1H, dd, J = 2 and 8 Hz), 8 37 (1H, d, J = 2 Hz) The spectral data were identical with those of an authentic sample

p-Hydroxyphenyl β-D-alloside Prisms from MeOH, mp 188–191° and mp 201–202°, IR $v_{\text{nuol}}^{\text{Nuol}}$ cm⁻¹ 3200, 1600, 1510, 1210, 1090, 1040, 870, 850, 830, 790, ¹H NMR (60 MHz, C₅D₅N) δ4 10–4 73 (5H, m), 4 83 (1H, t-like, J = 3 Hz), 5 97 (1H, d, J = 8 Hz), 7 06 and 7 32 (A₂B₂, J = 9 Hz) The spectral data were identical with those of an authentic sample

Acknowledgements—We are indebted to Professor G W Perold, University of the Witwatersland, for kindly supplying the IR spectrum of p-hydroxyphenylsuccinic acid and valuable advice We thank Drs Y Uchio, K Matsuo, H Akita and K Shibata for the measurements of ¹H and ¹³C NMR spectra We are also grateful to Dr S Sako, Kagoshima University, for the identification of the plant material and to Messrs K Mochimaru, Y Nishizono and K Munesada for preliminary experiments

REFERENCES

- 1 Kurihara, T and Kikuchi, M (1975) Yakugaku Zasshi 95, 1098
- 2 Kurihara, T and Kikuchi, M (1977) Tohoku Yakka Daigaku Kenkyu Nenpo 24, 123
- 3 Iwagawa, T, Takahashi, H, Munesada, K and Hase, T (1984) Phytochemistry 23, 468
- 4 Bhacca, N S, Johnson, L F and Shoolery, T N (1962) NMR Spectra Catalog Spectrum No 247 (Varian Associates Palo Alto, CA)
- 5 Riggs, N V and Stevens, J D (1966) Aust J Chem 19, 683
- 6 Perold, G W and Rachler, K G R (1966) J Chem Soc C 1918
- 7 Murray, A W and Bradshaw, R W (1966) Tetrahedron Letters 3773
- 8 Kruger, P E J and Perold, G W (1970) J Chem Soc C 2127
- 9 Perold, G W, Hodgkinson, A J and Howard, A S (1972) J Chem Soc Perkin Trans 1, 2450