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Abstract—We present a convenient synthesis of novel pyrrole- and indole-fused 1-oxo-1,2,3,4-tetrahydropyrazine heterocyclic struc-
tures using a novel modification of four-component Ugi condensation.We demonstrate the usefulness and versatility of the developed
approach for the synthesis of variously substituted compounds, and discuss the scope and limitations of the chemistry involved.
� 2004 Elsevier Ltd. All rights reserved.
3,4-Dihydropyrrolo[1,2-a]pyrazin-1(2H)-one fragment
is present in a wide number of natural and synthetic bio-
logically active agents. Among them are antineoplastic
and antibacterial alkaloids longamide, longamide B,
and phakellstatins isolated from marine organisms as
well as their synthetic analogs,1 antitrombotic agents,2

potential antiprotozoal drugs,3 and the insect feeding
deterrents.4 Aryl-fused analogs of 3,4-dihydropyr-
rolo[1,2-a]pyrazin-1(2H)-ones, such as pyrazino[1,2-
a]indoles, represent another group of compounds with
interesting but still relatively little explored pharmaceu-
tical properties described in a number of recent patent
applications.5 According to these examples, hetero-
cycle-fused derivatives of 1-oxo-1,2,3,4-tetrahydro-
pyrazine represent promising synthetic targets.
Development of efficient synthetic approaches to the
related scaffolds will provide a valuable source of novel
physiologically active agents. In this paper, we commu-
nicate our success in developing a novel four-component
Ugi-type reaction for the synthesis of novel 3-carbox-
amide derivatives of 3,4-dihydropyrazino[1,2-a]indol-
1(2H)-one and 3,4-dihydropyrrolo[1,2-a]pyrazin-1(2H)-
one, which can be readily applied in combinatorial
chemistry approaches.
0040-4039/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.tetlet.2004.11.168

Keywords: Ugi condensation; 3,4-Dihydropyrazino[1,2-a]indol-1(2H)-

one; 3,4-Dihydropyrrolo[1,2-a]pyrazin-1(2H)-one; Library.
* Corresponding author. Tel.: +1 858 794 4860; fax: +1 858 794

4931; e-mail addresses: dk@chemdiv.com; av@chemdiv.com
In most of the reported synthetic approaches to pyrrole-
and indole-fused 1-oxo-1,2,3,4-tetrahydropyrazines, key
reaction is the intermolecular cyclization of the appro-
priate pyrrole- or indole-2-carboxylic acid derivatives
leading to the desired heterocycles. For example, substi-
tuted pyrazino[1,2-a]indole-1-ones were obtained from
the corresponding 1H-indole-2-carboxylic acid allyl
amides6 or 1H-indole-2-carboxylates.7 However, the de-
scribed synthetic strategies have found limitations
mainly due to lack of versatility and a limited number
of the appropriate initial reactants.

Recently, Ugi reaction was shown to be an effective ap-
proach to the assembly of differently substituted pyra-
zines.8 One of important modifications of the classical
four-component Ugi reaction includes the use of bifunc-
tional reagents. Thus, modified versions of the Ugi four-
component reaction using bifunctional aldehyde or keto
acids, amine, and isocyanide as starting materials, have
been reported.9 In this work, we show first examples of a
novel modification of the four-component Ugi reaction
between isonitrile, amine, and a bifunctional azahetero-
cyclic reagent bearing a (2-oxoethyl)aminoacetic acid
fragment. To illustrate our approach, we describe here
the synthesis of a medium sized library of novel 1-oxo-
1,2,3,4-tetrahydropyrazino[1,2-a]indoles 6{1–98} and
1-oxo-1,2,3,4-tetrahydropyrazino[1,2-a]pyrroles 6{99–
141} (Scheme 1).

Key bifunctional reagents used in the four-component
reaction were obtained from 2-pyrrole-2-carboxylates
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Scheme 1. Synthesis of 3-carboxamide derivatives of 3,4-dihydropyrazino[1,2-a]indol-1-(2H)-one 6{1–98} and 3,4-dihydropyrrolo[1,2-a]pyrazin-

1(2H)-one 6{99–141}. *1% NaOH in the case of compound 2i (R1 = R3 = CH3, R
2 = COOMe).
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1a–i, which were available from commercial sources or
prepared as reported.10,11 A solution of carboxylate
1a–i in 1,4-dioxane was treated with chloroacetone un-
der phase transfer conditions, in the presence of
K2CO3 and 18-crown-6, to afford the desired product
2a–i in a good yield (60–85%). Mild alkali hydrolysis
of 2a–i led to keto acids 3a–i (yield 75–95%). Then we
have found that the reaction of keto acids 3a–i with iso-
nitriles 4a–g and amines 5a–i led to the corresponding 3-
carboxamide derivatives 6{1–141}, which were not pre-
viously described in literature. The reaction smoothly
proceeded in methanol at 40 �C to yield the desired
products in 45–96% yield.12 The reaction presumably
follows the same initial course as the classical Ugi con-
densation13 with an intermediate imine being attacked
by the isonitrile to give a nitrilium intermediate, which
then undergoes intramolecular cyclization.

As a synthetic tool for creating diverse compound
libraries, the developed Ugi-type condensation offers
a large number of potential input reactants (Fig. 1).
We have observed that the nature of R1–R3 substituents
does not substantially affect the reaction yield and time,
and several differently substituted pyrrolo-2-carboxylate
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Figure 1. Evaluated building blocks.
derivatives could be used. With respect to amine compo-
nent, various aliphatic and aromatic primary amines,
such as substituted anilines, linear, and branched ali-
phatic amines and nitrogen-containing compounds,
were tolerated without any limitations. A restriction is
the limited number of commercially or synthetically
available isonitriles. In this work, we used seven different
isonitriles 4a–g available from ChemDiv.

Structures and yields of some representative compounds
are shown in Tables 1 and 2. Isolated yields of 6{1–141}
were generally high (>60%, up to 96%), except for a few
cases. All compounds were obtained as racemic mixtures
of enantiomers. The assignment of these structures was
made on the basis of 1H NMR, 13C NMR, and high-res-
olution mass-spectroscopy data.14 The nonequivalent
methylene protons of the pyrazinone ring are sometimes
concealed by other signals, but usually can be seen as
doublets in the range of d 3.90–5.50 ppm with the gem-
inal spin–spin coupling constants in the range of 5.6–
8.2 Hz. In many cases, pure crystalline substances could
be obtained, thus allowing firm relative and absolute ste-
reochemical assignments to be made to the individual
compounds through X-ray crystallography. Single crys-
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Table 1. Structures and yields of representative 3,4-dihydropyrazino[1,2-a]indol-1(2H)-ones

N

N

O

R5

CH3

NH

O

R4

R3

R1

R2

No R1 R2 R3 R4 R5 Yield, % HRMS, exp. HRMS, calcd

6{1} H H H
* F *

85 443.2238 434.2238

6{2} 7-MeO H H
O * *N

92 449.2185 449.2183

6{3} H H 1-Pyrrolyl *

*

CH3

CH3

80 447.0321 447.0316

6{4} H 8-F AcNH
*

CH3

CH3

S *
78 485.2009 485.2017

6{5} H 8-CH3O AcNH * *
CH3

CH3

81 483.2958 483.2966

6{6} H 8-CH3 1-Pyrrolyl CH3 * *

Cl

64 565.2334 565.2341

6{7} H 8-CH3O 1-Pyrrolyl *

*

OCH3

68 507.2976 507.2966

6{8} 6-MeO 9-MeO H *

*
N

CH3

CH3

83 443.265 443.2653

Table 2. Structures and yields of representative 3,4-dihydropyrazino[1,2-a]pyrazin-1(2H)-ones (6-(2-furyl) derivatives)
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No R4 R5 Yield, % HRMS, exp. HRMS, calcd

6{99}

*

CH3

CH3

Cl
*

89 454.1891 454.18912

6{100} *
N *

78 433.0321 433.0317

6{101} *
NO

*
85 455.2650 455.2653

6{102}
*

CH3CH3

CH3

*
62 426.1142 426.1147

6{103} *
*S

81 452.2010 452.2002

6{104} *

*

N
CH3

CH3

68 441.2863 441.286

6{105}
*

CH3

CH3

NO

*
64 443.5761 443.5758
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tals of compounds suitable for X-ray analysis were
grown from diethyl ether.

In summary, we have developed a novel synthetic ap-
proach to the assembly of the pyrrolo- and indole[1,2-
a]pyrazin-1-one heterocycles based on a novel modifica-
tion of the Ugi four-component reaction. A distinctive
feature of our synthetic method is the use of bifunctional
azaheterocyclic reagents bearing a (2-oxoethyl)amino-
acetic acid fragment. Due to a wide spectrum of such re-
agents available, this reaction opens wide possibilities
for synthesis of novel or poorly studied annelated het-
erocyclic systems such as 1-oxo-1,2,3,4-tetrahydropyr-
rolo[1,2-a]pyrazine-3-carboxamide as well as other
heterocyclic scaffolds, which were not previously de-
scribed in literature.
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