ORGANIC LETTERS

2010 Vol. 12, No. 15 3348-3351

Stereoselective Synthesis of the C1—C11 and C12—C34 Fragments of Mycalolide A

Thomas J. Hoffman, Amandine Kolleth, James H. Rigby,[†] Stellios Arseniyadis,^{*} and Janine Cossy^{*}

Laboratoire de Chimie Organique, ESPCI ParisTech, CNRS, 10 rue Vauquelin, 75231 Paris Cedex 05, France

stellios.arseniyadis@espci.fr; janine.cossy@espci.fr

Received May 18, 2010

ABSTRACT

A convergent synthesis of the C1—C11 and C12—C34 fragments of mycalolide A is described. Synthetic highlights include a highly *E*-selective cross-metathesis between a vinyl-functionalized bis-oxazole unit and a polypropionate side chain to introduce the C19—C20 double bond and an enzymatic desymmetrization of a *meso*-diol in addition to five stereoselective allylations/crotylations to control the 11 stereogenic centers present in the natural product.

In 1989, Fusetani et al. reported the isolation of mycalolide A (Scheme 1), a secondary metabolite produced by a sponge of the genus *Mycale* sp. collected in the Gokasho Bay of the Kii Peninsula in Japan.¹ This secondary metabolite exhibited antifungal activity against a variety of pathogenic fungi as well as a strong activity against B-16 melanoma cells with IC₅₀ values ranging from 0.5 to 1.0 ng/mL (Scheme 1). In addition, it was shown to selectively inhibit the actomyosin Mg²⁺-ATPase suggesting that it acts as an actin-depolymerization agent.²

From a structural perspective, mycalolide A constitutes one of the first known members of a vast family of marine macrolides containing a unique tris-oxazole unit which includes the ulapualides,³ the jaspisamides,⁴ the halishigamides,⁵ the kabiramides,⁶ and the halichondramides.⁷

Its structure, which was elucidated through a combination of chemical degradation, extensive ¹H and ¹³C NMR analysis, and structural correlation experiments, ⁸ consists of a 25-membered macrolide attached to a highly functionalized aliphatic polyketide side chain bearing eight of the 11 stereogenic centers present in the natural product.

[†] Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489

⁽¹⁾ Fusetani, N.; Yasumuro, K.; Matsunuga, S.; Hashimoto, K. *Tetrahedron Lett.* **1989**, *30*, 2809–2812.

⁽²⁾ Hori, M.; Saito, S.; Shin, Y.; Ozaki, H.; Fusetani, N.; Karaki, H. FEBS Lett. 1993, 322, 151-154.

⁽³⁾ Roesner, J. A.; Scheuer, P. J. J. Am. Chem. Soc. 1986, 108, 846-

⁽⁴⁾ Kobayashi, J.; Murata, O.; Shigemori, H. J. Nat. Prod. 1993, 56, 787–791.

⁽⁵⁾ Kobayashi, J.; Tsuda, M.; Fuse, H.; Sasaki, T.; Mikami, Y. J. Nat. Prod. 1997, 60, 150–154.

^{(6) (}a) Matsunaga, S.; Fusetani, N.; Hashimoto, K.; Koseki, K.; Noma, M. J. Am. Chem. Soc. 1986, 108, 847–849. (b) Matsunaga, S.; Fusetani, N.; Hashimoto, K.; Koseki, K.; Noma, M.; Noguchi, H.; Sankawa, U. J. Org. Chem. 1989, 54, 1360–1363.

⁽⁷⁾ Kernan, M. R.; Molinski, T. F.; Faulkner, D. J. J. Org. Chem. 1988, 53, 5014–5020.

⁽⁸⁾ Matsunaga, S.; Liu, P.; Celatka, C. A.; Panek, J. S.; Fusetani, N. J. Am. Chem. Soc. 1999, 121, 5605–5606.

Scheme 1. Retrosynthesis of mycalolide A.

The promising biological properties displayed by mycalolide A in conjunction with its challenging structure and the fact that only one total synthesis has been reported so far^{9,10} prompted us to initiate studies toward its total synthesis. We describe here the results of our endeavor.

Our strategy for the synthesis of mycalolide A relied on four key disconnections: an unusual cross-metathesis (CM) between a vinyl-functionalized bis-oxazole unit and the C20–C34 polypropionate fragment bearing a terminal olefin, an esterification to link the C12–C34 fragment II and the C1–C11 fragment III, a Robinson–Gabriel-type cyclodehydration to form the third oxazole ring and concomitantly generate the macrolide, and a Wittig olefination using an *N*-methylformamide phosphonium salt to install the enamide moiety and complete the synthesis of the natural product (Scheme 1).

Our first instinct when trying to devise a straightforward strategy to access mycalolide A was to apply a CM between a vinyl-functionalized mono-, bis-, or tris-oxazole unit and a

Scheme 2. Synthesis of the C29–C34 β -Ketophosphonate **5**

terminal olefin. Interestingly, however, despite the plethora of examples which have been reported in the literature in the field of CM within the last couple of decades, ¹¹ there has only been a few examples involving vinyl-functionalized azoles. ^{10s,12} In this context, and with the scope to validate this strategy, we embarked on the synthesis of the two CM coupling partners.

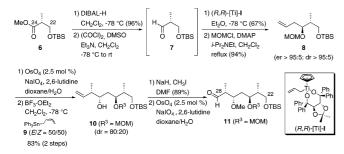
The preparation of the C20-C34 fragment of mycalolide A relied on a Horner-Wadsworth-Emmons (HWE) reaction between a C29–C34 β -ketophosphonate of type **IV** and a C22-C28 aldehyde of type V. The synthesis of the former began by the preparation of meso-diol 2 which was obtained in three steps and 58% overall yield starting from methacrolein (1) and following a reported procedure (Scheme 2).¹³ The resulting meso-diene was then subjected to a diastereoselective double hydroboration (9-BBN, THF, -85 °C) which, upon oxidation, delivered the *meso*-diol 2 in 70% yield (dr >95:5). Desymmetrization of the latter through a lipase-mediated acetylation (Candida rugosa, vinyl acetate, hexane, 4 Å MS, 36 h)¹⁴ afforded the corresponding monoacetate 3 in 97% yield as a single stereoisomer (er >95: 5). 15 Protection of the remaining primary alcohol as a tertbutyldiphenylsilyl ether (TBDPSCl, imidazole, CH₂Cl₂) and saponification of the acetate group (K2CO3, MeOH) led to alcohol 4 which was eventually oxidized under Swern conditions to provide the corresponding aldehyde. The aldehyde was then treated with a THF solution of LiCH₂P(O)(OMe)₂ (prepared in situ from methyl dimethyl phosphonate, n-BuLi, THF, $(0 \, ^{\circ}\text{C})^{16}$ to afford the β -hydroxyphosphonate intermediate. The latter was ultimately oxidized to the corresponding β -ketophos-

Org. Lett., Vol. 12, No. 15, 2010

^{(9) (}a) Liu, P.; Panek, J. S. *J. Am. Chem. Soc.* **2000**, *122*, 1235–1236. (b) Panek, J. S.; Liu, P. *J. Am. Chem. Soc.* **2000**, *122*, 11090–11097.

⁽¹⁰⁾ For earlier synthetic studies on mycalolide A and related trisoxazoles, see: (a) Knight, D. W.; Pattenden, G.; Rippon, D. E. Synlett 1990, 36–37. (b) Kiefel, M. J.; Maddock, J.; Pattenden, G. Tetrahedron Lett. 1992, 33, 3227-3230. (c) Pattenden, G. J. Heterocycl. Chem. 1992, 29, 607-618. (d) Yoo, S.-K. Tetrahedron Lett. 1992, 33, 2159–2162. (e) Chattopadhyay, S. K.; Pattenden, G. Tetrahedron Lett. 1995, 36, 5271–5274. (f) Panek, J. S.; Beresis, R. T.; Celatka, C. A. J. Org. Chem. 1996, 61, 6494-6495. (g) Panek, J. S.; Beresis, R. T. J. Org. Chem. 1996, 61, 6496-6497. (h) Liu, P.; Celatka, C. A.; Panek, J. S. Tetrahedron Lett. 1997, 38, 5445–5448. (i) Celatka, C. A.; Liu, P.; Panek, J. S. Tetrahedron Lett. 1997, 38, 5449-5452. (j) Chattopadhyay, S. K.; Pattenden, G. Synlett 1997, 1342-1344. (k) Chattopadhyay, S. K.; Pattenden, G. Synlett 1997, 1345-1348. (1) Liu, P.; Panek, J. S. Tetrahedron Lett. 1998, 39, 6143-6146, (m) Liu, P.: Panek, J. S. Tetrahedron Lett. 1998, 39, 6147-6150. (n) Kempson, J.; Pattenden, G. Synlett 1999. 533-536. (o) Chattopadhyay, S. K.; Kempson, J.; McNeil, J.; Pattenden, G. Reader, M.; Rippon, D. E.; White, D. J. Chem. Soc., Perkin Trans. 1 2000. 2415-2428. (p) Pattenden, G.; Chattopadhyay, S. K. J. Chem. Soc., Perkin Trans. 2000, 1, 2429-2454. (q) Panek, J. S.; Celatka, C. A. Tetrahedron Lett. 2002, 43, 7043-7046. (r) Suenaga, K.; Kimura, T.; Kuroda, T.; Matsui, K.; Miya, S.; Kuribayashi, S.; Sakakura, A.; Kigoshi, H. Tetrahedron 2006, 62, 8278-8290. (s) Kimura, T.; Kuribayashi, S.; Sengoku, T.; Matsui, K.; Ueda, S.; Hayakawa, I.; Suenaga, K.; Kigoshi, H. Chem. Lett. 2007, 36, 1490-1491. (t) Pattenden, G.; Ashweek, N. J.; Baker-Glenn, C. A. G.; Walker, G. M.; Yee, J. G. K. Angew. Chem., Int. Ed. 2007, 46, 4359-4363.

^{(11) (}a) Connon, S. J.; Blechert, S. *Angew. Chem., Int. Ed.* **2003**, *42*, 1900–1923. (b) Hoveyda, A. H.; Gillingham, D. G.; Van Veldhuizen, J. J.; Kataoka, O.; Garber, S. B.; Kingsbury, J. S.; Harrity, J. P. A. *Org. Biomol. Chem.* **2004**, *2*, 8–23. (c) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. *J. Am. Chem. Soc.* **2003**, *125*, 11360–11370.


⁽¹²⁾ For examples of CM involving vinyl-functionalized oxazoles, see: (a) Hoffman, T. J.; Rigby, J. H.; Arseniyadis, S.; Cossy, J. J. Org. Chem. 2008, 73, 2400–2403. For examples of CM involving vinyl-functionalized thiazoles, see: (b) Dash, J.; Arseniyadis, S.; Cossy, J. Adv. Synth. Catal. 2007, 349, 152–156. For applications in natural product synthesis, see: (c) Gebauer, J.; Arseniyadis, S.; Cossy, J. Org. Lett. 2007, 9, 3425–3427. (d) Gebauer, J.; Arseniyadis, S.; Cossy, J. Eur. J. Org. Chem. 2008, 2701–2704.

^{(13) (}a) Harada, T.; Matsuda, Y.; Wada, I.; Uchimura, J.; Oku, A. *Chem. Commun.* **1990**, 21–22. (b) Harada, T.; Matsuda, Y.; Wada, I.; Uchimura, J.; Oku, A. *J. Am. Chem. Soc.* **1993**, *115*, 7665–7674.

^{(14) (}a) Chênevert, R.; Courchesne, G. *Tetrahedron: Asymmetry* **1995**, 6, 2093–2096. (b) Chênevert, R.; Courchesne, G.; Caron, D. *Tetrahedron: Asymmetry* **2003**, *14*, 2567–2571. (c) Kann, N.; Rein, T. J. *J. Org. Chem.* **1993**, *58*, 3802–3804, and referees cited therein.

⁽¹⁵⁾ The enantiomeric excess of **13** was measured by 1 H NMR of the corresponding mandelic ester, while the assignment of the absolute configuration was made by comparison with the $[\alpha]_{D}$ reported in the literature for the known compound $([\alpha]^{20}_{D} - 8.2, c 2.36, \text{CHCl}_{3})^{\text{texp}}$ $([\alpha]^{20}_{D} - 8.6, c 2.37, \text{CHCl}_{3})^{\text{lit}}$.

Scheme 3. Synthesis of the C22-C28 Aldehyde 11

phonate **5** thus completing the synthesis of the C29–C34 subunit in nine steps and 40.3% overall yield starting from methacrolein **1** (Scheme 2).

The construction of the C22-C28 aldehyde subunit commenced from commercially available (R)-Roche ester and proceeded through an initial three-step sequence which included the protection of the primary alcohol as a TBS ether 6, the reduction of the ester moiety, and the oxidation of the resulting alcohol to the corresponding aldehyde (Scheme 3). The latter was then subjected to a diastereoselective allylation using the (R,R)-[Ti]-I complex (THF, -78 °C)¹⁷ to afford the corresponding homoallylic alcohol (64.3% yield from 6, dr >95:5, er >95:5)18,19 which was subsequently protected as a methoxymethyl ether (MOMCl, DMAP, i-PrNEt2, CH2Cl2, reflux, 94% yield). Olefin 8 was then engaged in an OsO₄-catalyzed oxidative cleavage (OsO4, NaIO4, 2,6-lutidine, dioxane/ H_2O), ²⁰ and the resulting aldehyde was treated with (E/Z)triphenyl crotylstannane 9²¹ under Keck's conditions²² (BF₃•OEt₂, CH₂Cl₂, -78 °C) to effect a substrate-controlled diastereoselective crotylstannylation (83%, dr 80:20). 19,23,24 The resulting alcohol 10 was then converted to a methoxy ether (CH₃I, NaH, DMF, 89% yield) and the terminal olefin subjected to an OsO4-catalyzed oxidative cleavage, thus completing the synthesis of the C22–C28 aldehyde subunit 11 in nine steps and 45.7% overall yield starting from the (R)-Roche ester.

With the two fragments 5 and 11 in hand, the stage was set for the key HWE olefination which would afford the C22-C34

Scheme 4. Synthesis of the CM Coupling Partner 14

polypropionate fragment of mycalolide A (Scheme 4). Hence, β-ketophosphonate 5 was treated with Ba(OH)₂·8H₂O²⁵ in wet THF (THF/H₂O = 40:1) followed by aldehyde 11 to provide the coupled product as a single (E)-isomer in 80% yield (Scheme 4). Reduction of the enone to the corresponding ketone using Pd(OH)2/C in MeOH under a hydrogen atmosphere occurred with concomitant cleavage of the C22 primary TBS ether²⁶ thus affording alcohol 12 in 85% yield. Swern oxidation to the corresponding aldehyde and treatment with the (R,R)-[Ti]-I complex (Et₂O, -78 °C) installed the (22S) stereogenic center and provided homoallylic alcohol 13 as a single stereoisomer in 68% yield over two steps (dr >95:5).²⁷ As an attempt to methylate the C22 hydroxyl group using NaH/MeI had caused epimerization at C31, milder conditions were applied. To our delight, exposure of 13 to MeOTf and 2,6di-tert-butylpyridine in refluxing CHCl₃ produced the desired methylated product 14 as a single stereoisomer in 65% yield (93%) based on recovered starting material). The preparation of the C20-C34 polyketide fragment of mycalolide A was thus achieved in 14 steps and 13.2% overall yield starting from methacrolein 1.

With the C20—C34 fragment secured, we next turned our attention toward the synthesis of the vinyl-functionalized bisoxazole subunit which would be engaged in the key CM (Scheme 5). Hence, treatment of acrylamide **15** and ethyl bromopyruvate **16** with NaHCO₃ (THF, 55 °C) followed by TFAA (THF, 0 °C) and saponification of the resulting ester using LiOH·H₂O in a THF/H₂O mixture afforded carboxylic acid **17** in 72% yield over three steps. The latter was then coupled with (\pm)-serine methyl ester hydrochloride using standard conditions (EDC, HOBt, NMM, CH₂Cl₂)²⁸ to afford β -hydroxy amide **18** (72% yield) which in turn was engaged

3350 Org. Lett., Vol. 12, No. 15, 2010

^{(16) (}a) Heathcock, C. H.; Hadley, C. R.; Rosen, T.; Theisen, P. D.; Hecker, S. J. *J. Med. Chem.* **1987**, *30*, 1858–1863. (b) Yasuda, N.; Hsiao, Y.; Jensen, M. S.; Rivera, N. R.; Yang, C.; Wells, K. M.; Yau, J.; Palucki, M.; Tan, L.; Dormer, P. G.; Volante, R. P.; Hughes, D. L.; Reider, P. J. *J. Org. Chem.* **2004**, *69*, 1959–1966.

^{(17) (}a) Hafner, A.; Duthaler, R. O.; Marti, R.; Rihs, J.; Rothe-Streit, P.; Schwarzenbach, F. J. *J. Am. Chem. Soc.* **1992**, *114*, 2321–2336. (b) Duthaler, R. O.; Hafner, A. *Chem. Rev.* **1992**, *92*, 807–832.

⁽¹⁸⁾ The diastereomeric ratio was determined by crude ¹H NMR analysis, and the absolute configuration of the C24 stereogenic center was determined as (24*S*) by ¹H NMR analysis of the corresponding (*R*)- and (*S*)-mandelic esters

⁽¹⁹⁾ Seco, J. M.; Quinoa, E.; Riguera, R. Tetrahedron: Asymmetry 2001, 12, 2915–2925.

⁽²⁰⁾ Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Jin, Z. Org. Lett. 2004, 6, 3217–3219.

⁽²¹⁾ Nakatsuka, M.; Ragan, J. A.; Sammakia, T.; Smith, D. B.; Uehling, D. E.; Schrieber, S. L. J. Am. Chem. Soc. 1990, 112, 5583–5601.

^{(22) (}a) Yamamoto, Y. *Aldrichimica Acta* **1987**, *20*, 45–49. (b) Yamamoto, Y. *Acc. Chem. Res.* **1987**, *20*, 243–249. (c) Keck, G. E.; Savin, K. A.; Creesman, E. N. K.; Abbot, D. E. *J. Org. Chem.* **1994**, *59*, 7889–7896. (d) Keck, G. E.; Savin, K. A.; Weglarz, M. A.; Cressman, E. N. K. *Tetrahedron Lett.* **1996**, *37*, 3291–3294.

⁽²³⁾ The absolute configuration of the C26 stereogenic center was determined as (26S) by ^{1}H NMR analysis of the corresponding (R)- and (S)-mandelic esters.

^{(24) (}a) Reetz, M. T. *Angew. Chem., Int. Ed.* **1984**, *23*, 556–559. (b) Reetz, M. T.; Kessler, K.; Jung, M. *Tetrahedron* **1984**, *40*, 4327–4336. (c) Reetz, M. T.; Harms, K.; Reif, W. *Tetrahedron Lett.* **1988**, *29*, 5881–5884. Reetz, M. T. *Acc. Chem. Res.* **1993**, *26*, 462–468.

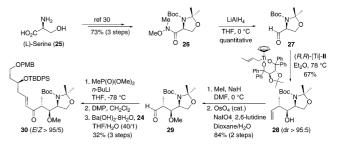
^{(25) (}a) Alvarez-Ibarra, C.; Arias, S.; Bañón, G.; Fernández, M.; Rodriguez, V.; Sinisterra, J. *Chem. Soc. Chem. Commun.* 1987, 1509–1511.
(b) Paterson, I.; Yeung, K. S.; Smaill, J. B. *Synlett* 1993, 774–776.

⁽²⁶⁾ For a review on selective monodeprotection of bis-silyl ethers, see: Crouch, R. D. *Tetrahedron* **2004**, *60*, 5833–5871. For the use of hydrogenation conditions in silyl ether deprotection, see: (a) Toshima, K.; Yanagawa, K.; Mukaiyama, S.; Tatsuta, K. *Tetrahedron Lett.* **1990**, *31*, 6697–6698. (b) Lee, K.; Wiemer, D. F. *J. Org. Chem.* **1993**, *58*, 7808–7812. (c) Rotulo-Sims, D.; Prunet, J. *Org. Lett.* **2004**, *4*, 4701–4704.

⁽²⁷⁾ The absolute configuration of the C22 stereogenic center was determined as (22S) by 1H NMR analysis of the corresponding (R)- and (S)-mandelic esters.

Scheme 5. Synthesis of the C12-C34 Fragment 20

in a sequential DAST-mediated cyclodehydration (CH_2Cl_2 , -78 °C)/dehydrobromination ($BrCCl_3$, DBU, CH_2Cl_2 , 0 °C) that led to the desired bisoxazole **19** in 70% yield over two steps. The C20–C34 polyketide fragment **14** and bisoxazole **19** were then coupled using Grubbs second-generation catalyst, [Ru]-II (CH_2Cl_2 , 40 °C, 16 h), to afford the C12–C34 fragment of mycalolide A **20** in a moderate 57% yield and an excellent *E*-stereoselectivity (E/Z > 20:1).


The synthesis of the C1–C11 fragment of mycalolide A relied on a HWE between a C1–C5 aldehyde of type VI and a C6–C11 β -ketophosphonate of type VII. The former was prepared starting from 3-buten-1-ol (21) (Scheme 6). Hence, 21 was first converted into the corresponding *para*-methoxybenzyl ether using trichloroacetimidate 22 in the presence of a catalytic amount of La(OTf)₃ (toluene, rt, 95% yield). An OsO₄-catalyzed oxidative cleavage then afforded the corresponding aldehyde¹⁹ which was subsequently treated with the (R,R)-[Ti]-II complex to provide homoallylic alcohol 23 in 85% yield over two steps (er >95:5).²⁹ The latter was then protected as a TBS ether, and the terminal olefin was finally oxidatively cleaved to unveil the desired aldehyde 24 in 95% yield over two steps.

The synthesis of the C6–C11 β -ketophosphonate, on the other hand, began with the preparation of the Weinreb amid **26** starting from (L)-serine **25** according to a reported procedure³⁰ (73% over three steps) (Scheme 7). Weinreb amide **26** was then reduced to the corresponding aldehyde **27** using LiAlH₄ (THF, 0 °C, quantitative) and immediately engaged in a diastereoselective crotyltitanation using the (R,R)-[Ti]-**II** complex (Et₂O, -78 °C) to afford the corresponding homoallylic alcohol **28** in decent yield and excellent selectivity (67% yield, dr >95:5). Methyl ether formation (MeI,

Scheme 6. Synthesis of the C1-C5 Fragment 24

NaH, DMF, 0 °C) followed by OsO₄-catalyzed oxidative cleavage of the terminal olefin then furnished aldehyde **29** in 84% yield over two steps. Immediate treatment with LiCH₂P(O)(OMe)₂ (MeP(O)(OMe)₂, *n*-BuLi, THF, 0 °C) followed by a Dess–Martin periodinane (DMP)-mediated oxidation of the resulting β -hydroxyphosphonate then supplied the desired β -ketophosphonate in 46% yield. A Ba(OH)₂-mediated HWE olefination between the C1–C5 aldehyde and the C6–C11 β -ketophosphonate finally afforded the desired C1–C11 fragment of mycalolide A, compound **30**, in 69% yield (*E/Z* > 95:5). This sequence was thus carried out in 10 steps and 13.1% overall yield starting from (L)-serine **25**.

Scheme 7. Synthesis of the C1-C11 Fragment 30

In conclusion, we have completed the synthesis of the C1–C11 and C12–C34 fragments of mycalolide A. The synthesis includes a highly *E*-selective cross-metathesis between a vinyl-functionalized bis-oxazole unit and a polypropionate side chain to introduce the C19–C20 double bond, an enzymatic desymmetrization of a *meso*-diol to control the three stereogenic centers at C31, C32, and C33, and five stereoselective allylations/crotylations to control the stereogenic centers at C3, C8, C9, C22, C24, C26, and C27. Future efforts will be dedicated in coupling the two fragments together, performing the Robinson–Gabriel-type cyclodehydration to form the macrolide and introducing the enamide moiety through a Wittig olefination to complete the synthesis. These efforts will be reported in due course.

Acknowledgment. We would like to thank the Ministère de l'Education Nationale, de l'Enseignement Supérieur et de la Recherche, for financial support to T.H.

Supporting Information Available: Experimental details and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL101145T

Org. Lett., Vol. 12, No. 15, 2010

⁽²⁸⁾ Chattopadhyay, S. K.; Biswas, S.; Pal, B. K. *Synthesis* **2006**, 8, 1289–1293. For a review of peptide coupling reagents, see: Han, S.-Y.; Kim, Y.-A. *Tetrahedron* **2004**, *60*, 2447–2467.

⁽²⁹⁾ The enantiomeric ratio and absolute configuration were determined by crude 1H NMR analysis of the corresponding (R)-mandelic ester and confirmed by comparison with the physical data reported in the literature (exp: $[\alpha]^{20}_D + 1.5$, c 1.0, CHCl₃); lit: $[\alpha]^{20}_D + 1.0$, c 1.0, CHCl₃), see: Smith, A. B., III; Minbiole, K. B.; Verhoest, P. R.; Schelhaas, M. *J. Am. Chem. Soc.* **2001**, *123*, 10942–10953.

^{(30) (}a) Ageno, G.; Banfi, L.; Cascio, G.; Guanti, G.; Manghisi, E.; Riva, R.; Roccaa, V. *Tetrahedron* **1995**, *51*, 8121–8134. (b) Nahm, S.; Weinreb, S. M. *Tetrahedron Lett.* **1981**, 22, 3815–3818.